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The “linear-model” parametric equation of state of Schofield, Litster, and Ho is used to
analyze the effect of gravity near the gas-liquid critical point of a fluid. Detailed results are
presented on the density distribution as a function of height, the constant-volume specific
heat, and the low-frequency sound velocity, for arbitrary points in the (p, 7) plane near the
critical point. The influence of gravity on the determination of critical exponents is also con-
sidered. It is concluded that even for the thinnest practical samples, gravity corrections may
have a significant effect on the exponents. The present theory permits gravity corrections to
be made in a self-consistent way, with high accuracy.

I. INTRODUCTION

In order to obtain reliable experimental values
for critical exponents near phase transitions, it is
essential to be able to estimate the various “round-
ing ” effects which smear the transition in any real
system. These effects may be due to inhomogenei-
ties, finite-sample effects, impurities, or non-
equilibrium behavior. One of the most important
rounding mechanisms is the density inhomogeneity
caused by gravity at the gas-liquid critical point of
a fluid. This effect is substantial since the isother-
mal compressibility diverges at the critical point,
so that a finite density difference will arise from a
small pressure difference Ap =pgAh., Thus at the
critical temperature T'=T,, only one level of a
fluid sample will be at the critical point p=p,.
Thermodynamic measurements carried out over a
finite sample will average over a region of the
(p, 7) plane, whose extent depends on the precise
way in which the compressibility diverges. In con-
trast to the other rounding mechanisms mentioned
above, it is possible to calculate the effect of grav-
ity near the critical point exactly, if the equation of
state of the fluid is known. On the other hand, it is
often precisely this equation of state which the ther-
modynamic measurements seek to determine, so
that a self-consistent calculation must be performed
in order to make reliable gravity corrections.

Although the importance of the gravity effect near
T, was recognized as early as 1892 by Gouy, ! it
was not until 1952 that the first quantitative analysis
was presented by Weinberger and Schneider, 2in
connection with their experiments on the coexis-
tence curve and equation of state of xenon. A com-
prehensive theory of the gravity effect, based on the
van der Waals equation of state, was presented by
Baehr, ® who was able to explain the main qualita-
tive effects of gravity. When it became clear, in
recent years, that the van der Waals equation was
not quantitatively correct near T,, a number of dif-
ferent analyses of the gravity effect were proposed,

8

using a more realistic equation of state. The work
of Berestov, Giterman and Malyshenko, ‘- was
based on a van der Waals ~like equation, modified
to allow for a divergent specific heat C,. More re-
cently, a number of proposals based on scaled
equations of state have been presented, and analyses
of the specific heat in gravity carried out.™® Gen-
erally speaking, the explicit equations of state used
for these calculations have been either unrealistic,
or somewhat cumbersome to manipulate. In par-
ticular, many such equations do not incorporate all
the known critical exponents, and they lead to spu-
rious singularities in certain thermodynamic func-
tions away from 7,.'° The equation of state used by
Schmidt, ® on the other hand, has only very weak
spurious singularities, and it is known to yield an
accurate representation of most thermodynamic
functions. ! However, it cannot be manipulated in
closed form for arbitrary points in the (p, T)
plane, and it is consequently not very well suited
for detailed calculations of the gravity effect.
Recently, Schofield, Litster, and Ho'? presented
a simple model equation of state, based on the gen-
eral parametric representation!?* of scaling laws in-
troduced by Josephson®® and Schofield. !* The para-
metric representation leads to thermodynamic
functions which are free of spurious singulari-
ties, and the particular equation proposed in Ref.
12 has an extremely simple form, which leads to
tractable expressions for thermr.odynamic functions
in the whole (p, T) plane. Moreover, as was shown
by Schofield et al., !? this equation of state fits
known experimental data on a large class of mag-
netic and fluid systems. In the present work we
apply this equation to an analysis of gravity effects
on various measurable quantities, in particular the
coexistence curve, the constant-volume specific
heat, and the adiabatic sound velocity.!® As is dis-
cussed in detail in what follows, our primary aim
is to obtain accurate estimates of the corrections
due to the gravity effect, and not to find an exact
equation of state. Thus, even if further experi-
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mental information forces a refinement of the model
equation of Schofield et al.,'? it is probable that the
gravity corrections based on this equation will not
be substantially modified.

One of the main problems in analyzing experi-
mental data near the critical point, is the determi-
nation of the value of T,, since small shifts in T,
can significantly change the “best-fit” exponents.
This point has been emphasized recently by Voro-
nel’ and co-workers.'® One possible choice for T,
is the point at which the specific heat reaches its
maximum value, or the sound velocity its mini-
mum. In the present work we study the deviation
of this “apparent T,” from the true critical tem-
perature, as a function of sample height. Another
method frequently employed to determine the criti-
cal temperature, is to perform a least-squares fit
to the data treating T, as an adjustable parameter.
We have investigated the validity of such a proce-
dure by treating the gravity-averaged specific heat
as “experimental data” and determining the best-
fit values for the exponent a and the temperature
T.. We find that gravity corrections as small as
1 or 2% can significantly shift T, from its true
value, and can lead to systematic shifts in @ of the
order of +0.04.

In Sec. II, the “linear-model” equation of state
of Schofield, Litster, and Ho'?is introduced, and
its validity for real fluids briefly discussed. Sec-
tion III contains a general discussion of the effect
of gravity, based on the linear model. The density
distribution in a cylindrical vessel of height % is
calculated for arbitrary values of the temperature
T and average density p, near T, and p,, respec-
tively. In Sec. IV, the average specific heat C,is
calculated, and detailed numerical results are pre-
sented for xenon. Section V describes calculations
of the average sound velocity, based on a numeri-
cal solution of the wave equation in an inhomoge-
neous medium. Results are presented for He* over
a wide range of temperatures, average densities,
and sample heights. In Sec. VI, analyses are pre-
sented for various critical exponents, arising from
a fit to gravity-averaged quantities, treated as ex-
perimental data. Section VII contains a brief sum-
mary and conclusion. Most of the detailed compu-
tations are discussed in the Appendixes: Appendix
A contains the expressions for thermodynamic
quantities in terms of the variables » and 6 of the
“linear model.” In addition, the dimensionless
units employed throughout this work are described.
In Appendix B, the “linear-model” parameters are
determined for a number of fluids, Xe, He*, CO,,
and O,. Appendix C contains details of the calcula-
tion, given in Sec. III, of the density distribution in
a vessel, for given values of temperature and aver-

- age density. In Appendix D, the specific-heat
averages are carried out explicitly, and cast into

a form which is readily calculated on the computer.
In each case certain limits are discussed in which
the calculations simplify, such as the case of weak
gravity effect, or the critical isotherm (T=T,), or
the critical isochore (p=p,). Appendix E contains
a discussion of the numerical solution of the wave
equation, leading to the average sound velocity .

II. PARAMETRIC REPRESENTATION

As was pointed out by Josephson®® and Schofield,!*
the most convenient representation for scaled equa-
tions of state is one in terms of parametric vari-
ables 7 and 6, where 7 is essentially the “radial”
distance to the critical point, and 6 describes an
“angular ” position, in the (p, T) plane. All critical
singularities occur in the variable 7, and the de-
pendence on 6 is smooth, thus ensuring that known
analyticity requirements'® will not be violated.
Specifically we define » and 6 by the relations!’

( , T ___._Q_(T__ = -
MA\p ) Y )_A“_ae(l_GZ),VBﬁ’

P, /p, 2.1)
polT) = wlp,, T), (2.1a)
(T-T,)/T,=t=(1-b%%)r, (2.2)
b>1, (2. 2a)

in terms of the usual exponents 8 and 6, and the
numerical constants a and b, to be determined from
experimental data (see Appendix B). The scaled
equation of state may then be written in the general
form

(0 =pe)/pe=a=%(8)r® (2.3)

where %(6) is an unknown polynomial, to be deter-
mined. Following Schofield, Ho, and Litster, 12
we shall use the very simple “linear-model”
ansatz,

A=pkor® (2. 3a)

where & is a positive constant. This ansatz seems
to be quite adequate to fit presently available ex-
perimental data on fluids and magnetic systems,
but there is strong evidence that it is not exact,
even for the Ising model in two and three dimen-
sions.'® The great advantage of the representation
(2.1)—=(2. 3) is that it leads to closed form expres-
sions for all thermodynamic functions. Indeed,
using the relation for the chemical potential

_(ié>
b={%5)p

we may integrate Eq. (2.1) to find the free energy
A(p, T). The remaining thermodynamic functions
are then obtained, in terms of » and 6, using the
definitions [Eqgs. (2.1)=(2.3)] and the standard ther-
modynamic formulas. Appendix A contains expres-
sions for the functions we shall use, as well as an

(2.4)
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FIG. 1. Schematic representation of the (p, T) [or
(A, #)] plane near the critical point in terms of the para-
metric variables », §. The coordinate » describes the
“radial” distance to the critical point, and 6 is an angu-
lar variable which goes from +1 (liquid branch of coexis-
tance curve) to —1 (gas branch). The critical isotherm
has 62=b%, with 6 >0 for the liquid. The critical point is
defined by »=0.

explanation of the dimensionless units we employ
throughout this work.

It follows from Egs. (2.1)~-(2.3), that the critical
isotherm (¢ =0) is given by 6= "%, with 6>0 for
p>p., and 6<0 for p<p,. The critical isochore
above T, (¢>0) is the line =0, and the coexistence
curve is the line 62=1, with 6=+ 1 being the liquid,
and 6= —1 the gas. A schematic representation of
the p-T plane in terms of the parametric variables
is shown in Fig. 1.

The constants a and & are determined by fitting
experimental data on the compressibility along the
critical isochore (for 7 >T,), and on the shape of
the coexistence curve (see Appendix B). This
leaves the constant b, for which we may use the
properties of the critical isotherm, or the com-
pressibility along the critical isochore below T,.
As noted in Ref. 12, however, it turns out that
there is considerable uncertainty in the experimen-
tal data onthe latter quantities, sothat within the
present error limits we may choose 5% by some
other criterion. In Ref. 12, the “minimization”
condition

b%= (06 -3)/(6 = 1)(1 - 28) (2.5)

was proposed, since it leads to some simplifica-
tions in the thermodynamic functions. We have
used this choice for 52 in most of our numerical
calculations, but have worked out the thermody-
namic functions for the general case, since experi-
mental data may one day improve sufficiently to
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favor some different value. In Table I, we present
the parameters of the “linear model” for a number
of pure fluids.

The main assumptions involved in the use of the
present equation of state, besides scaling, the ex-
istence of pure power-law divergences and the lin-
ear ansatz (2.3a), are the symmetry of the system
about p=p,, and the absence of singular correction
terms to the leading asymptotic behavior. These
last two assumptions, which are related, are rea-
sonably consistent with presently available experi-
mental data.!' These assumptions are almost cer-
tainly not exactly correct for real fluids, however,
and as experiments improve, the necessity for a
more sophisticated analysis will become apparent.
Theoretical attempts to describe more general non-
symmetric equations of state have been presented
by Green, Cooper, and Levelt Sengers, 1 by Widom
and Rowlinson, % and by Mermin and Rehr, # but it
is premature to compare these theories with exper-
imental data, in most cases.

It is important to note, of course, that the spe-
cific values obtained for the exponents of the lead-
ing asymptotic behavior, are extremely sensitive
to the choice of correction terms, and the present
“best values ” may change considerably in the fu-
ture. One case, which is of particular interest to
us, in which present experiments® already strong-
ly favor singular correction terms, is the specific
heat C, for CO, along p., where the best fit to

C,=A|t|"*+B,, >0 (2.6a)

C,=A'|t|™+By, t<0 (2. 6b)

has BoaﬁB{,. This form implies a singular correc-
tion to the leading asymptotic behavior of C,

6C, (1) =(Bo=Bon(®) , (2. 6¢)

where 7(¢)=0 for £ >0, and n(t)=1 for £<0. The
presence of such a contribution in C, will lead to
corresponding singular correction terms in other
thermodynamic functions which can almost certain-
ly not be neglected in any quantitative analysis of
critical exponents.

In the present work we are interested in making
quantitative estimates of gravity corrections. For
this we need expressions for the thermodynamic
functions which are numerically accurate over the
experimental range of density and temperature.
Since gravity effects are only important very near
T,, we are only considering explicitly in the anal-
ysis the leading singularities, and assuming that
the correction terms, whatever their precise form
may be, are unaffected by gravity. We believe
that the “linear model” provides a sufficiently ac-
curate interpolation between the measured singu-
larities along specified paths, to yield a reliable
estimate of the gravity effects. The question of
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TABLE I. “Linear-model” parameters for various fluids.

Unless otherwise stated all parameters are those of Ref. 11.

Parameter Xe CO, He* O,

T°K) 289.75 304.12 5.1884 154.5762

P, (dyn/cm? 5.83x 107 7.375x 107 2,274 x 108 5.043x 107°
pe (&/cm?) 1.11 0.466 0.0693 0.43622

B 0.351 0.347 0.359 0.353%

y 1.248¢ 1.2414 1,2124 1.247%

o 0.05° 0.065° 0.07° 0.0474

5 4,556 4.5769 4,3764 4.5334¢

B 1.795 1.983 1,435 1.8192

T 0.059 0.053 0.13 0.05262

D 3.4451 2.6661 3.4771 3.725 1
r/r’ 4,298 4.368 4.018 4,248

A 6'02u 6.98 3.92P

ug’ —6.47 ' -2.6°

Al 78.60° }70'31 11.95°¢ oo

a 23.30 28,37 8.256 26. 60

k 1.375 1.492 1.073 1.399

b2 1.468 1.440 1.445 1.476

Uy (cm/sec)? 7.280 x 103 1.258x 104 5,723 x 103 1.071 x 10*
Cy (J/mole °K)! 2.40 2.29 2.53 1.19

3L. A. Weber, Phys. Rev. A 2, 2379 (1970).
YH,A. Kierstead, Phys. Rev. A 3, 329 (1971).

°L. A. Weber, J. Res. Natl. Bur. Std. (U.S.) 744,

93 (1970).
90btained from scaling.

°Fit of linear model to expermiental data at |¢] =103,

calculated from Eq. (B7).

correction terms to the leading asymptotic behav-

ior is discussed further in Appendix B.

III. EFFECT OF GRAVITY

As was discussed by Edwards, Lipa, and Buck-

ingham? the gravitational force can lead to two
distinct types of effects on thermodynamic proper-
ties near T,. The first is an explicit dependence of
thermodynamic functions on spatial gradients in the
system, and the second the spatial variation of
thermodynamic functions caused by their depen-
dence on the local values of the variables. The ex-
plicit effect should only become important when a
characteristic length in the system becomes com-
parable to the correlation length £. Let us choose
for the characteristic length the quantity

SO

describing local variations in the density. Then
we can verify (see below), that for attainable tem-
perature intervals, say |#|>10%, we always have

2> 10%, (3.2

so that spatial gradients can indeed be neglected.
Another characteristic length for the system is the
smallest dimension % of the container.# The re-
quirement % >10%, say, thus imposes a limitation

8Calculated from Eq. (B8).

*Reference 29.

yvalue for A}’ +pd’, obtained by fitting to data of Ref.
22 at =103, The values of A’ and p{’ are not known
separately.

ICx= (Paw/Top) X 10°7; Uy=(P,/p)"%

on the size of the vessel, which for 1£1210%, is
roughly #>0.05 cm.

Turning to the implicit effects of gravity, name-
ly, the dependence on local values of thermodynam-
ic variables, we wish to compare the variation of
the density, say, between the top and bottom of the
vessel, to its average value. Since the compress-
ibility diverges strongly at the gas-liquid critical
point, it is clear that close to T, the effect of grav-
ity must become important, since substantial den-
sity gradients can develop. For a given height £,
we may estimate the temperature interval at which
this occurs, by equating the pressure drop p.gh
due to gravity, to the quantity

ap=[pp(t) =p;]/pekr(t) , (3.3)

where p;(¢) is the density of the liquid at tempera-
ture ¢ and kr is the isothermal compressibility.
Inserting the expressions for p; and kr from Egs.
(B1) and (B2), of Appendix B into the relation 4p
=p.gh we may solve for £, which yields

tﬂ(h) = (chgh/'BPc)l/B‘S ’ (3- 4)

where P, is the critical pressure, I' and B are
numbers of order unity defined in Eqs. (B1) and
(B2), and g is the acceleration of gravity. The
values of ¢, we obtain for various fluids are shown
in Table II. % It is clear from Eq. (3.4) that by
employing thin samples one can reduce ¢, and thus
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TABLE II. Parameters for the gravity effect. #, and
Af calculated from Eqgs. (3.4) and (3.16), respectively.
t; is defined as the temperature at which 1C,—CJ|/C)
=10% for T>T,.

Parameter Xe CO, He! 0,

h=0.1cm

tp  3.1x10%  1.9x10°° 6.6x10"°  1.8x10%°

A} 0.034 0.029 0.033 0.028

t;  3.4x10°  1.5x10°° 8.2x107°
h=1cm

to  1.3x10%  8.0x10°° 2,9x10°* 7.4x10°°

A 0.057 0.048 0.057 0.047

¢ 1.5x10"  6.7x10°  3.65x 10"
h=10 cm

tp 5.5x107*  3.4x10% 1.2x10%  3,1x10™

A¥  0.095 0.080 0.096 0.078

t,  6.8x10"*  3x107¢ 1.7x 107 .
minimize the implicit gravity effects. However,

as mentioned above, in order to avoid explicit ef-
fects we must have 2> &, Thus, even under ideal
conditions it is not possible to eliminate gravity com-
pletely, and in practice gravity has almost always
been an important factor in past experiments at the
critical point. As will be shownbelow, use of the
parametric equation of state permits one to calcu-
late these effects to great accuracy, within the as-
sumption of local thermodynamics, i.e., neglect-
ing the previously mentioned explicit effects.

One method which has been widely used to avoid
gravity effects, is to stir the sample at a uniform
rate.>?® This device, which has the added advan-
tage of reducing the equilibration time significantly,
may indeed lead to improvements in experimental
convenience, but it is not entirely clear what addi-
tional effects the stirring may produce. It would
be interesting to make precise measurements with
and without stirring, and to analyze the difference,
using the present theory.

Under the effect of gravity, the chemical poten-
tial depends on the vertical coordinate z, according
to the relation

(3.5)

Integrating this equation and using Eq. (2.1) we ob-
tain

z=20=~(P,/p.g)ad(1 —6%)r"®,

where z, is an integration constant, which we may
take to be zero by choosing the origin of z at the
point at which p =y, i.e., p=p,. If our system is
enclosed in a vessel of height #, we may measure
z in units of %, so that Eq. (3. 6) becomes

du=gdz.

(3.6)

(3.7
(3.8)

2= —x,6(1 — 697°°
x=aP./p.gh.

Equation (3.7), together with the expression for »
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[Eq. (2.2)], can be inverted to define a function
6(¢, z). Since all thermodynamic functions are ex-
pressible in terms of 6 and 7, they can therefore
be written, at fixed #, as functions of the vertical

height z. For example, the density profile is given
by
p(2) —1=A(2)=k67B=PO(t, 2) {t/[1 - b263(t,2)]}".

(3.9
(As explained in Appendix A, the density p is mea-
sured in units of p,.) In Fig. 2, we show the den-
sity profile for helium at various temperatures
near 7,. Because of the diverging compressibility,
the density gradient (dp/dz), becomes infinite for
T=T, (t=0), but of course this only happens at the
single point z=0, at which p=p,.

Using Eq. (3.9), we may verify that in practice
the density gradient does not become large enough
for the explicit effects of gravity to manifest them-
selves. The characteristic dimension A, for den-
sity variations, defined in Eq. (3.1) can be evalu-
ated along the critical isochore, using Eq. (C2) of
Appendix C. We find

N=ktx 2" (3.10)

Since this length goes to zero as t~0 (T- T,), A,
will eventually become comparable to the correla-
tion length £. In practice, however, the reduced
temperature never goes below about 1075, in which
case the xenon parameters of Table I would yield

2,=0.03 cm~10%, ¢=10%, p=p,. (3.11)

For a cylindrical vessel, containing a given mass
of material, we may determine the coordinates of
the top and bottom of the vessel, from the condition
that the integral of the local density be equal to the
average density. For example, if a mass M of

x
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T
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-0.06 -0.04 -0.02 o] 0.02 0.04 0.06

A (REDUCED DENSITY)

FIG. 2. Density deviation A= (p—p,)/p.vs the height 2
in He! for different temperatures near T, according to
Eq. (2.3a). The reduced temperatures for the different
curve? are (a) t=—10"4, () £=0, (c) £¢=3x10"3, and (d)
£=10"°,
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FIG. 3. Density distribution in Xe for different sample
heights, when the average density is p, (A=0). The solid
lines represent the reduced densities [A= (p —p,)/p,] of
the bottom (A>0) and the top (A<0) of the container. In
the limit of zero height, or zero gravity effect, the den-
sity vs temperature is given by the dotted line, which
coincides with the coexistence curve for ¢ <0.

fluid is contained in a vessel of volume V, the aver-
age density is

p=(M/V)pt=1+4, (3.12)

Then for each value of ¢ and A the coordinate 2y of
the bottom of the vessel is determined by the condi-
tion

-~ l+zg

A= f‘,1 Alz, t)dz, (3.13)
(in our units the height of the vessel is unity). In
practice, for each value of ¢ and 4, we have found
the value of z; by seeking the zero of the function

~ l+gyq
F(z1)=A-—f‘1 alt, z)dz. (3.14)

The numerical procedure we employ is described
briefly in Appendix C.

Special Cases

The simplest case is that of a system whose
average density is the critical density, i.e., A=0.
Then since A(z) [Eq. (3.9)] is an odd function of
z [as a consequence of the symmetry assumed in
Eqgs. (2.1)-(2.3)], we see from Eq. (3.13), that

p=pe (3.15)
for all values of ¢, i.e., the critical density al-
ways occurs at the center of the vessel.

Another simple case is =0, when the expression
for A(z) simplifies and Eq. (3.13) can be integrated
in closed form to find z;(&). This case is discussed
in Appendix C.

Given the coordinate z;, it is a simple matter to
evaluate the densities 4;=A(z;) and 4,=A(1+2,) at
the bottom and top of the container. In Fig. 3, we

R |
z21= =73,
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plot these quantities as a function of temperature
for Xe, in a system whose average density is
p(A=0), for various sample heights. It is clear
from this figure that there is a substantial density
variation in the sample near T=T,, even for 2=0.1
cm. Away from T, of course, the density be-
comes more uniform, except for the finite density
jump at the interface which exists in the two-phase
region. In Fig. 4, we show the density distribution
for average density deviations A equalto0. 02, 0. 05,
and 0.08. We shall comment later on the charac-
teristic difference between the first two densities
and the last one.

Apparent Coexistence Curve

The point z = 0 has a special significance in our co-
ordinate system. This is the point at which p=p,, and
the maximum density gradient exists inthe system.,
Inparticular for £ < 0, the gas-liquid interface occurs
at z=0. For a given £<0, there will be a specific
value of A, at which the interface is at the bottom
(or top) of the vessel, i.e., at which z;=0 (or z,
==1). Let us call this value A*(¢f), or conversely
let £*(&) be the corresponding value of ¢ for given
A, We may extend the definition of ¢* or A* to
positive values of ¢, in which case it is the point of
maximum gradient (and not an interface) which is

8
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FIG. 4. Density distribution in Xe for =1 cm and dif-
ferent average densities A. The dashed line represents
the behavior in the absence of gravity, and the solid lines
are the reduced densities of the bottom and top of the con-
tainer in gravity. There is a characteristic difference
between the curves for A< Af =0.057 and A>Af. For
A>Af, an interface forms inside the container when T
is decreased through T, and the densities at the bottom
and top vary smoothly with temperature. For A>A}, the
system remains in the one-phase region at £=0, and the
interface only appears (at the top of the container) at a
temperature ¢=¢*(4), The insert shows details of the
density distribution on the gas side near ¢t=¢*(A +0, 08),
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FIG. 5. Average density A*() at which the bottom (or
top) of the container is at the critical density, plotted as
a function of temperature, for different sample heights,
in Xe. For ¢< 0, the solid curves play the role of ap-
parent coexistence curves, which approach the true co-
existence curve (dotted line) as n—0. For ¢ >0, the curves
are represented by dot-dashed lines. The intercept of the
apparent coexistence curve with the critical isotherm
A*(t=0) = A} separates those densities for which the inter-
face forms inside the vessel (|A| < Af), from those for
which the interface comes in through the bottom (or top)
of the vessel (I1A] >Af), upon cooling through T, at fixed
average density.

at the bottom (or top) of the container when ¢=¢* (a),
In Fig. 5, we show the locus of the curves A*(¢) in
Xe for various sample heights. It is clear that in

16.6

16.4

T(°C)

16.2

16.0

P-Pc (g/cm3)

FIG. 6. Apparent coexistence curve vs temperature
for #=19.5 cm (solid line) and z=0 (dashed line) in Xe,
according to the “linear model.” The curves have been
plotted in dimensional variables by choosing T,=16.59°C
and p,=1.10 g/ ecm?®, The data of Weinberger and Schneider
(Ref. 2), are represented by @and X (for two separate
runs) in a vertical container (#=19.5 cm), and by 4 in
the horizontal container (.=1.2 cm). The values of T,
and p, were adjusted for the best fit. The data for z=1.2
cm seem to fit the theory for #=0 better than the theory
for n=1.2 cm, which is not shown.
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the limit of a container of zero height the curve
A*(¢) coincides with the coexistence curve, = Ay ()
for £<0. For finite sample height, the curve &*(¢)
plays the role of an “apparent coexistence curve.”
In visual observations, in a system of fixed aver-
age density A, the meniscus disappears (at ¢=0)
inside the vessel, for |4|<a*(¢=0). For 4]
> |A*(¢=0)I, on the other hand, the meniscus dis-
appears [at £=¢*(4)], either through the top of the
container (for A>0), or through the bottom (for
A<0). This phenomenon has been known for many
years, and it was studied quantitatively by Wein-
berger and Schneider? and by Whiteway and Mason.?
In Fig. 6, we show a comparison of the Xe data?
with our calculation. For the vertical container
(r=19.5 cm) the agreement is satisfactory, within
the considerable scatter of the experiment. For
the same container in a horizontal position (z=1.2
cm) the data resemble the ideal coexistence curve
(r=0), much more than our curve for 1.2 cm (not
shown). We provisionally attribute this discrepancy
to the stirring which occurred in the experiment,
which tends to equalize the densities and remove
the gravity effect. In Fig. 7, we have plotted the
quantity A*(¢=0)= A% vs height for xenon, along
with some experimental points from Refs. 2 and
27. It is interesting to note that the theoretical
value of 5}',‘ goes to zero very slowly, as - 0, and
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FIG. 7. Reduced density AJ, which is the ¢=0 inter-
cept of the solid curves in Fig. 6, plotted as a function of
height, in Xe. The solid error bars represent the esti-
mated uncertainty in the parameters D and § of Eq. (3.16).
The dashed lines are experimentaldata: For 2=1.2 and
19.5 cm, the data are those of Weinberger and Schneider
(Ref. 2) shown in Fig. 6, with error bars estimated by
the authors; for z=4 and 15 cm, the data are those of
Whiteway and Mason (Ref. 27), for which no error bars
were quoted. Note that the solid curve approaches zero
density very slowly as 2—0 (e.g., for 2=0.1 cm, 55"
~0.035).
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remains equal to 0.03 for 2=0.1 cm. From Egs.
(C18), (B3), and (B7) it is easy to show that the
quantity Z;‘; is completely independent of our model,
and only determined by the shape of the critical
isotherm, i.e.,

AX =<_6_><Bc_g£>m
°"\6+1/\ DP, ’

where D and § are given in Eq. (B5). Thus the poor
agreement shown in Fig. 7 between the experiments
of Refs. 2 and 27 on the one hand and Eq. (3.16) on
the other, is somewhat disturbing. It seems to us
that more precise experimental observations of the
apparent coexistence curve for different sample
heights would provide an interesting check on the
critical parameters of a fluid, and on the equation
of state.

Let us comment on the difference mentioned
earlier between the curves in Fig. 4. For Xe with
h=1cm, we have 5}',‘ =0.057, and the curves with
4=0.02and 0. 05 correspond to & <A}, whereas
the curve A=0, 08 has A> A%, TFor the first two
cases the interface disappears inside the sample
when T is raised through T,, but for A=0. 08 the in-
terface leaves the top of the sample (at ¢ = = 107%)
and the system is in the one-phase region below T,.

Once the density distribution inside the sample
is known for each temperature, the formulas of
Appendix A may be used to calculate the spatial de-
pendence of any other thermodynamic function.

The procedure which must be employed to find the
average of a quantity over the whole sample will
depend on the particular experiment performed.
As examples of physically interesting quantities
which are affected by gravity, we shall discuss the
average of the constant-volume specific heat and
the low-frequency sound velocity.

(3.16)

IV. GRAVITY AVERAGE OF SPECIFIC HEAT

The constant-volume specific heat as obtained in
a standard bulk measurement is not the average of
the local C, over the sample. It is rather equal to
the temperature times the derivative with respect
to temperature of the average entropy, with the
total volume of the system held constant. Let
S(¢, z) be the local value of the entropy. Then the
average entropy of a cylindrical container of height
his

S)= [ "stt, 2z, (4.1)

where the coordinate z, of the bottom of the contain-
er has been determined from Eq. (3.13).

The gravity-averaged specific heat is then

- £~ d z
pCv—TaT—(1+t)dt S(#) 4.2

(év is a specific heat per unit mass, and pC, is per

unitvolume, see Appendix A). As mentionedearlier,
we shall neglect the spatial variation of the background
terms, and only consider the average of the singular
parts. Writing
évz C':ing+é€,

(4.3)
we show in Appendix D [Eq. (D4)] that

-1 Asing= ¢’ " )
p(l+¢)ytCoine=g" = —£ ) dz
21 9t z

(S Lem)=s e 2 j 1+‘1<8A)zdz, (4.4)

Al 1+2) =40, 20/ ), \ot

where S, is the singular part of S [Eq. (A6)]. Using
the relation between z and 6[Eq. (3.7)], this ex-
pression for 8’ may be written in terms of integrals
over 6, which are given explicitly in Eqs. (D5)—
(D7) of Appendix D.

In the limiting case of no gravity (i.e., 2=0) it
can be shown that the first term on the right-hand
side of Eq. (4.4) reduces to p(1+£)"'C,, whereas
the second term reduces to p(1+#)™(C,-C,). For
t>0, and p=p, we have C,=C, so only the first
term contributes. For £<0 and p=p,, the mea-
sured C, in the two-phase region is just the aver-
age of C, for the gas and the liquid. # According
to our symmetry assumptions, the quantity pC, has
the same value for the gas and the liquid, and once
again only the first term in Eq. (4.4) contributes.

More generally, even in the presence of gravity,
the second term of Eq. (4.4) does not contribute if
the average density is equal to p, (i.e., A=0),
These statements are demonstrated in Appendix D,
where the full expressions for é,,, including the
background terms, are derived. We also treat ex-
plicitly the special cases A=0and¢=0.

Results for Specific Heat of Xenon

In order to demonstrate the effect of gravity on
C,, we have made an extensive series of calcula-
tions for xenon, mostly for a height of 1 em, which
corresponds to the experiment of Edwards et al.?
We have studied both isochores and isotherms, by
which we mean, respectively, paths of constant
average density as a function of temperature, and
paths of constant temperature as a function of aver-
age density. Since the linear-model parameters
do not vary greatly from fluid to fluid, the results
for xenon should be semiquantitatively correct for
other systems, when expressed in dimensionless
form (see Appendix A). _

In Fig. 8, we show the specific heat C, along the
critical isotherm (¢=0), for various sample heights.
In contrast to the gravity-free specific heat, which
diverges as A */® when A~ 0, the value in gravity is
essentially constant for small &, A sharp drop oc-
curs at a characteristic value of 4, which increases
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FIG. 8. Average specific heat C, vs reduced density
A=({p-pJ/p, in Xe along the critical isotherm, for var-
ious sample heights. Note the sharp drop in Cv at the
value |A| =Af (see Fig. 7), at which the top (or bottom)
of the container is at the critical density. The specific
heat is expressed in dimensionless units, as explained in
Appendix A. In order to obtain év in J/mole °K multiply
the dimensionless C, by Cy=2.4.

with increasing height. This value is just the qlian-
tity A% discussed earlier, at which the point of
maximum density gradient (z=0, p=p,) leaves the
sample volume. For ¢=0 it can be shown analyti-
cally from Egs. (D17)-(D27) of Appendix D that at
A= A* the average specmc heat has an infinite
derivative as a function of A, For | Al> A¥, the
density gradients in the sample become smaller,
and C, approaches its gravity-free value.

From the symmetry properties of the assumed
equation of state (2.1)~(2.8), it follows that pC3!®
will be symmetric for + A, Since in practice such
symmetry is not observed for the full C,, we have
included an asymmetric term in the background
contribution in Eq. (4.3). We have chosen this
term to fit the calculated C, values of Habgood and
Schneider, # along isochores far from T,. A more
accurate determination of this quantity must await
detailed measurements of C, as a function of den-
sity. The asymmetry of C‘,, which follows from our
choice of parameters is apparent in Fig, 8, but
since it is completely decoupled from our gravity _
analysis, we have only shown results for positive A
in subsequent figures.

For isotherms with ¢> 0, the specific heat varies
more smoothly, and has an inflection point at
A= A*(¢), with finite first derivative. Since f is
positive, the density gradient is everywhere finite
in the sample (even at z=0), and C, is smooth. The
isotherm #=+10" is shown in Fig. 9; for larger ¢
values the change in C, at A*(¢) is less pronounced,
since the density gradients are smaller, For iso-
therms with #<0, the specific heat has a finite jump
at A= A*(¢), which occurs when the gas-liquid inter-
face leaves the sample., This jump is analogous to
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the one occurring at the coexistence curve in the
absence of gravity which is associated with the la-
tent heat of vaporization. However, in the present
case the jump is reduced in magnitude by the grav-
ity effect, and displaced to the “apparent” coexis-
tence curve A*(f), which lies outside A,,(¢) (see
Fig. 5). The isotherm at = -10"° is also shown in
Fig. 9; for lower ¢, the behavior is closer to that
in the absence of gravity. _

Although the variation of C, along isotherms is
quite striking, in practice it is generally isochores
which are measured, and some of those are shown
on a linear temperature scale in Fig. 10, It is ap-
parent from this figure that in the presence of grav-
ity there is a difference between small values of
A for which C is a smooth function of tempera-
ture, and larger values of A for which C experi-
ences a jump as a function of £, The dividing value
is A= A%, The jump in C, occurs at the tempera-
ture ¢ =¢*(3), which once again plays the role of an
apparent coexistence temperature, for given A,

In Fig. 11, we illustrate how sensitive C, is to
the value of 5, by showing two isochores on either
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FIG. 9. Average specific heat C, in dimensionless
units (solid curves) vs reduced density A for isotherms ¢
=% 10"°, compared with the gravity-free value C?, (dashed
curves). Only positive density deviations are shown. In
the upper figure (¢ >0) the drop in C, which occurs at A
=A*(=10"% is less pronounced than for t=0. In the lower
figure, there is a finite jump in C, which occurs at the
apparent coexistence density A=A*({=—10"% (see Fig. 5).
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FIG. 10, Specific heat, in dimensionless units, along
isochores, plotted on a linear temperature scale. The
upper figure shows C, for zero gravity (or zero height)
and the lower figure, the corresponding curves in the
presence of gravity. The average densities are (a) A=0,
(b) A=0.044, (c) A=0.07, and (d) A=0.10. Note the
difference in behavior between curves (b) and (c) of the
lower figure which correspond to A< A} and A> Af, re-
spectively. The temperature at which p=p, at the top of
the cell is denoted by ¢*.

side of 53‘ = 0,057, namely, A=0.0565 and &=0.058,
for which C, behaves quite differently. A more
complete set of isochores is shown on a logarithmic
temperature scale in Figs. 12(a)-12(e), as wellas

the comparison with the gravity-free specific heat

CJ. The maximum in, along isochores always oc-
curs attemperaturesbelow T,. The locus of these
maxima, shownin Fig. 13, is inside the coexistence
curve for small 4, but it crosses at some value of
4, and then joins the “apparent” coexistence curve
A(f). In the absence of gravity, of course, the
locus of specific-heat maxima along isochores is
the coexistence curve itself. The locus of specific-
heat maxima, and of specific-heat jumps was
studied in Ref. 6, based on a van der Waals-like
equation of state with logarithmic specific heat, and
the results are qualitatively similar to ours. In
order to demonstrate how the present results de-
pend on the sample height 2, we show in Fig. 14

the variation of the temperature f,,, at which C, at-
tains its maximum along the critical isochore.

Also shown, are the values of C, at ¢_,, and at =0,
as a function of sample height.

It is hoped that some of the predictions of the
present calculations can be verified by detailed
specific-heat measurements. In particular, the
significant changes in shape caused by gravity, as
shown in Figs. 12(c) and 12(d), should be easily de-
tectable. Also, the locus of the specific-heat maxi-
ma and the deviation of this locus from the coexis-
tence curve shown in Fig. 13, would be interesting
to investigate experimentally.

The present calculations should also serve to
make quantitative gravity corrections, in those
cases where the ideal gravity-free behavior is
sought. In order for our estimates to be reliable,
they should not depend too much on the particular
parametrization we used, since in practice there is
considerable uncertainty at the present time in the
values of B, I', D, B, and & (see Table III and Fig.
15). We have first tested the dependence of C, on
the choice of 4% by changing its value from Eq.
(2.5), normalizing the specific heat to agree with
experiment®® at ¢= 10, The result for =0 and A
=0 is shown in Fig. 15(a), where the experimental
value from Ref. 24 is also shown. It is interesting
to note that the maximum in é,, occurs for the value
b3x given by Eq. (2.5), and this choice is consis-
tent with the experiment. However, since C, only
varies by a few percent when 5% varies within the
uncertainties discussed in Appendix B, we see that
other choices for b2 are also permissible,

In addition to a variation with 52 for given B, 6,
B, and I', the value of é,, also changes when these
latter parameters are varied. In Table III, we

show how (-3,, at t=0, A=0 varies for the five alter-
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FIG. 11. Average specific heat vs temperature for two
isochores near A¥=0.057. In the upper curve (A<A})
the interface forms inside the vessel and the average
specific heat varies smoothly as a function of tempera-
ture. The lower curve (A< A}), whose reduced density
only differs from the upper by 0.15%, has a sharp drop
at ¢ =t*(A), where the interface enters the top of the sam-
ple.
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FIG. 12. (a)—(e) The specific heatC, in gravity (solid
curves) and out of gravity (dashed curves) for anumber of iso-
chores, plotted as a function of temperature on a logari-
thmic scale. The temperature at which p=p, at the top of
the container is denoted by *. The specific heats are
expressed in dimensionless units.

nate self-consistent sets suggested by Schmidt® (the
background contribution to (j‘,, was adjusted each
time to agree with experiment at £=7.94X10"%. In
agreement with Schmidt’s conclusion, we see that
the value of C, at this point is not very sensitive to
the choice of parameters (see also Appendix B).
Thus, experiments on C, do not at this time provide
an unambiguous test of various parametrizations of
the equation of state, even within the “linear mod-
el.” It is hoped, however, that eventually the un-
certainties in experimental data and in the param-
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FIG. 13. Locus of specific~-heat maxima along iso-
chores in the (¢, A) plane is shown by the dot-dashed line.
The dashed line is the coexistence curve, which is the
locus of specific-heat maxima in the absence of gravity.
The solid line is the apparent coexistence curve, which
is the locus of specific-heat jumps along isochores, in
the presence of gravity.

eters of our model can be reduced substantially., In
that event, one of the interesting quantities to fit to
experiment is the value of C, at £=0, A=0 for vari-
ous heights, Finally, we also show in Table III the
variation in the value of (C » = C%)/C? with the choice
of linear-model parameters at A=0, #=1,5x10"*
where the gravity effect is significant but not domi-
nant, As can be seen, the results are very insen-
sitive to the choice of parameters, which gives us
additional confidence that gravity corrections can
be made reliably at least when they are not too
large. Similarly, if 4% is modified from its value
b2, given by Eq. (2.5), the percentage deviation

(€, ~€2)/CY remains essentially unchanged at
£=1,5%10""%

In order to compare the gravity effect on C, in
various fluids quantitatively, we show in Table II
the value of #,(k), which we define as the reduced
temperature for which | C, -C21/CYis 10% (we
assume ¢ >0), for the given height 2. From this
table, we see that for a given height, the fluids O,
and CO, have the smallest gravity effect,

V. SOUND VELOCITY

The thermodynamic formula for the adiabatic
sound velocity is

a 2
u®=(prg) = (pKr)™ + Tp‘z(-zzg) c;l. (5.1)

oT ),

Since near the critical point x;' goes to zero rapid-
ly and (8P/07T)% goes to a constant, #® is propor-
tional to C;!, and vanishes with the exponent &
along the critical isochore. In practice, two types
of corrections have to be applied to Eq. (5.1)near
T., namely, dispersion and gravity. The first,
which is an example of an “intrinsic effect” dis-

cussed in Sec. II, arises because there exist slow
relaxation processes in the medium, with a relax-
ation time 7’ which diverges at T.. This leads to
corrections to Eq. (5.1) of order w7’ at finite fre-
quencies. Although there does not exist at present
an exact theory of dispersion in fluids near T,, the
effects may be estimated experimentally with rea-
sonable accuracy.®®® In any case, we shall not
discuss these effects further in this paper, but
rather turn to the second correction to Eq. (5.1).
In the presence of gravity, the sound velocity de-
pends on the position z in the container. The func-
tion u(z) is obtained by expressing the thermody-
namic functions in Eq. (5.1) in terms of the vari-
ables ¢ and 6(z, t). The “average velocity” for a
cylindrical cavity of height # and radius a’ is ob-
tained by calculating the eigenfrequencies of the
wave equation in the medium,

2p(7 1) - 2! e
Vé(r 3 T) uZ(z) 372 q>(r ’ T)‘07 (5-2)
with the boundary condition
V=0 (5.3)

on the boundaries of the cylinder (7 is the time
variable; ¥ " is the three-dimensional spatial coor-
dinate with cylindrical components 7', ¢, z; and

& is the wave function for the sound wave).

As is discussed in Appendix E, the eigenfrequen-
cies of Eq. (5.2) for the inhomogeneous fluid may
be classified according to the “quantum numbers ”
p, m, and n of the cylindrical cavity in a uniform
medium. Modes with p=0 are calles “Bessel-
function ” modes, and those with m =n =0 are called
“plane-wave” modes. The others are “mixed”
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FIG. 14. Position of the specific-heat maximum ¢p,,
along the critical isochore (A=0) in Xe, plotted as a func-
tion of sample height on a logarithmic scale. Also shown
are the values of the specific heat at £=0 and at t=t,,,,
for the different heights.
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TABLE III. Alternate parameters for Xe. The values of o, 8, B, and I" for columns 2—-6 are those of Ref. 9.

a 0.05 0.013 0.04 0.057 0.075 0.09
8 0.351 0.361 0.350 0.350 0.350 0.335
B 1.795 1.897 1.802 1.802 1.802 1.591
T 0.059 0.056 0.059 0.063 0.070 0.063
a 23.30 32.59 23.77 21.79 19.22 18.37
2 1.375 1.523 1.395 1.368 1.340 1.163
by 1.468 1.545 1.481 1.455 1.429 1.392
Al +pdr? 72.13 433.81 97.57 56.57 32.32 23.75
Cpl=t)=C,° 37.31 34.41 35.45 37.17 37.54 35.49
[Co(—1) = Coylt)logpe™© 37+0.5 37+0.5 37+0.5 37+0.5 37+0.5 37+0.5
C,t=0, A=0) 70.61 64.03 67.91 70.98 72.32 73.06
[Cot=0, A=0)}erpt® 72+ 3.5 72 +3.5 72+3.5 72+3.5 72 £3.5 72 +3.5
(C,-cY/c) for

t=1.5x10"* 0.1246 0.1260 0.1265

30btained by a fit to data of Ref. 24 at £=10"3,
bFor I£1=7.94x 104,

modes. Most of the velocity calculations presented
in this paper are for the lowest order radial mode,
p=m=0, n=1. The average velocity for the mode
p, m, n is defined in terms of the eigenfrequency
Wymp for that mode, by the relation
#nn = Whma (10 /2 V24 (mp /1)] (5.4)

where the {am,,} are numbers of order unity de-
fined in Appendix E. It is easy to see from the
equations of Appendix E that for a uniform medium
with sound velocity «, the right-hand side of Eq.
(5.4) reduces to 2, for all values of p, m, and n.

The method we have used to find the eigenfre-
quencies of Eq. (5. 2) near 7T, is described briefly
in Appendix E. In the limiting case of a nearly
uniform local velocity we may also find the eigen-
frequencies by perturbation theory, which is also
discussed in Appendix E. We have verified that in
this limit the results of the two methods agree.

Let us now turn to a discussion of the results for
# as a function of ¢ and A. We have chosen He* as
our system, since this is the fluid under experi-
mental investigation by one of us.?*3 In Fig. 16,
we show # (in dimensionless units) for the 001
mode along an isotherm #=+10"® which is very near
critical, for three different sample heights #2=5
cm, 2=0.5 cm, and 2#=0.1 cm. These curves are
to be compared to the ones in Fig. 8 for C,. The
asymmetry between A >0 and A<0 arises from the
small asymmetry of the local velocity about z=0.
For each curve there is a sharp break near the
corresponding value of A* for =10, Figure 17
shows two other isotherms, at t=+10"%, The grav-
ity-free velocity for #< O has a sharp breakwhen A
reaches the coexistence density A ;(¢= ~10"*), and the
average velocity [see Eq. (E17)] is essentially inde-
pendentof X in the two-phase region sinceu;~ug. In

°Reference 24.

the presence of gravity the behavior is very similar,

"but shifted to the “apparent coexistence density”

A*(t=—-107.

Turning now to isochores, we show a series of
these in Figs. 18, 20(a), and 20(b). The velocity along
the critical isochore (A& = 0) is shown in Fig. 18 for
three different modes (100, 001, and 200), along
with the gravity-free value, which is of course in-
dependent of the mode. From this figure we see
that gravity introduces an apparent dispersion,
which must be taken into account in any analysis of
the true dispersion effects coming from the dy-
namics of the transition.? The apparent disper-
sion is illustrated further in Fig. 19, where we
plot the deviation (#,/u,) —1 vs the plane-wave in-
dex p, at A=0, =10, for modes with m = =0.
The largest effect (21%) occurs for p=1, and the
smallest (17%) for p=2. The Bessel-function
modes 001 and 010, indicated by an arrow, have a
deviation of = 18% at this point. Figure 20 shows
the 001 mode for positive isochores and is to be
contrasted with Fig. 10 for the specific heat. The
gravity-free velocity experiences a minimum with
a cusp at the coexistence curve; this cusp is
rounded and displaced by gravity. It is interesting
to note that the sign of % —u, changes between 4
=0.02 and A=0.04. For the higher isochores,
shown in Fig. 20(b), the only effect of gravity is
to shift the coexistence curve, as discussed in
Sec. III. Generally speaking, the velocity can be
measured with great accuracy, and many of the ef-
fects described here should be easily observable.

VI. ANALYSIS OF CRITICAL EXPONENTS

In this section we investigate the effect of gravity
corrections on the determination of critical expo-
nents. Our point of view is to treat the theoretical
gravity-averaged quantities as experimental data,
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FIG. 15. Test of the sensitivity of our results for Xe

to the value of 2. Curve (a) shows the specific heat C,
at t=0, A=0 as a function of 5% (with the other param-
eters having the values given in Table I), along with the
experimental value from Ref. 24 in dimensionless units.
The range of b2 permitted by Eq. (B9) is 1<5%<3. 35.
The constant term A{’ [Eq. (A9)] was adjusted at each
value of bz, to make C, agree with experiment at ¢t = 1073,
Note that the value of C, will also change if 8, B, and T
are changed from the values given in Table I. The maxi-
mum in C, occurs at the value 52,, which is the one de-
termined by Eq. (2.5). Curve (b) shows the variation of
D [Eq. (B7)], and the experimental value which follows
from the analysis of Ref. 11. Curve (c) is the correspond-
ing result for I'/T’, In each case the extremum occurs
at % .

and to perform least-squares fits to determine the
best critical exponents and the best value of T.
We can then compare the results with the starting
“ideal” exponents for the corresponding quantities
in the absence of gravity. Since there is clearly
some arbitrariness in deciding how to treat our
“experimental data, ” the results of the present
section are intended primarily for illustrative pur-
poses.

A. Apparent Value of o and o’ for Xenon along Critical Isochore

As a first test of the influence of gravity on the
exponents, we consider the average specific heat

C, for xenon in a 1-cm container® along p=p,, in
the temperature interval 7x1075<|¢#<7x10%8,
where ¢ is referred to the ideal starting T,, called
79 The maximum value of |£|, f,..=7%10" was
chosen as a reasonable though somewhat arbitrary
estimate of the point at which correction terms be-
gin to be important. # The minimum value was
varied for each fit from |#,,,/=1.8%x10"% down to
[£41al=7%107°, which was chosen as a temperature
at which gravity rounding is “clearly” apparent.?

He*

- h=0.5cm

(REDUCED VELOCITY)

U

0.02 0.04 0.06
A (REDUCED DENSITY)

FIG. 17. Average dimensionless velocity of the lowest~
order radial mode 001 in He? for the two isotherms ¢
=+ 104, as a function of average density A. The dashed
lines represent the gravity-free velocity.
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FIG. 18. Average dimensionless velocity # along the
critical isochore (A=0) in He®, plotted as a function of re-
duced temperature for various modes of the resonator.
The dashed line represents the velocity out of gravity,
which is the same for all modes. The modes are desig-
nated by the “quantum numbers” pmn, as explained in
the text.

A total of 41 “data points ” were calculated using
@=0.05, by breaking up the interval 7X10°3<|¢|
<7x10"% in logarithmic steps (this was done sepa-
rately for #>0 and £ <0). Least-square fits to the
functional form used in the absence of gravity

C,=(1+1)(A|t]|™*+ By (6.1)

were made for the data in the interval |4, |1=<1¢I

T T T T T T T T
0.21 } e i
h=0.5 cm
t=10"%
0.20} 4=0 4
T L]
£ o.9+ 4
2
a L]
1= .
° ® o oo
0185 A A A a4y
A
A
0.17} A -
) ] L1y 1d 1
] 2 3 4 5 6 78910 20

PLANE-WAVE HARMONIC p

FIG. 19. Magnitude of the gravity correction (,/u)
—1in He* at £=10"°, A=0, as a function of the “quantum
number” p of the plane wave modes {p00}. The quantity
@, is the average velocity in gravity and «, is its gravity-
free value. The arrow represents the gravity correction
for the Bessel function modes 001 and 010. Note that the
largest gravity correction occurs for the fundamental
plane-wave mode (p=1), and the smallest occurs for the
second harmonic (p=2).
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FIG. 20. Velocity in He? along the isochores A=0.02,
0.04, and0.05 [Fig. .(a)] and A=0.06 and 0.08 [Fig. ()],
plotted as a function of reduced temperature and ex-
pressed in dimensionless units. The dashed lines repre-
sent the velocity out of gravity, with a minimum and a
cusp at the coexistence curve. For A< A;=0.048, the
velocity in gravity has a minimum which is below the
characteristic temperature ¢* (for A=0.02 the value
of t*=2,3x 10" is outside the range of the figure). For
A*> A%, the minimum occurs very near the temperature
t.

2| tpael , for different values of |#y,,!, in order to
find the best values of « (or &') and T.. In Fig.
21, we show the best values of @ and &', as a func-
tion of the corresponding value of |#,,,|. (Unless
otherwise noted, all values of ¢ are referred to
T9.) We also show the shift in T, [at,= (T, -TJ)/
T?], and the normalized o values, describing the
quality of the fit for each case.

One significant difference between our “data”
and real experimental data is that we have essen-
tially no scatter, and only regular correction
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FIG. 21. Results of least-squares fits of the average
specific heat for Xe with =1 cm. Successive fits of the
data in the interval ¢y, < It] =7 x 10~ were made for dif-
ferent values of ty,,, with T, and the exponents considered
adjustable parameters. In (a), we show o and o’ as a
function of |#my,|. The starting values, in the absence of
gravity, a=a’=0,05 are shown by an arrow. In (b) we
show the deviation of the “best-fit” value of T, from the
true value TY [At,= (T,—TY/T%. (c)contains the corre-
sponding normalized o values for each fit. These are ob-
tained by dividing the standard deviation by the average
of C, in the interval. The dashed line is an estimate of
the minimum ¢ arising from realistic experimental data,
due to scatter and correction terms.

terms, which we include in the fit, Thus our ¢
values for small intervals, which include primar-
ily data points far from T, are unrealistically
low. In practice, there is a minimum value for o,
which is roughly the percentage of scatter in the
data. Moreover, points far from T, will be more
affected by correction terms, and if the number of
points becomes too small, ¢ might be expected to
rise due to poor statistics. We have indicated with
a dotted line in Fig. 21(c), a more realistic esti-
mate for the minimum o, corresponding to an ex-

o

perimental accuracy of roughly 0.1%, and some
reasonable correction terms. In these calculations
we have treated T, as separately adjustable for
t<0and t>0. From Fig. 21(b) we see that the T,
values determined in this manner are closest to
each other for |#,,|*3.5X10"% If we instead re-
quire that T, be the same for >0 and ¢ <0, we find,
for |fy,!=3.5%107% the values

a=-0.001, a'=0.0735, 4¢,=9.5X10",

(6.2
with a maximum gravity effect AC=(C,~C%)/C?
=1.29% at £=+ I, and AC=—1,25% at £= = Iyl
For |fy;,l=1.6x10" the corresponding numbers
are

@=-0.072, a'=0.098, Af,=1.4x10™,

AC=11% att=+]fmnl, (6. 22)

AC=~3.6% att=~[¢

min|

Fromthis analysis, a reasonable choice for «, a',
and T, would be that given in Eq. (6.2), which is to
be compared to the ideal values a = d =o. 05, At.=0.

A different strategy is to fix T, at the tempera-
ture of the specific-heat maximum, i.e., Af,
=-4,5%X10°, In that case, the @, @', and o values
are those shown in Fig. 22 and here we obtain, for
| tninl=3.5X10"%,

a=0.11, At,=—4,5%X10"°,

(6.3)
It is significant that when T, is adjustable we find
a’>a, whereas when T, is fixed at the specific-
heat maximum we have a’ <a.

It is clear from the foregoing discussion that
gravitational rounding of the specific heat can cause
significant errors in the determination of the crit-
ical exponents. Similarly, in solids near magnetic
critical points, there is considerable rounding of
specific-heat singularities, '*3% and we may expect
errors in critical exponents which are comparable
to or greater than those found here. In a fluid, of
course, the rounding effects may be minimized by
using thinner samples, so that more decades of
temperature are available, in which both gravity
effects and correction terms are unimportant. Such
a strategy was employed in the recent measure-
ments of Lipa, Edwards, and Buckingham,? which
we shall briefly discuss.

a’'=-0,03,

B. Gravity Corrections for CO, with #=0.1 cm

We have calculated the gravity correction AC
=(C,-C%)/C? for CO, over the range 4xX10°< |¢|
<5x10"% employed in Ref. 22, using their value for
the height, 2#=0.1 cm. It must be noted that the
form for C2 which emerges from the “linear model”
is quite different from the best fit found in Ref. 22,
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FIG, 22, Same analysis as in Fig. 20 is presented
here, except that T, is fixed at the temperature of the
specific-heat maximum. Note that in contrast to Fig. 20,
here we have o’/ <a,

since the linear model is not consistent with differ-
ent values for By and B, [see Eq. (2.6)] or with

= %. Nevertheless, over the range of the fit, our
function CY is numerically close to that of Ref. 22,
and as shown in Sec. 1V, the computed values of
(C,-C0%)/C% AC are rather insensitive to the form
of C. In order to correct the data of Lipa ef al.
we have taken their best fit (in units of the gas con-
stant R)

CL/R=5.583|¢|"%1% _3.457, ¢>0  (6.4a)

CL/R=10.473|¢|""'%-0.024, <0  (6.4b)

and have derived from it the “gravity-free” specific
heat

(CO*=CE(1 - ac), (6.5)

using the computed values of AC. We find that the
maximum gravity correction AC is 0. 7% for £> 0,
and -~ 0.9% for ¢t <0. A least-squares fit to (C%)*
then yields

t>0: @=0.135, at,=4.3x10%;  (6.6a)

£<0: a’'=0.120, Af,=4.2x10"%, (6.6b)
In this case the shifts in « and T, are just within

the uncertainties quoted in Ref. 22. It is interest-
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ing to note, however, that the difference By—B,
[see Eq. (2.6c)] is reduced from 3.43 to 1.67.

C. Exponent 3 Derived from Apparent Coexistence Curve

Given an apparent coexistence curve with a flat
top, as shown in Fig. 6, it is difficult to assign a
meaningful apparent value for 8. Nevertheless,
for sufficiently small values of %, the flat portion
is never actually observed, since it is smeared by
experimental uncertainties in the temperature.

For instance, for 2=0.1 cm in Xe, an uncertainty
in ¢ of +10°® near £=0, leads to a spread of A* of
+0. 035, which is just the width of the flat portion of
A*(#). Accordingly, we have chosen as our “data, ”
points on the curve &*(¢) for #=0.1 cm, between
{=-10"and ¢= -1.25X10"%, We have fitted these
“data” to the form

&*(t) = B(T, - T)/T,]*, (6.7)

with B, B, and T, adjustable. Once again points
were chosen on a logarithmic scale, and succes-
sive portions nearest 70 were discarded, in an ef-
fort to find the best values of T, and 8. The results
are shown in Table IV, from which we see that with
tmin= = 3% 10"% we obtain B=0. 359, with a normal-
ized o of 0.013, which is close to the minimum ex-
pected with real experimental data. The values of
B are to be contrasted to the “ideal” value 8=0.351,
The prefactor B deviates significantly from its
“ideal” value in all cases. From the above anal-
ysis it seems clear that gravity can easily intro-
duce errors in B8 of +0.005.

For capacitance measurements of the coexis-
tence curve, the effective height may be much less
than 2 =0.1 cm, but the total height of the sample
is often much larger, and the thermodynamic path
followed by the portion under investigation might be
quite complicated. Very recently, a careful anal-
ysis of the coexistence curve of CO,; N,O, and
CCI1F; was made by Levelt Sengers, Straub, and
Vicentini-Missoni.*® The experimental data for
this study were those of Schmidt and of Straub, **
obtained by using the gravity effect explicitly, and
presumably the effects we discuss here would not
be present in those measurements.

VII. SUMMARY AND CONCLUSION

In this paper we have presented detailed quanti-
tative estimates of the effect of gravity at the gas-
liquid critical point, based on the “linear-model”
parametric equation of state. This equation is suf-
ficiently simple to allow a convenient analysis at
arbitrary points in the (p, 7) plane. On the other
hand, we believe that it is realistic enough so that
the main uncertainties in our analysis are due to
errors in the PVT measurements which determine
the parameters, rather than in the equation of state
itself.
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TABLE IV. Least-squares fit to apparent coexistence curve. The fits were made in the intervals tpy, =t =—-1.25X 1073,
Xe, h=0.1 cm. Gravity-free values: =0.351, B=1.795.

(A% - Ap) (A* - AL)/ A
min Atg B B o at ¢ =tmn atf =tmin
-1078 1.5%10°° 0.367 2.20 4% 1072 0.021 1.50
-3x10°° 1.1x 1070 0.359 2.08 1.3x 1072 0.004 0.09
~-3x10™ 5 x 10~8 0.352 1.99 5.5x% 1073 0.0003 0.003
—-7x10 4x10° 0.352 1.98 2.7x 1073 0.0001 0.0007

The physical quantities we have calculated are
the local density distribution in a sample of given
average density, the average specific heat, and the
average sound velocity. We conclude that except
possibly for a few recent cases, the effect of grav-
ity leads to important quantitative corrections to
the critical exponents. These corrections can be
made reliably, however, using the methods pre-
sented here.

mensionless specific heat by Cy= (P,w/T,p,)x 10"
J/mole °K; w is the molecular weight. Similarly,
the dimensionless sound velocity must be multiplied
by Uy =(P,/p,)}’? to obtain its dimensional value in
units of cm/sec. Finally, the dimensionless co-
ordinate z is expressed in terms of the sample
height .

Thermodynamic Functions

The integral of Eq. (2.4) yields Eq. (Al) with
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V. (Ada)
APPENDIX A fo= = (ak/2®)[B(6 - 3) b1 - 28)[a(a - )],

Parametric Representation (Adb)

fo==%ak(1-2p)a™ . (Adc)

The parametric variable » and 6 are defined in
Egs. (2.1)=(2. 2) in the text, and the scaled equa-
tion of state in terms of these variables is relation
(2.3a). The simple form of Eq. (2. 3a) permits a
direct integration of Eq. (2.4) for the free energy

The critical exponents satisfy the usual scaling re-
lations,® f(6+1)=2—a=y+28.
The entropy S=-(84/97), is given by

Alp, T) which yields Slp, T)==-A%4=puo+Ss, (A5)
Alp, T)=A4p, T)+po(Tp+Ay(T), (A1) where

where Ay(7) and p(T)= p(p,, T) are assumed to be S, 6)=s(6)0r', (A8)

analytic functions of T near 7T.. An explicit expres- s(6)= - A1 -bp¥1 - 2p)6%] "

sion for A (p, 7) in terms of the variables » and 6 is

given in Eqs. (A2)-(A4) below. From this expres- X[(6+1) fo+ (86 -1)f26%+ (8 =3)f6%] , (ATa)

sion we may obtain all the other thermodynamic
functions by differentiation. Before doing this, let
us introduce a convenient set of dimensionless
units.

and the primes in Eq. (A5) denote differentiation
with respect to T. This last expression may be
simplified, *** using Egs. (A4) and the scaling re-
lations between exponents, to read

Dimensionless Units s(6)=L(5,+ 5292) , (A7D)
We express the free energy and the pressure in with
units of P,, the temperature in units of 7,, the _ 4
density in units of p,, and the chemical potential Lo=ak/ [26%a(1 - a)], (A7)
in units och/.pc. 1t follows that A(p, T) is‘ a free o= B(6 =3) %86 - 1) , (A7d)
energy per unit volume, and the entropy will also
be per unit volume (in units of P, /T,). The spe- §,=(a=1)(6 -3)pp%. (A7e)
cific heat per unit mass is C,=p'T(8S/8T),, and is ioe " .
= 3S/9

expressed in units of P, /T,p,. In order to obtain The specific heat C,=p™7(25/07), is
the specific heat per mole, one multiplies the di- C,=C3&,C5, (A8)
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with
CE=[(1+0)/(1+a)][-AL -(1+a)uy ],  (A9)

A=kor®, (410

C3mE=[(1+£)/(1+8) e (6} ™, (a11)
and

enl6)= = B(1 ~a%6*) ey, ~as) (a122)
where

a1=[(1 ~a%°*)(1 - ) - 22%6* ], (at20)

as=[(6+1) fo+ (6 =1) f6°+ (6 -3) £,6* ], (AlZc)

a3={2B6%1 -d%2)[(6 - 1) f,+ 2(6 = 3)f6%]},
(A12d)
(A13)

A simpler expression for c,,(6) may be obtained
directly from Eq. (A7Db)
cn(0)=Lo(1 -d%%) (1 —a)5,+ (1 —a —28)5,6%]
(A13a)
In order for the specific heat to remain finite away

from the critical point (i.e., for »#0) we must
have

%1 -26)<1.

d¥=b%1-28) .

(A14)
The specific heat at constant chemical potential

I

(1 = a)(1 —36%)(5,+5,6%) — 2856%5,(1 —6%)

C,=p'T(8S/97), is given by

cu=cv+T<§§>T<-zl';—)u =CB i, (A15)
The “background” contribution is

Cﬁ=05—(flf—i>u3(§‘;—)u, (A16)
and the singular term is

csime=[(1+4)/(1+4)]c,(0)r*, (A17)
where

cy(8)=Blcy+c3)/cs , (A18a)
with

c1=(a=1)(1-362)(1-a%%)[(6+1) f,
+(0=1) 6%+ (5 =3)£6%], (A18D)
C2=2B66%1 - 62)[d?(6+ 1)fo+ (6 -1)f,
+(6-3) £,6%2 -d%?)], (A18c)
c3= (1 -d26%)%[1+(20%86 -3 —b?)6?®
-b%2p0 -3)6*]. (A18d)

As in the case of C,, a simplified expression’*?
may be obtained directly from Eq. (A7), namely,

ch(6)=L°(

The compressibility xr is given by

W\ 2 \1_Q » :
(3p)r_(pKT) —er(e),

where
x(8)={1 =[3+b%(1 - 285)] 6%+ b%6%(3 ~ 285)}
x(1-d%%)" . (A20)

(A19)

In order to calculate the sound velocity we also
need (8P/87T),, which is given by

(%) =—AG+S+(1+A)p (o)1, (A21)
with
p(0)=aBO[(6-1)+(3~6)6%](1 -a%?%)!. (A22)

The adiabatic sound velocity « is then obtaivned
from the relation
8P \?
u®= (pkr)™! +T(5-§.-> (p%c,)™t . (A23)
P

As was pointed out in Ref. 12, use of the “mini-

1+(26286 -3 -b2)6% - b¥ 285 - 3)6*

) ) (A18e)

-
mization” condition (2.5) simplifies the thermo-
dynamic expressions further. In particular, c,(6)
becomes independent of 6,

cn(0)=aky¥y -1)(1 - 28)/[2a(y - 28], (A24)
and Egs. (A20) and (A22) are changed to

‘x(9)=1+[(266 -3)/(1-2p)]6% (A25)
and

p(6)=ap(s -1)6. - (A26)

APPENDIX B
Determination of “Linear-Model” Parameters

The parameters a and k in Egs. (2.1) and (2.3a)
are determined from experimental data on the
shape of the coexistence curve

(pz =pe)/pe=28(t)=B(-#)* (coexistence curve) ,
(B1)
and the compressibility on the critical isochore for
£>0,

kr=Tt", p=pc, t>0 (B2),
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(note that xr is expressed in units of P;l, see Ap-
pendix A). Comparing Eq. (B1) with Eq. (2. 3a)
for 6=1 we obtain

k=B(b%-1)", (B3)

and comparing Eq. (B2) with Eq. (A19) for =0,
we find

a=k/T. (B4)

In order to determine b we can use either the
shape of the critical isotherm

Ap=Dalal®t | ¢>0 (B5)
or the ratio I'/T''| where I'’ is defined by®
kr=T"'(=)", p=p,, £<0. (B6)

1t follows from Egs. (2.1), (2.3a), (A19), (A20),
(B5), and (B6) that

D=ab*k(b%-1), (B7)
r/T'=202-1)[1-5%1-28)]"". (B8)

As noted in Sec. II, in view of the uncertainties in
the experimental values of D, B, I', and I ', we
may in practice use a different criterion than Eqgs.
(B7) and (B8) to determine b, namely, the “mini-
mization” condition (2.5). In any case b% must sat-
isfy the inequalities [cf. Egs. (2.2a) and (A14)]

b3(1-28)<1, b*>1 . (B9)

In Figs. 15(b) and 15(c) we show the dependence of
Dand I'/T’, determined from Egs. (B7) and (B8),
respectively, on the value of b2 It is seen that a
range of values of 5% other than that determined
by Eq. (2.5), are consistent with experiment at the
present time. The only other quantities which are
necessary for a full specification of the thermody-
namics in our model are the functions Ay(7) and
to(T) of Eq. (Al). Since these functions are as-
sumed to be analytic, we can expand them in power
series about 7,. We shall retain the constants
Ay(T,), Ay(T,), and pg (T,), which we determine
by fitting to experimental data, where possible.
The quantity A(T,)+ up (T,) is fixed by the value
of the specific heat on the critical isochore far
from T, (say at £=10"), and o (T,) is obtained
from the asymmetry of C, about p=p,, at fixed ¢,
far from 7T,. Finally, the constant A¢(T,) is deter-
mined from the value of (8P/8T), at T=T, '“ee Ta-
ble 1).

In Ref. 15, it was misleadingly stated that the
“linear model” forced us to choose the value
«=0.05+0.02 for xenon. This was because, given
the experimental values of 8, B, and I', the quan-
tity C,(-#) = C,(#) depends only on @, and can there-
fore be accurately fitted to experiment far from T,,
thus determining @. As pointed out by Schmidt,®
however, there is in practice enough uncertainty in

B, B, and I', that « is not accurately determined
by such a fit. Nevertheless, it is important to note
that there exists a correlation in the “linear model”
between the exponent «, and the values of 8, B, and
I'. This correlation is almost certainly spurious,
since it is a consequence of the questionable as-
sumption that there are no singular corrections to
the asymptotic behavior of C,. In terms of Eq.
(2.6), this is the assumption B,= B, which has
also been made in other explicit model equations of
state.!®!! As mentioned earlier, it is inconsistent
to assume B,# By, in the specific heat, and to ne-
glect singular correction terms in other thermody-
namic functions. From Eq. (2.6) we may write

Co-)=C,()=(A"-A)[t|*+(Bg-By) , (B10)

and for given 8, B, and I', the first term in Eq.
(B10) depends only on a. If By=Bj, then as men-
tioned previously, the measured difference in C,
determines «, once B8, B, and I" are known. A
similar fit can be carried out with other explicit
equations of state containing regular correction
terms.!%!! In reality, however, the correction
terms are probably not regular (By# B}), 222 and
the correlation between 8, B, T', and « is spurious.
Even within the linear model, the statement made
in Ref. 15 that @=0.05+0.01, referred only to the
specific values g=0.351, B=1.795, I'=0.049.
Taking into account the uncertainties in these quan-
tities we find, rather, that from a fit of C,(~¢)
— C,(+t)to experimentat = +107 (see Table III), the
linear model yields a= 0. 065 £ 0. 02, whichis simi-
lar to Schmidt’s® analysis based on the equation
of state of Ref. 11.

In Table I, we show values for the parameters of
the linear model in a number of pure fluids. When-

_ever specific-heat data were available we have

chosen B from PV T measurements and then fitted
a to the specific-heat difference at t=10"%, as dis-
cussed above. In the absence of specific-heat data,
we have taken 8 and 6 from PV T measurements,
and determined @ by the relation a=2-8(5+1).
The constants Af,' and u(')' have been fitted to spe-
cific-heat data at £210™%, Some of the uncertainties
in the “linear-model” parameters are shown for
Xe in Table III; these result from uncertainties in
B, I', and B.

APPENDIX C

Coordinates of Top and Bottom of the Vessel

As explained in Sec. III, the coordinate z, of the
bottom of the vessel is determined, for given
values of ¢ and 4, by the solution of the equation

ﬁzf‘iﬂl A, z)dz, (C1)
where
alt, z)=ko(t, 2)[r6)]% (c2)
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" and 6(¢, z) is the inverse of the function [cf. Eq.

3.7]

z(¢, 6)= —x1.9(1 - 6%)8° (C3)
with
7(6)=t(1 -b%0%)! . (cq)

Let us transform Eq. (C1) to a 6 integral and de-
fine

o) =4+ [ %g(0)a8, (c5)

g(0)=x,kt 6 [r(6)] {1 +[(280 —1) b% -3] 62
+b%3 - 266)6%}, (C6)

where
91 = 9(21) 9 (C7)
6,(6,)=6[1+2(6,)]. (C8)

We wish to find the zero of the function H(6,), which
we do by employing Newton’s method. 3 For each
choice of 6; we calculate 6,(6,) numerically, from
Eq. (C8) and its inverse, and then perform the in-
tegral in Eq. (C5) to find H(6,). The derivative
H'(6,), which is needed for Newton’s method, ** can
be shown to be equal to

w3, [(5),., s s, (o

with

% o 1 [r0)] {1+ [(266 - 15 - 3] 6%

+b%(3-2p0)6*} . (C10)
We have found that in most cases Newton’s method
converges in five or six attempts. Given the value
of 6,, the coordinate is determined using Eq. (C3)
as

z,=2(6,) . (C11)

Special Cases =,

I ¢
1. Critical Isochore (A= 0)

When the average density is the critical density,
the integral in Eq. (C1) must be zero, and since
the integrand is odd we have

zi==(1+2)=~3, (C12)

9,=06(-%)=-6(3) . (C13)
In this case the point of maximum density gradient,
which is the gas-liquid interface for £<0, is always
in the center of the vessel. This fact is of course
a consequence of the symmetry assumptions we
have made in the equation of state.

2. Critical Isotherm (t=0)

On the critical isotherm we have

6=>b"sgna, (C14)
and Egs. (C4)-(C6) simplify considerably. We have

|al=rb1r"®, (C15)

z==x(sgnd) b1 =b2)rB° | (C16)
so Eq. (C5) can be integrated to yield

Zo="‘S)(;“{|1+Z1[M-1‘|Z‘1[1’6-1} , (c17)
where

A ko7 1+ 6" oM (1 = 072wy |V (C18)

1t is a simple matter to solve Eq. (C17) numerical-
ly for z4 as a function of A,

i 3. Limit of Zero Gravity

This limit is attained when the height 7 vanishes,
i.e., when x; [Eq. (3.8)] becomes large. More
precisely, the criterion for negligible gravity ef-
fect at p=p, is

X 0|1, (C19)

In that case, it can be seen from Eq. (C10) that
(8z/06) >1, so 6 remains essentially constant over
the range Az=1. The value 6, of 6 can be found by
taking A(z) out of the integrand in Eq. (C1), i.e.,

A=A[z2(89)]=k6,[7(69]%, (C20)

which can be solved (numerically) for 64(4, ?).
The above result holds in the one-phase region,

|&|>a,0)=B(-1)*, (c21)
with B=£(b%~1)"2. In the two-phase region,

|a]<a.(), (c22)
we have

A= (1+21)86() =218:0) (C23)

where A;(f) = —AL(f). Clearly the solution of Eq.
(C7) in the absence of gravity is 6;= 64" = +1 for
z=z; and 6,= 65 = =1 for z=1+2;, and the quantity
-z, represents the (volume) fraction of liquid.
When z,=0, the interface is at the bottom and there
is no liquid, and when z,=~1 the interface is at the
top and the system is entirely liquid.

APPENDIX D
Average Specific Heat
From Egs. (4.1) and (4. 2) we see that the singu-

lar part of the average specific heat is proportional
to

1+eg

j‘ S,(t, z)dz, (D1)
2

I3

,§:

S
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where the function S,(¢, z) is obtained from S(6, »)
[Eq. (A6)], by expressing 6 and  as functions of
2.%% Carrying out the differentiation in Eq. (D1)
we find

_ 1+ll
S'=J ;t-S,(t, z)dz
%

‘(gftl)g [S*’(t’ z1) =S t, 1+2))]. (D2)

Next, differentiate Eq. (C1),

lul BA(t )
= ————-———,’ Z
0 J: ot dz

1

+<§—?)Z[A(t, 1+2) -4k, 2], (D3)

which yields

1+84

%

l+zy
Sy(t, 1+21) =S¢, 2z1) ]
-( =L . 5 Alt, 2)dz.

9
% S,(t, z)dz

A, 1+2z) - A, 21)

(D4)
The integrals in Eq. (D4) are most conveniently
carried out in the 6 variable. Using the relation-
ship between z and 6 given in Egs. (C3) and (C4),
we find by a tedious but straightforward calculation

1

= (%2 Sy(t, 05 =S,(t, 6)\(°2

5 _j Za(t, 6)ae —(A(t, o:)-A(t, 911) )L ¢, 6)de, (D5)
[ 1

1

where3?

Bilt, 0)=¢"1x 81 —a26%) ¥ [ o8+ 1) + f2(8 =1)6%+ f4(8 ~ 3)6*]

X [(1 - a)(1 -36%) —2866%1 -92)(

42 (6 =1)f,+2(5 —3)f, 6%
D e D e - P9

To=~kBt a7 2%6[1 -6+ (6 -3)6%], (D7)

and v is here considered a function of 6 and ¢, given
in Eq. (C4).

Although the expressions in Egs. (D5)-(D7) are
cumbersome to write down, they may be evaluated
quite simply on the computer, and the integrals in
Eq. (D5) carried out. Since the integrand is not
smooth near =0, we have changed to the variable

y=(xo2) (1 -b|6]), (D8)

which leads to well-behaved integrals,

The “background” contribution €2 [see Egs. (A9)
and (A16)] is assumed to have its gravity-free
value, which differs in the one-phase and two-phase
regions. In the one-phase region [Eq. (C21)] we
have [cf. Eq. (A9)]

CE=[(1+0/1+A)][ -4y -(1+A)uy 1,  (D9)

whereas in the two-phase region we have [cf. Eq.
(A16) and Ref. 28]

cz-(12f g) I:-A'o' ~( 4 By

‘(“&)“'“C?Até)(ZZ(i&'?A))] . (D10)

Special Cases
1. Limit of Zero Gravity
In this case 0 is constant over the height of the

specimen [see Appendix C], and we may write Eq.
(D5) as

8A |
8 |g 6-00

(D11)
t,0=0,

Since z is proportional to u [Eq. (3.5)], we have

= 9§ EN 8A
s'tu—aAt o |, (D12)
or in dimensional units,
® P It ® (D13)
2
St_ 00, LT (oY _ o
s pc“+pKT(8T>u pCe,

i.e., the average specific heat indeed reduces to
CJ. The above results holds for the one-phase re-
gion, |Al>A,(f). For the two-phase region, it was
shown in Appendix C that 6,=1 and 6,=-1. An in-
spection of Eqs. (D5) and (D7) shows that the sec-
ond integral in Eq. (D5) vanishes by symmetry, and
we are left with the first integral, which in the
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present case is
§'=(p/T1)CY. (D14)

Thus, in the two-phase region the “constant-
volume ” specific heat reduces to the correct quan-

tity® which is the average of C% for the gas and the .

liquid (in our model the two are equal).
2. Critical Isochore (A=0)
In this case we have
(D15)
(D16)

1
21==2,
01=—0,= 9(“'12)

for all values of £, and only the first term in Eq.
(D5) contributes, due to the oddness of T,.

|

§’1:K1xla/56[sgn(l+zl)|1+zlll-a/56_ Sgn(zl)|zlil-a/56],

Ss(1) =S,(2)
sgn(zy)A(1) —sgn(1 +2y)A(2)

H =K2xl(1-a>/as<

Kl: [b-l(l - b-a)]-1+a/ﬂ5so[4b(66 - a)]-l

X [ (1-a)(1-3b7%) -2B607%(1 — b‘z)(

Kz =(ﬁ%é;:3>[l ~6+ b-2(5 _ 3)] [b'l(l - b-a )](a-l)/Ba ,

Sy(1)= = Fsolr(z)]*e, (D23)
Sy(2)= =% solr(1+2) 1, (D24)
A1) =kb[7(2)]°, (D25)
A2 =kb [r(1+2))]%, (D26)
So=(0=38)f,b™*+(6-1) f,672+(6+1)f,, (D27)

and 7(z) is defined in Eq. (D17).
We note that for A=0, z,=-3, and 53=0, so

§'=(2x,)*#°k,, A=0, ¢=0. (D28)

Since K, is a pure number [cf., Eq. (D21)], we
have C, h~®/° at =0, A=0. Thus on the critical
isotherm the gravity average of the specific heat
can be carried out explicitly, and the resulting ex-
pression written down in closed form, for arbitrary
density.

APPENDIX E

Solution of Wave Equation

We wish to find the solution of Eq. (5.2),

' 52 '
vie(F', 1) —u'z(z)(-a—_r-g)@(F , =0, (5.2)

) (|14 2g | 2288 | 5, | 2-80)

3. Critical Isotherm (t=0)

On the critical isotherm the gravity average of
the specific heat can be carried out explicitly and
the resulting expressions written down in closed
form, as a function of density. The coordinate
z1(4) is given by the solution of Eq. (C17). It is
then more convenient to write the integrals in Eq.
(D5) in terms of the variable

r(z)=[|z|xb(1 = b2)"1 |10 (D17)

since the integrals can be carried out explicitly.
The answer is

§'=81+8,, t=0 (D18)
where34?

(D19)

(D20)

2 —
LG 250 -9 7056 - 1) | 020
(D22)
r
with the boundary condition
$<I>=0, r'=a', z=2y, l+2z4. (5.3)
Let us set
(7', 1)=d,(Ar" Ncosme) flz)e T, (E1)

where r', ¢, z are cylindrical coordinates, and
J(x) is a Bessel function., Then Eq. (5.2) becomes

14 (dl,
v ar’ \" @'

) (cosm@) f(z)e"

2 2
_<7m;-§ f2) =F"(2) —;‘%’C{) f(z))
X J,(Ar") (cosm@)e *T=0 . (E2)

From the equation satisfied by the Bessel functions
I m(x),

1 9 ad ,(Ar’ 2
(7 27 ) (1 -3 i -0,

ey
(E3)
we have
' +lw¥u¥z) -A%]F=0. (E4)

The boundary condition (5. 3) implies
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gi;}f—;‘li)—=0, v =a' (E5)

(=0, z=21, l+z. (E6)
The first equation yields

Apna'=10p,, (E7)
with®’

@pe=0, a4=0.5861, «@p,=0.9722,

(E8)

@y =1.2197, @;;=1.6970, ag,=2.2331, etc.

We are left with the equation in z
'+ lw¥/u¥2) -An,1 =0,

, (E9)
f(2)=0, z=2y, z2=1+2z,

-whose eigenvalue w is the desired angular frequen-
cy. For a uniform velocity u(z)=u,, we have

f=cosBy(z-2z,), By=1p /(E10)

wﬁmn/ufFA?m+Bf='(rra,,,,,/a')a+(111))2 (E11)
in dimensionless units. If ¢’ is expressed in di-
mensional units we have

Whn /U5= (10, /2" )2+ (np/0)? .

The modes of the uniform system are classified by
the three “quantum numbers” p, m, n, discussed
in Sec. V.

For the nonuniform system we define the “aver-
age velocity ” # in terms of the eigenfrequency @,
by Eq. (5.4) of the text, which is analogous to Eq.
(E12). In order to find the eigenfrequency &,,, for
a given mode, we have solved Eq. (E9) numerically
for given values of £ and &, i.e., given u(z). The
method we used, which was devised by Wasser-
strom, *® introduces an auxiliary variable x, such
that

(E12)

(E13)

where ¢(x) is a smooth function varying between 0
and 1 when x goes between 0 and 1. For uy(z) we

u(;z, x)=u2) + @ (0)[u(z) —uy2)],
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choose the (constant) value of # in the absence of
gravity (or its average value in the two-phase re-
gion). The differential equation (E9) for f is solved
for successive values of x, starting from the known
solution for x=0. In addition there is an auxiliary
equation for the eigenvalue w(x), whose value at
x=1is the desired solution. This method turns

out to be quite convenient in practice, and permits
us to find each mode of the resonator separately.

Special Case: Weak Gravity Effect

In the absence of gravity, the sound velocity u,
is calculated from Eq. (5.1) expressed in terms of
v and 6, and using the value of 6, derived from Eq.
(C20). Inthetwo-phase regionwehave ug; =ug(9=-1)
and u; =uy(§=+1). When the effect of gravity
is weak, i.e., when u(z) does not vary substantially
between the bottom and top of the vessel, we may
solve Eq. (E9) by perturbation theory in the small
deviation

n(2)=1-42(2)/ (t®),y (E14)

1+,
W= [ tuiz)dz. (E15)
£1
1t follows from lowest-order perturbation theory
that for any mode {pmn } we have

l+gy
ﬁfm"= (uz)av (1 "j n(z) (Cosaﬂpz)dz) . (E16)

£

Thus, even in the limit of small gravity effect, the
average velocity measured in the two-phase region
will not necessarily be the simple average of u;
and ;. Equation (E16) applied to the situation of
constant values for u; and u;, i.e., to the two-
phase region in the absence of gravity, yields

Upmn= (1+29) ug —21ur , =0
pmn 1)U — 21U b (E17)

- sin2mpz
Bpmn= (1+21) g —2zyup+(ug ‘uc)mpﬁ"'l' , p#0

to leading order in (ug —uz)/3(ug +uz) <1.

*Present address (until March 1972): Theoretische
Physik, Technische Universitaet Miinchen, 8046 Garch-
ing Bei Miinchen, Germany.

IA. Gouy, Compt. Rend. 115, 720 (1892).

M. A. Weinberger and W. G. Schneider, Can. J.
Chem. 30, 422 (1952); 30, 847 (1952).

H. D. Baehr, Z. Elektrochem. 58, 416 (1954).

‘M. Sh. Giterman and S. P. Malyshenko, Zh. Eksperim,
i Teor. Fiz. 53, 2079 (1967) [Sov. Phys. JETP 26, 1176
(1968)].

’A. T. Berestov, M. S. Giterman, and S. P. Maly-
shenko, Zh. Eksperim. i Teor. Fiz. 56, 642 (1969) [Sov.
Phys. JETP 29, 351 (1969)].

fA. T. Berestov and S. P. Malyshenko, Zh. Eksperim.

i Teor. Fiz. 58, 2090 (1970) [Sov. Phys. JETP 31, 1127
(1970)].

"L. M. Artyukhovskaya, E. T. Shimanskaya, and Yu.
I. Shimanskii, Zh. Eksperim. i Teor. Fiz. 59, 688-
(1970) [Sov. Phys., JETP 32, 375 (1971)].

A.V. Chalyi and A. D. Alekhin, Zh. Eksperim. i
Teor. Fiz. 59, 337 (1970) [Sov. Phys. JETP 32, 181
(1971)]; B. Ya. Sukharevskii, A. V. Alapina, Yu. A.
Dushechkin, T. N, Kharchenko, and I. S. Schetkin, ibid.
58, 1532 (1970) [ibid. 31, 820 (1970)].

°H. H. Schmidt, J. Chem. Phys. 54, 3610 (1971).

R, B. Griffiths, Phys. Rev. 158, 176 (1967).

M, Vicentini-Missoni, J. M. H. Levelt Sengers, and
M. S. Green, J. Res. Natl. Bur. Std. (U.S.) 73A, 563



6 GRAVITY EFFECTS NEAR THE... 313

(1969).

2p, gchofield, J. D. Litster, and J. T. Ho, Phys.
Rev. Letters 23, 1098 (1969).

2apor a general discussion of parametric equations of
state see M. E, Fisher, Proceedings of the 1970 Enrico
Fermi Summer School on “Critical Phenomena’, Varenna
sul Lago di Como, Italy (Academic, New York, to be pub-
lished).

5B, D. Josephson, J. Phys. C 2, 1113 (1969).

14p, schofield, Phys. Rev. Letters 22, 606 (1969).

154 preliminary report was presented earlier: M.
Barmatz and P. C. Hohenberg, Phys. Rev. Letters 24,
1225 (1970).

16A, V. Voronel’, S. R. Garber, and L. D. Peretsman,
Zh. Eksperim. i Teor. Fiz. 57, 92 (1969) [Sov. Phys.
JETP 30, 54 (1970)], and references therein; A. V.
Voronel’, S. R. Garber, and U. M. Mamnitskii, ibid.
55, 2017 (1968) [ibid. 28, 1065 (1969)].

l'The definitions presented here are only valid if the
equation of state possesses the “lattice-gas” symmetry
about p=p,. For purposes of calculating the gravity
effect this approximation is certainly sufficient. This
matter is discussed briefly below. Note also that the nor-
malization used for p in Eq. (2.1) is different from the
one employed in Ref, 15.

8p, S. Gaunt and C. Domb, J. Phys. C 3, 1442 (1970).

¥p, S. Green, M. J. Cooper, and J. M. H. Levelt
Sengers, Phys. Rev. Letters 26, 492 (1971).

20B. Widom and J. S. Rowlinson, J. Chem. Phys. 52,
1670 (1970); and private communication.

AN, D. Mermim and J. J. Rehr, Phys. Rev. Letters
26, 1155 (1971).

223, A. Lipa, C. Edwards, and M. J. Buckingham,
Phys. Rev. Letters 25, 1086 (1970).

21t is interesting to note that even the recent “best-
fit” values of A, A’, B,, B{ for the three-dimensional
Ising model, presented by D. S. Gaunt and C. Domb [J.
Phys. C 1, 1038 (1968)] have By = B}. The ensuing singu-
lar terminC, [Eq. (2.6c)] must be reconciled with cor-
rection terms obtained from analyzing other thermody-
namic functions [cf. C. Domb in Ref. 12(a)l.

24C, Edwards, J. A. Lipa, and M. J. Buckingham,
Phys. Rev. Letters 20, 496 (1968).

%5The definitions of to employed in Refs. 24 and 15 dif-
fer slightly from Eq. (2.10), but they yield numbers of

the same order of magnitude.

%A, M. Bykov, A. V. Voronel’, V. A. Sonirov, and
V. V. Shchekochikhina, Zh. Eksperim. i Teor. Fiz.
Pis’ma v Redaktsiya 13, 33 (1971) [Sov. Phys. JETP Let-
ters 13, 21 (1971)].

'S, G. Whiteway and S. G. Mason, Can. J. Chem. 31,
569 (1953).

®M, E. Fisher, J. Math, Phys. 5, 944 (1964), espec-
ially p. 950,

®H, W. Habgood and W. G. Schneider, Can. J. Chem.
32, 164 (1954).

M. Barmatz, Phys. Rev. Letters 24, 651 (1970).

3IM, Barmatz, Cvitical Phenomena in Alloys, Magnets,
and Superconductors, edited by R. E. Mills, E. Ascher,
and R. I. Jaffee (McGraw-Hill, New York, 1971), p. 541.

%25ee, for instance, T. Yamamoto, O. Tanimoto, Y.
Yasuka, and K. Okada, in Critical Phenomena, Proceed-
ings of a Conference, Natl. Bur. Std. Misc. Publ. No. 273,
edited by M. S. Green and J. V. Sengers (U.S. GPO,
Washington, D.C., 1966), p. 86; D. Teany, V. L. Mor-
uzzi, and B. E. Argyle, J. Appl. Phys. 37, 1122 (1967);
B. Golding, ibid. 42, 1381 (1971); and Phys. Rev. Let-
ters 27, 1142 (1971); D. L. Connelly, J. S. Loomis, and
D. E. Mapother, Phys. Rev. B 3, 924 (1971).

33, M. H. Levelt Sengers, J. Straub, and M. Vicentini-
Missoni, J. Chem. Phys. 54, 5034 (1971).

g, H. W. Schmidt, in Ref. 32, p. 13; J. Straub, Ph, D,
thesis (Miinchen, 1965) (unpublished).

34awe are indebted to Dr. H. Kierstead for pointing out
this simplification, valid for arbitrary values of 52, Use
of Eq. (A7b) in Egs. (D5), (D6), and (D19)-—(D28) would
simplify the algebra. However, since our numerical cal-
culations were performed before we were aware of Eq.
(ATb), we have kept the more complicated equations in the
text.

%E. Isaacson and H. B. Keller, Analysis of Numerical
Methods (Wiley, New York, 1966), p. 97.

%We are using the same notation for the function S, in

~ terms of the variables ¢ and z, and the variables » and 4.

No confusion should arise since we indicate the arguments
explicitly. )

37See, for instance P. M. Morse, Vibvation and Sound
(McGraw-Hill, New York, 1948), p. 399.

38E, Wasserstrom, J. Computational Phys. 9, 53 (1972).



