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with the K¢ transition should be observable in the
Auger spectrum,

The various atomic rearrangement processes
which are probably occurring in the excited target
ions as discussed above are evidently influenced
by strong electron correlation effects. This is

suggested by the observation of similar Ka spectra
for Mg plus 21-MeV oxygen (present work), Si
plus 30-MeV oxygen, ° Al plus 5-MeV nitrogen, "
and Al plus 18-MeV oxygen.!* That is, the rela-
tive intensities of the peaks appear to be nearly in-
dependent of bombarding energy above 5 MeV.
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The proton-hydrogen charge-exchange amplitude is evaluated using the first-order terms in
the Faddeev expansion for the corresponding transition operator. The new Coulomb T matrix
derived by us recently is employed in computing the cross sections. For high energies of the
incident proton, the Coulomb T matrix approaches the Coulomb potential to order v Inp in
contrast to the situation for a short-range potential (~v2). In the extreme high-energy limit
the results of the first-order Faddeev-Watson approximation approach those of the Jackson-
Schiff approximation. Explicit numerical calculation in the energy region 100 keV to 3 MeV
shows that the cross sections lie in between those of the Brinkman-Kramers and Jackson-
Schiff (JS) results and they approach the JS results from above. This is in contradistinction

to our previous work based on an incorrect form of the 7' matrix.

I. INTRODUCTION

Since the pioneering work of Faddeev' on three-
particle scattering, there has been a revival of in-
terest in the classical problems of the Coulomb T
matrix®® and the behavior of the proton-hydrogen
charge -exchange amplitude, °~'* Lively controver-
sies exist in each case. This work concerns both
problems and should reduce some of the confusion.

We begin with a brief survey of the relevant his-~
tory. A more complete review of work prior to
1968 has been given by Bransden.!® The high-en-
ergy limit of the proton-hydrogen charge exchange
was first calculated by Brinkman and Kramers®’
(BK) who evaluated the transition amplitude in the
first Born approximation but neglected the interac-
tion between the protons. The neglect of this term

is made plausible by a physical argument based on
the impact parameter approximation.

Jackson and Schiff!® (JS), who were aware of the
impact-parameter argument, found that the inclu-
sion of the proton-proton interaction reduced the
cross section in the high-energy limit by a factor
of 0.66 compared to the BK result.

Subsequently, second-order terms in the Born
series were calculated by Drisko®® and third-order
terms were estimated. The result is

o=0pg(0.319+5m/212) ,

where opk is the Brinkman-Kramers cross section
and v is the speed of the incident proton in a.u. in
the laboratory system. This calculation indicated
that no matter how high the energy, the Born series
does not converge to its first term. Other calcula-
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tions have appeared which tend to justify and con-
firm Drisko’s result, # 2

However, Born-type approaches suffer from a
fundamental difficulty due to the divergence of the
Born series for the Green function in a three-body
problem.?*# Therefore the results of these calcula-
tions should not be considered conclusive.

Faddeev’s work® on three -particle scattering
seems to furnish a more satisfactory basis for cal-
culations. This provides an expansion for the tran-
sition operators in terms of two-body T operators
(except for a bare -potential term in the case of
transition operators for rearrangement collision)
corresponding to the two-particle pairs in the
three-body system.

In order to utilize the Faddeev method in an
atomic problem, one must construct an exact T
matrix for the Coulomb potential. The four-dimen-
sional hidden symmetry of the Coulomb Hamiltoni-
an, which is different for positive and negative en-
ergies, 8 can be exploited to derive the required
expressions for the Coulomb T matrix. These as-
pects have recently been examined by Rajagopal
and Shastry, ® and the expression for the Coulomb
T matrix valid for various regions of energy and
momenta were derived following the work of Perel-
omov and Popov’ on the Coulomb Green’s function.®
Differences in the analytical forms of the Coulomb
T matrix for E<0 and E >0 were also noted by
Roberts and co-workers® using classical-path-
integral techniques. In this paper we use the T
matrix of Ref. 8 to calculate the proton-hydrogen
charge-exchange cross sections.

Chen and co-workers!2=1® have also investigated
the three-particle Coulomb systems using Nutt’s
representation. They analyze the contributions
from the antibound states, asymptotic bound states,
and the branch point singularities. Carpenter and
Tuan'® adopted a different approach to study the
proton-hydrogen rearrangement collision. They
started with the coupled equations of Faddeev and
Lovelace!'® for transition operators. These were
reduced to an ordinary integral equation by neglect-
ing the proton-proton interaction in accord with the
impact-parameter arguments mentioned earlier.
Such neglect may not be justified. In this paper we
find that the Born-approximation result of JS' is
indeed the high-energy limit of the first-order ap-
proximation to the Faddeev-Watson series (FOFW).

There has been considerable controversy con-
cerning the second-order contributions. It should
be pointed out that the complete evaluation of the

|

(B, ', E)=(B|T(E+i0)|3")
4p3n 1

second-order FW series for this problem has not
yet been accomplished. Drisko!® showed that in the
high-energy limit the contribution from the proton-
proton potential in first order is cancelled by two
of the second-order terms involving the proton-
electron and proton-proton potentials; also a differ-
ent (v~'!) velocity dependence was obtained. Chen
et al.'® assert that in the corresponding second-
order FW series the terms TG, T; cancel their
Born counterparts V;G,V; exactly in the high-ener -
gy limit. The complete expression for the ampli-
tude to second order is given below in Eq. (3.3).
To the best of our knowledge, this has not yet been
analyzed as rigorously as the first-order terms
discussed in the present paper. In our opinion, the
proof that the high-energy limit of the FOFW term
is the JS result is interesting in itself. Further-
more, we have presented here an exact numerical
evaluation of the FOFW contribution, which must be
incorporated in any future, more complete analysis
of the FW series.

The plan of the paper is as follows: In order to
make the paper self-contained, in Sec. II we give
expressions for the Coulomb 7 matrix for E <0 and
E >0 which is the basis of the present calculation.
In Sec. III, we express the charge-exchange ampli-
tude in terms of certain integrals. In Sec. IV it is
established that the high-energy limit of the FOFW
approximation is the result obtained previously by
JS. This is accomplished by proving that the Cou-
lomb T matrix approaches the Coulomb potential at
high energies to order v 'lny. Explicit numerical
results for FOFW cross sections for proton-hydro-
gen charge exchange are presented in Sec. V for an.
energy range from 100 keV to 3 MeV. For large
but finite energies the cross sections from FOFW
is shown to lie between those of BK and JS. The
numerical results are in agreement with analytic
conclusions of Sec. IV.

II. COULOMB T' MATRIX

The Coulomb Hamiltonian has, in addition to the
usual rotational symmetry, a hidden symmetry in
a special four-dimensional space constructed by
using certain functions of the energy and the mo-
menta as coordinates. This transformation enables
one to obtain the explicit expression for the Cou-
lomb Green’s function as a solution of the corre-
sponding Lippmann-Schwinger equation. From this
we obtain the following expression for the 7' ma-
trix®:

=-inX e(n)

=%

2mm (p2-p2)(p 2-p) ["

Ay et ] E>0
2 oA ! sinhx 1%+7m2] "’
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with
e(m=e?"", §=1 forp®>-pi>0, p'%-p5>0,
e(n=1,

e(m=e",

8;=1 for p?-pi<0, p'2-p2<o0,
$:=(=1)" for (p*-p§)(p'?-pf) <0,

where p2=2m |E|, n=z12,¢%m/p,, and X is defined
by

-4p§|§—j§'! 2
(p2-p3)p 2-p3)’

T(ﬁy ﬁl; E):<

2(1 - coshy) = (2.1)

np3 i )
ma2(p2+p2)(p 2+pd)

><< 1 _nasin(m -x)n
1 - cosx siny
2 © I
L2 5 <_—1_)ﬁs;£;x}_l) . E<0
sinX ;4 ne =1
where
4pflp-p'12
2(1 - = . 2.2
( cosyx) (P2+Pg)(ﬁrz+P§) ( )

When E >0, ™' does not have a definite on-shell
limit. However, these oscillating parts can be as-
sociated with the asymptotic Coulomb wave func-
tions in the momentum space. If the amplitude is
defined with respect to these Coulomb distorted
asymptotic states the on-shell limit gives the usual
Coulomb amplitude. This is discussed in Ref, 8.
The integral representation given by Nutt, 3 valid
for E <0 can be shown to be equivalent to (2. 2).

The details can be found in Ref. 8, along with other
representations for the Coulomb T matrix. The
term e"™, near the half on-shell or on-shell points
varies as €2!" where

€= (pE-p2)(pE-p"®)/pil5-0'|%.

Hence, there is no Taylor expansion of the 7 ma-
trix as a power series in € near this region. In-

|

© +1 ar
. 5 2 1 el 1
(flelz)—647r7\I0 k ko:l duJ; d¢[(E— VEr 22 2n%? [(R=B)Enf]%

o +1 or
1 .
N 5 2 ——
(fI Ty 1d) =64m 50 k dkL duso o [(k_A)2+A2]2<k13

(fl viliy = - 32mte?/(A2+22%)° . (3.7)
Here
A= pyge®=pae?,
(3.8)

-

k= ky» ‘E{z ’

deed, it is the term containing ™™ which generates

the physical Coulomb amplitude with respect to the
Coulomb distorted asymptotic states, '%!® when one
approaches the energy shell. Equation (2.1) is

used in our study of the proton-hydrogen problem.

IIL. PROTON-HYDROGEN CHARGE EXCHANGE

We denote the incident proton and the proton in
the target by 1 and 2, respectively; 3 denotes the
electron; k; and K denote the momenta of the ith
particle before and after scattering. The process
of interest is

1+(2, 3)~2+(1, 3), 3.1)

with (2, 3) and (1, 3) denoting the hydrogen atoms in
the 1s state. Let V,; denote the potential between j
and &, (i, j, k=1, 2, 3; i#j#Ek). H,is the Hamil-
tonian for three free particles and the full Hamilto-
nian is H=H,+ V;+V,+V,;. The transition ampli-
tude to be evaluated is

Tpy={f|Tali) (3.2)

in which (f| and |{) designate, the final and the ini-
tial states. The two-body T operator for the (1, 2)
pair in the three-particle space is defined as Ts.
The FW expansion for Ty is

T21 = VI + T3 + T1G6T2+ TIGSTS + T3G'6T2+ vt
(3.3)

The FOFW retains only the first two terms of
(3, 3):

T21=V1+T3 . (3.4)

Our object is to investigate the matrix element

(fl Ty li) for the proton-hydrogen charge-exchange
problem and determine its high-energy limit. As-
suming the hydrogen atom to be in its 1s state be-
fore and after scattering, we obtain the following
expressions for the matrix elements (f|V;li),

(fl T4l i), and {fl V,li), respectively:

(3.5)
T E—ﬂg—ﬂ'é)’ﬁ’ el (3.6)
3 215 12 [(K-B)Zr%]%" .

r

- > M
ASPHTr P

(3.9)
= M
Bep o wm P

- > >/ b4

k’jk=m"ki—mik" , E,jk:mkki—mzkk . (3.10)

M+ My
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mi=my=M, ms=m (8.11 o 2 _-mX %o
1My 3 ) ) Er_rg_zg___zzz o X = x1_1=%[(1+€)1/2‘1]- (4.1)
u”=m4m,/(m,+m,) y (3.12) 1 m Yl 1 e
We=mplmy+my)/(my+m;+my) . (3.13) We have used (3. 22) in the last step. Moreover,

Py is the momentum of the incident proton with re-
spect to the center of mass of (2, 3), B is the mo-
mentum of 2 with respect to the center of mass of
(1, 3) after the rearrangement scattering. The
scattering angle © is given by

-cosO=P,F2/p? (3.14)

and

pi=pi=p2. (3.15)

Throughout this paper the polar angles of p;, D%,
and k are (0, 0), (1-©, 0), and (O, ¢), respec-
tively:

E_p_32_=E_(5l+ﬁ12—k’)z_K]i

= 3.16

2p4 215 2uy, ( )
_pi _pE o _p kA
20y 203 2u3 203 2ug
1

+[k(COSB+COS’Y) —picosalpy (3.17)

[2F]
o~ L +0(’-”- (3.18)
2uy, M

if |Kl~A and m/M < L. cosa, cosp, and cosy are
the cosines of the angles between P, and D%, D5 and
k, and k and El, respectively., The exact ex-
pression for.(K i, T3 E = p2 /2u4 +36) Ky, ), Eq.
(2.1), can be written as

<E'12[ Ts(Kfz/2H1a+i5) |E1z>

2 -inX © 2 _-mx

__ Z12z€ 2me m°e )

'2n2k2(1+e)1/2( e?™-1 +2,,,Z=>1 ma+n? , (3.19)
where
N=2125¢%U12/K15 , (3. 20)
2 2 2 2 2
_ K12 (k31+)ta)(k223+A ) , (3. 21)
Mighag Kizk

e*=[2+e-2(1+€)?] /¢, (3.22)
Ep=B-k, (8.23)
£, -E-X. (3. 24)

IV. HIGH-ENERGY LIMIT

We study the high-energy limit of the T-matrix
element given by (3.19). At high energies, the pa-
rameter 7= [;,e%/k,5 becomes small (~1/v). A re-
sult which is correct to order n? may be obtained by
neglecting 12 in the denominator of the sum, which
becomes

2m/(e?""=1) =1 -1y . (4. 2)

The function e varies smoothly between zero and
unity as € goes from zero to infinity. The limit of
(K51 T31K;5) can be obtained as k;, becomes large,
all other quantities remaining finite, In this case,
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FIG. 1. (a) Proton-hydrogen charge-exchange cross
sections in BK, JS, and FOFW approximation (FW) as a
function of energy. To bring out clearly the difference
between the results of the various calculations at high
energies, we have plotted along the ordinate the actual
cross section divided by the asymptotic BK energy depen-
dence [ogx ~40/(10E)®]. (b) Ratio of proton-hydrogen
charge-exchange cross section in FOFW approximation
and JS approximation as a function of energy.




272 SHASTRY, RAJAGOPAL, AND CALLAWAY 6

TABLE 1. Proton-hydrogen charge-exchange cross
sections in a.u. for BK, JS, and FOFW approxima-
tions.

Cross sections in a.u.

E(keV) BK Js FOFW
100 1.256 0.230 0.601
200 0.0827 0.0188 0.0406
300 0.0131 0.0034 0.00652
400 0.00322 0.00092 0.00162
500 0.00103 0.00031 0.00053
600 0.000400 0.000 126 0.00020
700 0,000176 0.000058 0.0000907
800 0.000085 0.000029 0.000 044
900 0,000045 0.000016 0.0000234

1000 0.000025 0.000 0092 0.0000132

€~0, and x~In€/4. But €~7n2
tory term can be expanded

Thus the oscilla-

e ™) —inx~1-2innn+0(n) +- -+ . (4.3)

Note that nlnn vanishes as n- 0. Equations (4.1)-
(4. 3) are inserted in Eq. (3.19), which becomes

2 .
ool 7 R = 425 (1- ) a9

Equation (4. 4) indicates that the high-energy limit
of the Coulomb 7T matrix is simply given by the po-
tential

lm (KYa| Tslkso) [Kip) = (K| Vsl Kia)
K12™%®

(4.5)

as one would expect. The approach to the asymp-
totic limit specified by (4.4) is, however, slower
[(1/v) Inv] for the Coulomb potential than for a
short-range potential (1/v%. See also Chen and
Kramer. '

Equation (4.4) implies that the high-energy limit
of the FOFW charge-exchange amplitude is the JS
result, The integral of Eq. (3.6) is dominated by
the region in which the wave function peaks. In this
area, ¢ is small. The term involving X in (4. 4),
which has a logarithmic dependence on 7, gives
rise to a term in the amplitude proportional to Inv.
The ratio of the FOFW amplitude to the JS ampli-
tude is

FQFW
1

Lﬁ"-’l—"o — 1 +() -
Tfi ¢ (’l) U) (’U)’

(4.6)

where v is the incident proton velocity in the labo-

ratory system. The difference between the FOFW
and JS results goes to zero quite slowly.

In Sec. V, the FOFW amplitude is calculated by
numerical integration without introducing the ap-
proximations used here in obtaining the high-energy
limit.

V. NUMERICAL RESULTS AND DISCUSSION

The analysis described here shows that in the in-
termediate-energy region the contribution to the
charge-exchange amplitude from the 7' matrix will
be smaller than that from V3. In the extreme high-
energy limit the analysis given in Sec. IV shows
that the FOFW approximation should be the same
as the Born approximation to the leading order. To
see these features numerically, we carried out the
calculations from 100 keV to 3 MeV by numerically
evaluating the triple integrals (3.5) and (3. 6) with-
out making any approximation. The results up to
this energy clearly substantiate fully the main con-
clusions drawn from the analytical results for the
high-energy limit previously obtained. Table I,
and Figs. 1(a) and 1(b) summarize the results of
the numerical calculations. Energies above 3 MeV
were not considered because with the increase in
energy the peak in the integrand becomes sharper
and hence numerical accuracy in the computation
becomes unsatisfactory. Twelve to fifteen terms
were included from the series in the second term
in the large parentheses of (3.19). This was found
to be adequate in the energy region we considered.
In the numerical analysis the T matrix was calcu-
lated exactly., The accuracy of the numerical inte-
gration was checked by computing the Born ampli-
tude at the same time.

Our numerical results are in agreement with the
results of similar calculations recently reported
by Chen and Kramer.'® Our analysis of the FOFW
amplitude and the corresponding numerical results
lead us to the following conclusions: In the keV re-
gion, off-shell effects are important and reduce the
contribution from the proton-proton interaction.
However in the extreme high-energy limit, the
FOFW amplitude is the same as the Born amplitude
to the leading order in 1/v.

The high-energy limit of the proton-hydrogen
charge exchange when the second- and higher -order
terms are included is currently being investigated.
This is important in view of the drastically differ-
ent results obtained in the first- and second-order
Born approximations to the proton-hydrogen
charge -exchange amplitude.
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The cross sections for disorientation of magnetically oriented 6 2P, /2 cesium atoms, in-
duced in collisions with noble gases, have been determined using Zeeman-scanning techniques
at kilogauss magnetic fields. The m;=—3, m ,=—% hyperfine Zeeman substate was populated
selectively by irradiating the cesium-vapor—noble-gas mixture with cesium-resonance radia-
tion, and collisional transitions to the m ;=+3%, m;=— -g— substate were monitored by measure-
ments of the relative intensities of the ¢~ and ¢* components in resonance fluorescence ob-
served in the direction parallel to the magnetic field. The following cross sections were
obtained: Cs-He, 11.8 A% Cs-Ne, 4.7 A% Cs-Ar, 10.7 &% Cs-Kr, 37.9 &% Cs-Xe, 71.7

I. INTRODUCTION

Considerable attention has recently been devoted
to theoretical and experimental aspects of depolar-
ization of 2P, ,and %Py, , alkali-metal atoms, induced
in collisions with noble gases. Dyakonov and ‘
Perel, ! Omont, 2 and Wang and Tomlinson® devel-
oped a general theoretical treatment of collisional
relaxation of excited atoms, while Franz and co-
workers*'® and Elbel and Naumann® derived a selec-
tion rule m;+-m; for transitions between Zeeman
substates in alkali metal atoms, which was not
upheld in subsequent theoretical studies, "~ even
though such intramultiplet transitions are strictly
forbidden in the Born approximation. Most recent-

ly, Mies!?derived cross sections of the order of
10 A2 for proton-induced collisional transitions
My =%+ m;=-% in fluorine, having formulated the
scattering problem in terms of molecular continuum
wave functions. : ;
Experimental investigations of collisional depolar-
ization were carried out at high magnetic fields by
Krause and co-workers!!!? who used Zeeman-scan-
ning methods to study the 2P, ,, and 2Py, resonance
states in potassium. Gallagher!? studied the cor-
responding states of rubidium and cesium in Hanle
experiments at zero magnetic field. Bulos and
Happer™ quoted depolarization cross sections for
the 2P, /2 states in rubidium and cesium, incor-
porating in their results corrections for the effect



