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sured with the 32-keVK x rays. The inherent
resolution of the system at larger proton energy
losses is expected to be better than the 19' reso-
lution observed with the 32-keV K x rays.

In Table IV, we compare values of experimental
and theoretical parameters from our measure-
ments at proton energies of 66 and 100 MeV with
the values obtained from previous work at proton
energies from 31.5 to 80 MeV.

IV. CONCLUSIONS

We have observed energy-loss distributions of
66- and 100-MeV protons traversing a proportional
counter filled with 11.0 mg/cma of a gas mixture

of 90/g xenon plus 10% methane. The measured
distributions are consistent with the theoretical
distribution functions obtained from the theory of
Vavilov4; however, the observed distributions do
not agree with the formulation of Shulek eg al,
which extends the Vavilov theory to include bind-
ing effects of the atoms of the absorber.
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A Fredholm technique is used to compute elastic phase shifts for electron-hydrogen-atom
scattering using the Feshbach optical potential. The method is noniterative and is computa-
tionally highly efficient as it allows computation of the Fredholm determinant D(E+i&) at a
series of energies from a single set of matrix elements of tbe optical potential. Scattering
information is then obtained over a continuous range of energies by interpolation of D(E+i&);
resonance is easily located by inspection of the zeros of ReD(E+i&).

I. INTRODUCTION

Elastic optical potentials ' provide a formal
technique for reduction of a many-channel problem
to a one-channel problem. The Feshbach projec-
tion technique for construction of optical potentials
for elastic electron and positron scattering from

atomic and molecular systems has been used to
determine approximate resonance energies3 and
widths4 and, more recently, phase shifts. ' 7 An
alternate approach, based on the fact that the self-
energy of many-body Green's-function theory also
acts as an optical potential ' has been used to dis-
cuss elastic ' and inelastic" electron- and posi-
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tron-atom scattering.
Use of an optical potential eliminates the need

for solving large sets of coupled equations. An

accurate optical potential for electron-atom scat-
tering, however, may contain a large number of
nonlocal and energy-dependent terms. Several
techniques have been used for extracting scatter-
ing information from such potentials. These in-
clude the distorted Born approximation, iteration,
coupled-equation methods, ' and the noniterative
technique of Percival and Marriott. '

Alternatively, one may use an "analytic" or
basis-set expansion such as that of Harris. '3 Since
only matrix elements of the optical potential are
required, its nonlocality causes no special diffi-
culty. A disadvantage of this type of method, how-

ever, is that scattering information is obtained
only at certain fixed energies from a single com-
putation. ' Another approach which shares the
advantages of the Harris-type methods but gives
accurate scattering information over a range of
energies is the "R-matrix" method, which has re-
cently been investigated in the context of electron-
atom" and nuclear' scattering.

It is the purpose of this paper to show that ac-
curate scattering information may be easily con-
structed directly from an elastic optical potential
by means of the Fredholm method. " The method
is noniterative and simple and rapid enough so that
large expansion basis sets can be employed.
Since large expansions can be used, the problem
of determining optimal pseudostates, which arises
in the pseudostate' modification of the close-cou-
pling method, is avoided. Additionally, exploita-
tion of the analytic properties of the Fredholm de-

terminant" allows highly accurate interpolation of
scattering information from knowledge of the de-
terminant at relatively few points on the real en-
ergy axis; resonances are easily located by inter-
polating to find the zeros of the real part of the
determinant.

We apply the method to the model problem of
elastic s -wave electron-hydrogen-atom scattering.
Section II contains a discussion of the construction
of the optical potential. The construction, analy-
ticity, and interpolation of the Fredholm deter-
minant are discussed in Sec. III, where it is point-
ed out that once the determinant has been com-
puted at one energy, extension to all energies takes
a relatively small additional amount of computa-
tion time. In Sec. IV we discuss selection of the
basis set, and present results for the s-wave
singlet and triplet scattering. A brief discussion
is given in Sec. V.

II. CONSTRUCTION OF OPTICAL POTENTIAL

For elastic s -wave electron-hydrogen scattering
at energies below the first excitation threshold, the
standard Feshbach' procedure yields the following
one-particle Schrodinger equation (atomic units
are used throughout):

(- —,
' V, '+ V.'.(I)+ V.'„(I,Z)] q', (I) = (E —E,.)y,'(I) .

(2. 1)
The +(-) refers to singlet (triplet) scattering.

E is the total energy of the scattering system and

E„is the energy of the hydrogen ground state, V'„
is the usual static-exchange potential, and the
Feshbach optical potential in spectral expansion
form is

( tet t, (2) I I/rto I p, . (1, 2) ) (y,. (1, 2) I I/rto I pt, (2))
OPt

(2. 2)

In Eq. (2. 2), the boldface parentheses denote in-
tegration over coordinate two only, P,, is the Is
hydrogen orbital and

(E', Hoo) y'; (1, 2) = 0—, (2. 3)

where II is the full Hamiltonian and Q is the usual
properly symmetrized Feshbach projector ' which
maintains the strong orthogonality of p,'(I, 2) to

The states y', (1, 2) have total orbital angular
momentum L=0 and total spin S=O (+) or S= 1

(-)
Equation (2. 3) may be solved by the configura-

tion-interaction method. First an orthonormal one-
particle basis set is selected, II~~ is then diagonal. -
ized in the set of all symmetry-adapted two-elec-
tron configurations constructed from the basis func-
tions. The one-electron basis chosen here con-

sisted of the pseudo-hydrogen-atom orbitals ob-
tained by diagonalizing the hydrogen-atom Hamilto-
nian in the Slater set

( t)' tt+t-t -t tr„t(r)= [(2n+ 2l)!j' r e Yto( r) ~

(2 4)
For basis sets used here (n ~ 9) only the first few

pseudo-hydrogen functions resemble the true hy-
drogen orbitals. The rest describe the effect of
bound excited states and the continuum. The pro-
jector Q in Eq. (3) is taken in account by excluding
configurations containing the pseudo-1s orbital.
If $, = 1.0, the calculated phase shifts must con-
verge monotonically from below as the one-parti-
cle basis set is increased. For ),t1.0, the
lower-bound principle no longer rigorously holds;
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empirically it was always found to be obeyed since
the true- and pseudo-1s functions differ only neg-
ligibly for basis-set sizes and values of g, used.

The main computational labor involved in the
construction of V'.„(1,E) is the determination of
the eigenvectors and eigenvalues of II, once this
has been done the optical potential may be calcu-
lated rapidly at any energy. Once V,'o, (1, E) is
known the scattering phase shift may be computed
by construction of the Fredholm determinant.

III. CONSTRUCTION, ANALYTIC PROPERTIES, AND
INTERPOLATION OF FREDHOLM DETERMINANT

A. Numerical Computations of Fredholm Determinant

Numerical techniques for construction of the
Fredholm determinant for local, nonlocal, and en-
ergy-dependent potentials have been given pre-
viously": Introduction of a set of K quadrature
points and weights k, and se, allows us to write, for
an arbitrary potential V,

with

(d' ) ~, = (-,'ko' ——,'k, ')5„

—(sv)kg) (kpl Vlk))(go~k)) ~p, (3.3a)

Vp(= (kpli VI'kg) (ur( kq)'i (3. 3b)

(k, I VI k&) = —(k, k&)'~ drr j, (k, r)

x V(r)j, (k)r) (3.4)

while —,'k0 gives the kinetic energy. The finite-
dimensional determinant D(ko) is the approximate
lth partial-wave Fredholm determinant det[1
—Go(k p) V] whose phase allows evaluation of ap-
proximate S-matrix elements as

N

D(ko) =g . ., . , D'(ko),
-1 20 2

(3 1) S(k ) = e ""p' = D(k, )*/D(k, ) .

where

D (k)=

+ iw V(0

Sm VN0

Vo& —Vo~ 1+SgV00

(3. 2)

Equations (3. 1) and (3. 2) effectively sum the
expansion

D(kp)= 1+P l,
k p, —1'(okp ), (3. 5)

A(E') dE'

~0 2 0

where

&kolV~ko) ~ ~ ~ (k
~

V~E )

&E„iV/ko). . .&E„iV(E„)
+ ~ ~ ~ ~ (3.6)

The expansion of A(-,'kp ), in spite of first appear-
ances, does not involve any singular integrals;
however the principal value integral of Eq. (3. 5)
requires careful placement of k0 with respect to
the quadrature points k&. It is not difficult to show
that for N given quadrature points and weights that
there are (N —1) values of ko (one between each
two consecutive k, ) for which the principal value
integral of Eq. (3. 5) is accurately performed. Po

Thus once the N&&N matrix (3. 2) has been com-
puted one can compute D(ko) for (N- 1) values of
k0 without recomputation of the N~ matrix ele-
ments of V. This is an important consideration
as computation of the matrix elements
(kq I V„~(1,E) Ikz) is time consuming. Given the
value of D(ko) at (N —1) values of ko we can inter-
polate to find D(k) over a continuous range of k.

ftrnr, u] (x) = PN(x)/@z(x) ~

where

(3. 7)

P„(x)=Z P)x', (3. 8a)

Q~(x) = 1+ Z q, x', (3.8b)

B. Point-Wise Rational-Fraction Interpolation

Interpolation of the determinant D(k) between
known values of k may be carried out using a
point-wise rational-fraction technique which was
introduced by Schlessinger for analytic continua-
tion of off-shell T-matrix elements, and more re-
cently has been used for continuation and interpo-
lation of the Fredholm determinant. '9 The meth-
od finds the rational fraction
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such that R &„,»(x~) = D(x~) at (N+ 34+ I) points x, .
R,„,»(x) is easily determined recursively from a
continued-f raction representation and provides
a highly accurate and rapidly convergent interpo-
lation alogar ithm.

D. Interpolation of Scattering Data

Since the Fredholm determinant has at least
two continuous derivatives for real k and since
the S matrix is given by

C. Analytic Properties of Fredholm Determinant 2)q&q) D(E+ ie)* D(k)*
D(E+'ie) D(k)

(3. 12)

For local potentials the partial-wave Fredholm
determinant is identified with the corresponding
Jost ' function and thus has well-known analytic
properties. For potentials satisfying the condi-
tions '

(3. 9a)

(3. 9b)

1
U(rara)= e ""' 2 2

ir) -r2I (3. 10)

with p„p2real and positive. It is not difficult to
verify that for such a nonlocal potential that the
conditions '

tr[(GOU) "]& ~, n = 1, 2, . . .

tr[IG'UI] &"

(3. 1la)

(3. 11b)

necessary for the absolute convergence of the ex-
pansion of the Fredholm determinant may be
strengthened by finding a uniform bound (in k) to
IG (k)U I in a region including the real k axis thus
giving uniform convergence of the expansion. As
the individual traces can be shown to be analytic
in k in a similar region it may be seen that the
Fredholm determinant is analytic for real k for
nonlocal potentials of the form of Eq. (3. 10),
namely, those which are exponentially bounded in
both variables. We thus conclude that the long-
range tail of V'„trather than its nonlocality, lim-
its the differentiability of D(k), for real k. ~

¹te added in proof. The technique of Regge
(Ref. 25, p. SSV) maybe usedto show that, as the
potentials are analytic functions of a complex co-
ordinate, D(k) is in fact, analytic for real k.

D(k) is analytic in the upper 2k plane and possesses
at least a continuous derivative for real k (k cO).

For our case, however, the potential goes as-
ymptotically as —&/2r4, n being the polarizabil-
ity and for k WO it can be shown that D(k) possesses
at least a continuous second derivative for real
k.

The fact that the potentials V'„and V,'„arenon-
local does not weaken the above assertion that
D(k) should have at least a continuous second der-
ivative for real k. This may be seen by consider-
ing the fact that the nonlocal parts of the potential
are of the form

I' Im [D(E+ i@)]
2 (d/dE) Re[D(E+ ie)] (S. 13)

E. Small Complication Arising from Use of Optical Potential

Using an optical potential, even for elastic scat-
tering, requires care if the analytic properties of
the Fredholm determinant are to be maintained.
A two-channel example will make this clear. '
Consider

I
l -G» Vii -G» ~i2 )

D(E+ ie) = det . . . . . . . . . .:.. . . . . . . .
22 21 G22 V22 j

where

= det(l —G» V) det(l —Gz2 V22)

x det(1 —8,~ V~2/22 V2,), (3. 14)

(3. 15)

In the case of elastic scattering with channel 2

closed, scattering information may be obtained
from the quantity

D'"(E+is) = det(1 —G, , V») det(1 —Q» V/2 gnat V2f)

det[1 Ggg(Vfj+ Vgp9$2 V2$)1 (3. 15)

as the factor det(1 —Gzz V~3) is real if channel 2 is
closed and thus does not affect the phase.
T»s is equivalent to what is usually done in optical-
potential calculations. However, omission of the
factor det(1 —Gza V~3), which may have zeros be-
low the inelastic threshold, may destroy the ana-
lytic properties desired for interpolation. Thus,
for example, while D(E+ie) has a continuous sec-
ond derivative for the s-wave scattering of elec-
trons from hydrogen, D'~'(E+ ie) has poles on the
real axis corresponding to the compound-state
resonances; these poles are cancelled by the real
factor det(1 —G32 Vz~) which is necessary to en-

resonances arise computationally as complex
zeros of D(k) [rather than as poles of S(k)]. Thus
it is clear that scattering information is easily in-
terpolated via the determinant. Previous computa-
tions'9 have shown that the Fredholm determinant

is, in practice, very smooth even in regions where
S(k) is a rapidly varying function of the energy.
Narrow resonances are located by inspecting the
zeros of Re[D(E+ ie)] noting that at such zeros,
resonance half-widths &1" are given by
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TABLE I. Convergence of the s-wave singlet electron-hydrogen phase shift in the s, s-p, and s-p-d limits for the
unoptimized choice $, =$&=4=1.O. The triples of numbers Q„n&,z„)refer to the number of &-, p- and d-type atomic
Slater functions used in the diagonalization of H@@.

k

(a. u. )

0.2
0.4
0.6
O. 8

(3, o, o)

1.8948
1.2673
0.9083
0.7218

(e, o, o)

l. 8970
1.2693
0. 9102
0. 7256

(9, 0, 0)

1.8973
1.2696
o.9105
0.7261

(e, e, o)

2. 0535
1.4024
1.0286
0. 8736

(6, 8, o)

2. 0546
1.4033
1.0291
0. 8750

(e, e, 3)

2. 0607
1.4092
1.0348
O. 8789

(e, e, e)

2. 0618
1.4104
l. 0362
0.8807

sure that the computed determinant be easily in-
terpolated.

IV. CALCULATIONS AND RESULTS

A. Nonresonant Phase Shifts

The calculations reported here were performed
mainly to determine whether the combination of
optical-potential and Fredholm techniques is effi-
cient and simple enough to make application to
larger systems possible. It was thus important to
determine whether moderate-size nonoptimized
basis sets could yield good nonresonant phase
shifts. For this reason, and for computational

simplicity, the Slater basis functions were con-
strained to have only one orbital exponent per
symmetry.

Calculations of the nonresonant singlet and trip-
let phase shifts were performed with the exponent
choice $,= $~= $„=g&--1.0. This choice was made
since then the eigenfunctions of H@z have the same
scale as the ls hydrogen orbital. This guarantees
strong coupling (the optical potential can be rep-
resented as a relatively small sum over states)
and a good representation of short-range correla-
tion. This choice also gives an exact representa-

tion of the long-range multipole polarization
forces arising from induced multipoles of order
2, with l being the highest single-particle angu-
lar momentum included in the basis set.

Table I shows convergence of the singlet s-wave
phase shift as a function of the number of basis
functions in the first three angular limits. Inclu-
sion of functions of f symmetry probably increases
the phase shifts by no more than 0. 002 rad. Table
II compares several calculations with the results
of a static-exchange calculation and the "exact"
results of Schwartz. s' The (6, 6, 6), (6, 8, 6), and

(6, 6, 6, 3) results~~ show that the computations
have converged to the "exact" results within a few
tenths of a percent. Although the phase shifts are
only shown for those values of k where they may
be compared with known results, the rational-
fraction interpolation which generated them also
implicitly contains the elastic phase shift over the
whole elastic region; thus no new computational
work would be involved to construct 5(k) for new

values of k. These results are compared with a
(6, 6, 6) computation with the exponent choice (,
= 0. 802, f~= 1.45, and („=1.803. These latter
exponents were used in an "optimal" pseudostate
calculation. The results indicate that in calcula-

TABLE II. Singlet s-wave electron-hydrogen phase shifts in the s, s-p, s-p-d and s-p-d-f limits. The "exact"
results of Schwartz and the static-exchange results are shown for comparison at a set of representative energies; the
interpolation yielded results at all values of k. The quadruples Qs, Qp Qy. Qf) indicate the number of s, p, d,f atomic
Slater functions employed in diagonalizing H~. We note that the (2, 2, 2, 2) basis set gives the lowest three multipole
polarization forces correctly.

k

(a.u. )

0. 1
0.2
0.3
0.4
0.5
0.6
0. 7
0. 8

Static
exchange

2.399
1.870
1.508
l.239
1.031
0. 869
0.744
0.651

"Exact"

2. 553
2. 067
l. 696
1,415
1.202
l. 041
0. 930
0. 886

(6, 8, 6, 0)

2. 5493
2. 0628
1.6923
1.4113
1.1967
1..0367
0.9264
0. 8821

(6, 6, 6, 3)

2. 5480
2. 0627
1.6929
l.4112
1.1969
1.0368
0. 9260
0. 8811

(e, e, e, o)'

2. 5473
2. 0618
1.6920
1.4104
1.1962
1.0362
0.9254
0.8807

(6, 6, 6, 0)

2. 5443
2. 0573
1.6892
1.4098
1..1958
1..0354
0.9251
0. 8802

(2, 2, 2, 2)b

2. 5380
2. 0457
1.6727
1.3896
1..1732
l.0097
0. 8907
0.8122

These results were presented at the Seventh Inter-
national Conference on Electronic and Atomic Collisions,
Amsterdam, 1971.

All orbital exponents are 1.0

'(,=0.802, $&=1.45, 4=1.803, as discussed in the
text.
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k

(a,.&. )
Static

Exchange "Exact" (6, 6, 6) (6, 6, 0) (6, 0, 0)

0. 1
0.2
0.3
0.4
0. 5
0.6
0. 7
0. 8

2. 9076
2. 6792
2. 4611
2. 2573
2. 0701
1.9016
1.7488
1.614

2. 9388
2. 7171
2. 4996
2. 2938
2. 1046
1, 9329
1.7797
1.643

2. 9347
2. 7166
2. 4984
2. 2930
2. 1038
1.9318
1.7784
1.6430

2. 9338
2. 7153
2. 4970
2. 2916
2. 1024
1.9306
l. 7772
1.6419

2. 9077
2. 6794
2. 4616
2. 2579
2. 0710
1.9019
1.7506
1.6166

These results were presented at the Seventh Inter-
national Conference on Electronic and Atomic Collisions,
Amsterdam, 1971.

C. Schwartz, Ref. 31.

tions of the present type, where basis sets of in-
termediate size do not cause computational diffi-
culty, exponent optimization seems unnecessary;
this is of course not the case for very small ex-

I-

~ 012

K
LIJ 006
ILJ
Cl

0
I—

-0.06
4J

& -0.12
4.00—

3.60—

3.20—

2.80—
I-

Z
2.40—

IJJ

z 200—

1.60—

1.20—

I

0.86
I0.80 0.84

k ( O.u. )

FIG. 1. Real and imaginary parts of D(k) and phase
shift near the lowest iS resonance in elastic electron-
hydrogen-atom scattering. The "dots" indicate those
momenta k~ where D(k~) was actually directly evaluated
via the matrix methods of Sec. III A; the solid lines in-
dicate the interpolated values.

I

0.850.83

TABLE III. Triplet' s-wave electron-hydrogen phase
shifts in the s, s-p, and s-p-d limits. The "exact" re-
sults of Sehwartz (Ref. 31) and the static exchange results
are shown for comparison at a representative set of k
values; the interpolation yielded results for all k. The
notation is that of Tables I and II. All $ were 1.0.

TABLE IV. Convergence of the s-wave singlet phase
shifts for the exponent choice $,=0.5, f&= $q=1. 0. The
notation is that of Tables I and II.

k

(a. u) (3, 0, 0) (9, 0, 0) (6, 6, 0) (6, 8, 0) (6, 6, 3) (6, 6, 6)

0. 2
0. 4
0. 6
0. 8

1.8845 l. 8965
l. 2521 1.2687
0. 8854 0. 9095
0. 6909 0. 7249

2. 0525
1.4011
1.0270
0. 8722

2. 0536
1.4020
1.0275
0. 8737

2. 0597
1.4079
1.0332
0. 8775

2, 0608
1.4091
1.0346
0. 8793

As mentioned in Sec. ID, an advantage of the
present calculation is that calculation of the de-
terminant at a few values of the energy followed
by interpolation gives accurate scattering infor-
mation at a continuous range of eoergies. The
fact that this holds in the resonance region is
clearly shown in Fig. 1 where interpolation of the
real and imaginary parts of the determinant are
shown with the phase shifts in the region near the
lowest 'S resonance. The determinant is nearly
linear through the resonance region; A[V, '7] inter-
polation gives about four significant figures in the
resonance region and about six figures over the
rest of the elastic region.

The resonance parameters computed with the
exponent choice g, =1.0 are, of course, poor
This is because the rather tightly localized func-
tions needed to represent off-resonant correlation

pansions. The (2, 2, 2, 2) calculation with all $,
= 1.0 is of interest since it exactly reproduces the
first three multipole polarization forces. This
very restricted basis yields a large part of the
correlation phase shift. Whether this is due pri-
marily to the basis set's correct description of
polarization or its approximate representation of
short-range correlation is unclear. It is clear,
however, that polarization alone is not sufficient
to describe the low-energy scattering. Table III
gives the computed s-wave triplet phase shifts.
In this case correlation contributes only a small
fraction to the total phase shift and extensive
basis-set studies were not performed.

The remaining discrepancies between the com-
puted phase shifts and the "exact" results are
probably due mainly to incompleteness in the P
and d expansion basis sets. Completeness is dif-
ficult to achieve if all orbital exponents for basis
functions of the same symmetry are equal since
then the basis set becomes nearly redundant if
more than seven or eight functions per symmetry
are used; convergence is thus slowed. To obtain
very high precision in the nonresonant phase shifts
a more flexible basis is needed. In addition, in-
creased flexibility is essential for a good repre-
sentation of resonant scattering. This is dis-
cussed in Sec. IVB.

B. Resonance Parameters
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TABLE V. Resonance energies and widths for the lowest |S resonance in s-wave electron-hydrogen-atom scattering.
Computations are shown in the first three angular limits for the two choices $, = 0. 5 and $,=1.0 which were used for all
orbitals of s symmetry in the expansion.

(Basis)
(Exponents)

@res
~res

(6, o, o)
(1.o, —,-)

—0. 1068

(6, o, o)

(o. 5 — -)
—0. 1253

~ ~ ~

(6, s, o)
(1.0, 1.O, -)

—0.1413

(6, 8, 0)
(o. 5, 1.o, -)

—0. 1484 a. u.

(6, 8, 6)
(1..0, 1.0, 1..0)

-0. 1.422 a. u.
9.6x10 2 eV

(6, s, 6)
(.5, 1.0, 1.0)

—0. 1484 a. u.
6. sx 10 2 eV

"Exact"~

—0.1488
4. 8m 102 eV

Resonance energy from T. F. O' Malley and S. Geltman, Ref. 3. Resonance width from P. G. Burke and A. J.
Taylor, Ref. 5.

effects cannot easily describe the physically dif-
fuse resonances which are almost completely un-
coupled from the background. In other words,
highlyaccurate values of off-resonant phase shifts
may be obtained from a sum [Eq. (2. 2)] over
pseudoresonance states which do not represent the
true resonances at all~'; for example the triplet
&-wave results of Sec. IVA were accurate toal-
most four significant figures even though none of
the pseudoresonances had energies below the first
inelastic threshold.

In order to more accurately describe the lowest
'S resonance, g, was set equal to 0. 5. Table IV
shows convergence of the phase shifts for this ex-
ponent choice with )~= 1.0 and g~= 1.0. The off-
resonant phase shift is nearly as good as before.
Table V shows the resonance parameters obtained
from a series of computations. It is clear that
taking $, = 0. 5 gives a markedly improved reso-
nance energy but only a fair value of the width.

In conclusion, it is impossible to accurately
describe both resonant and nonresonant scattering
with a single basis set without considerable ex-
ponent flexibility. ' ' Nonresonant scattering,
however, can be well described by a simple non-
optimized basis set.

V. DISCUSSION

The Fredholm method provides a convenient and
rapid method for extracting scattering information
from an optical potential. The determinant
D(E+ is) may be evaluated at a series of energies
and easily interpolated giving scattering informa-
tion over a continuous range of energies from a

single major computational step. As an example
of computation times, the construction of the in-
terpolating rational fraction representation of the
singlet-phase-shift below the first inelastic thresh-
old took 30 sec for the (2, 2, 2, 2); 3. 3 min for the

(6, 6, 6) and 5.5 min for the (6, 8, 6) computation
(times are for computation from scratch on the
IBM 360-6C "omputer). In each case almost all
of the computation time is required for calculation
of matrix elements and diagonalization of Hz,
once this has been done computation of 5(k) for all
energies takes a negligible additional computation
time. We note that extension to higher partial
waves can be accomplished without introducing
higher-order Bessel functions using the method
of Rescigno and Reinhardt.

The convergence of the results presented in
Tables I-IV indicates that moderate-sized non-
optimized Slater-type basis sets provide a compu-
tationally viable method for constructing optical
potentials which adequately describe nonresonant
scattering. This suggests that applications to in-
elastic scattering and scattering from many elec-
tron atoms and ions should be computationally
feasible. Accurate calculation of resonance pa-
rameters, while straightforward, will be compu-
tationally somewhat more complex.
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