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The low-temperature behavior of the third-quantum-cluster coefficient is investigated using
the multiple-scattering form of the binary-collision expansion. For hard spheres and Boltz-
mann statistics we find

bs 2(a/Z) ———
q v 2 w(a/)J —'3 (4~ —Sea ) (a/X) ln(a/X) +0((a/X) ),

where a is the sphere diameter and g is the thermal wavelength. The first hvo terms were
obtained some time ago by Lee and Yang and by Pais and Uhlenbeck. The occurrence of a
term of the form g - le was predicted recently by Adhikari and Amado. The expansion is
a1.so given for Bose-Einstein and Fermi-Dirac statistics, and for the case of an intermolecu-
lar potential without bound states. The limitations of such low-temperature expansions are
discussed.

I. INTRODUCTION

For a classical gas, the cluster coefficients 5,
(and hence the virial coefficients) can be expressed
as integrals over functions of the two-body poten-
tial. Thus their evaluation involves a series of
quadr atures.

In the quantum case, the connection between the
cluster coefficients and the intermolecular poten-
tial is not nearly so direct. Only for the second
coefficient b~ is there available an exact expres-
sion' which allows its computation over a wide
temperature range. There exist formal expres-
sions for the third and higher' coefficients,
but these have not as yet been used for any exten-
sive calculations.

The limiting case of low temperatures has been
studied using the binary-collision expansion and
the related pseudopotential method. ' For the hard-
sphere gas Lee and Yang" evaluated b, as a series
in powers of a/X as far as the term in (a/&) . [a
is the sphere diameter and X= (2vh /mkT)'~ is the
thermal wavelength. ] Pais and Uhlenbeck'~ ex-
tended this to the term in (a/X) for bs. From this

it might appear that we have the leading terms of
an expansion for b, in powers of (a/X). However,
Adhikari and Amado' have recently shown that the
low-temperature expansions of cluster coefficients
higher than the second'5 involve ink as well as
powers of X. In particular, the third-cluster coef-
ficient (for Boltzmann statistics) has the expansion

b, = c, /X'+ c, /) '+ c,(inn)/) '+O(X '),
where the c, depend only on the hard-sphere diam-
eter, or more generally on the two-body g-wave
scattering length. The coefficient c3 can be found
from the leading terms of the binary-collision ex-
pansion, and we shall present its explicit calcula-
tion below. However this is as far as we can go by
present methods. The evaluation of the coefficient
of the A. term involves a solution of the full three-
body problem, and this is a calculation of a higher
order of difficulty.

It should be mentioned that other quantities re-
lating to many-particle systems have logarithmic
terms in their expansions. In particular, the low-
density expansion of the ground-state energy of a
system of bosons'6 or of fermions'~' contains a
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term of the type a lna. We return to this point in
Sec. VI.

In this paper we calculate the expansion coeffi-
cients for b~ (for all types of statistics) up to and

including that of the logarithmic term. These are
given first for the hard-sphere case, and then for
the more general case where the particles interact
through a potential without bound states. In the
latter case several parameters besides the s-wave
scattering length have to be introduced. Instead of
using the original form of the binary-collision ex-
pansion, we use the equivalent form based on the
Watson multiple-scattering expansion of the T
matrix. ' ' This has some advantages for the
present calculation.

II. BASK EQUATIONS

Consider a system of N identical particles each
of mass m in a container of volume V. Let the
Hamiltonian be

HN —H~ + v;),o

where H„ is the kinetic energy of the Nparticles
and g,&

is a pair potential. The cluster coefficients
!&, (V) occur in the expansion of the logarithm of the
grand partition function in powers of the fugacity
8 22:

—InZ = —Z b (V)z'1 1
gp») 8 l

)=1

From this one obtains the equation of state in para-
metric form;

1
g =»m —,Fi!,(V)z',

P'~ oo

(4)
1—=lim ~ Z lb, (v)z',

$ -«1

where p is the pressure and p = 1/kT. The virial
series is obtained by eliminating z between these
two equations. In the gas region the limit and sum
in (4) can be interchanged, so the cluantity we are
interested in is

b, =lim bc(v) .

In the usual theory, zz
b, (v) is given by

I, (V)=(&'/I! V)Tr(V, ),
where the Ursell operator U, is defined in terms
of W„=e ~"». More concisely, b, (v) can be ex-
pressed directly in terms of e ~ according to

b, (v) = (&c /I! V)(Tre ~"c)» .
Here we are thinking of Tre ~ ~ expanded in a
"erturbation series and the various terms repre-
sented by diagrams. The suffix c then indicates
that only connected diagrams are to be used in

where

G(z)=(z —a, ) '.
The contour C surrounds the spectrum of H, on
the real axis and is traversed counterclockwise.
In this formulation Ecl. (7) is replaced by

b, (V) = (&c /I! V) [T re'G(z)], . (11)

G(z) is related to the I-body T matrix T(z) by ~

G(z) = Go(z)+ Go(z)T(z)G (z),

where Go(z) = (z —H, ) '. Inserting this in (11) gives

b, (V) —bcco&(v) = (X /I c v) [Trz&& Go(z)T(z)GO(z)]»,

(13)
where

bco& (V) —(&cz/I! V) [Tr2 '
&tG( o)z], (14)

is the ideal-gas term. This expresses b, (V) in
terms of the completely off-shell T matrix. Dash-
en, Ma, and Bernstein have gone further and shown
that b, (V) can be expressed entirely in terms of
on-shell quantities by the formula

1 8
f, (V) =, — dZ z-" —— lm[Tr Ins(Z)], ,

t 2g 8E
(15)

where S(Z) is the I-particle S matrix. However,
considerable care is required in handling this ex-
pression, since singular integrals arise as soon
as one attempts an actual evaluation of terms. In
the present case we prefer to work with (13) which
avoids this complication at the expense of intro-
ducing off-shell quantities.

If in (13) we separate out the center-of-mass
momentum and take the limit V- ~, we get

f&, —b&c» =(I ~ /lt)[Tr, 2~'Go(z)T(z)GO(z)], ,
(16)

evaluating b,, (v). The basic perturbation expan-
sion is in powers of the pair potential v. A partial
summation of this series leads to the Lee-Yang
binary-collision expansion, in which the place of
the potential is taken by the binary kernel

p(p) -8&cp

B(p) can be calculated from the solution of the two-
body Schrodinger equation, and it has the advan-
tage of existing even for interactions with a hard
core.

The above may be looked upon as a "time-depen-
dent" formulation of the problem, with —ip playing
the role of the time. The "time-independent"
counterpart is obtained by taking an inverse La-
place transform with respect to p. The basic rela-
tion is

~"c=S~ G(z)=-(1/2&ci) f dze ~'G(z),
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where b~& =l ' . The trace is now to be per-
formed in the center-of-mass system. The l-body
T matrix can be expanded in a multiple-scattering
series according to20

T(z) =Z tN +Et„Gp 5 tp + ~ ~ ~, (1V)
N e QPN

where the summations run from 1 to l.
= t (z, H, ) is the 7 matrix satisfying the equation

The matrix elements of t, (z, Hso) in the space of
three-particle states are

(kgk~sks
I t~ (z, Hs) I kgksks )

= &kwl t(z --. k. ) lkp, &6(k.' -k.), (26)

where t(z) is the two-body T matrix. It satisfies
the Lippmann-Schwinger equation

t =v„.+v (z —H, ) 't (18) t(z) = v+v(z —kp) 't(z), (26)

Inserting (1V) in (16) gives a series for b, . This
is just the "time-independent" counterpart of the

inary-collision expansion, ' and inde
nary kernel and the T matrix are related by

H(g)= —2 [t(z, H,')(z —H,')-'] . (19)

b(o& —(tsfs/I t )g zs' f ds&-skg-&

x (k, Ki I Go(z)r(z)Go(z)elk~ &r ).
(20)

The sum is over all permutations P of the / par-
ticles, and

1 for bosons
—1 for fermions .

We are interested in the case 1=3. It is conve-
nient to introduce the combinations

kss= —,'(ks —ks), etc. (21)

The total energy is (in units where N'= m =1)

E = s(kg+ ks+ ks), (22)

with the k's restricted by g k„=0. Thus

Although the two expansions are equivalent, there
do seem to be some advantages in using the multi-
ple-scattering form. The quantities used are al-
ready familiar from scattering theory. The two-
body T matrix possesses certain symmetries which

the binary kernel does not, and this reduces the
number of different terms to be calculated. Also
in the actual calculation one obtains the integrals
in a more flexible form, and this can facilitate
their evaluation. (For an example of this see
Appendix A. )

The trace in (16) is the best evaluated using the
free-particle momentum eigenstates I k,fs. . .k, )
(with g' k = 0 since we are in the center-of-mass
system):

where ho is the Hamiltonian for the relative motion
of two free particles.

III. b3 FOR HARD SPHERES: BOI.TZMANN STATISTICS

For hard spheres, the off-sheQ two-body T ma-
trix has the following expansion in powers of the
sphere diameter a.'

(k'
I
t(z) Ik) = (2v') '[a+a'(-z)"'-

~ a'(2m+k" +k')

+ask' k+O(a')] . (2V)

This can be obtained from the explicit expression
for the hard-sphere t matrix, or as a special
case of the general expansion derived in Appen-
dix C.

From (20), bs for Boltzmann statistics is

bs = (3"'/3) ) fd'k ~,'(z —H) '
&kiksksl V (z) lkiksks).

(28)
We now look at the individual terms that arise when
the multiple-scattering series for T(z) is inserted
in (28). There are no connected diagrams involv-
ing one t matrix, so we need only consider terms
with two or more t matrices.

A. Two t Matrices

The multiple-scattering series contains six terms
involving two g matrices. These give equal con-
tributions (as is seen by relabeling the particles),
so the total contribution to 53 is

(bs)s = 3v 3 fd k Zs' (kiksks I Gpt(GptsGp I kiksks )

=3~3 fd'k Ss'(z —Z)s &kssl t(z ——,
'

koan)I4&

x (ksi I
t(z ——,ks) I ksi ) ~ (29)

The expansion (2V) for the t matrices is now in-
serted, and the inverse transform and momentum
integrals are performed, giving

(bs), = 2(a/X) +2v2v (a/x)'+ 0((a/x)'). (30)

The details are given in Appendix A.

2 2E = jPi+ki ~ k2+ k2

E=k23+4kg .2 3 2

(23)

(24)

B. Three t Matrices

In this category we have twelve terms giving con-
tributions of two types. The total contribution to
0& from the six terms of the first type is
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(b3)3ss 3~3 f d k ~8 (klk2k31 Got1Got2Got1col klk2kS )

=3v 3 f d k23d k1d k228'[z —(k23+4k1)] [z —(k, +k, k2+k2 )]

x(&k., l
t(z --:k21)1-k2- lk1&)2 (k, +-'.k'21 t(z --'k22) lk, +-'.k', ) . (31)

Inserting the expansion for the t matrices leads to

(bS)s, —I1a +(IS+IS)a +

where

I.=3&3(2v') ' f d'kd't d'qZ, '[ z—(k'+ '. t')] '-

x[z —(t'+p q.+q')] 'f. .
- —v 3 11 ln(- a'z) . (42)

t

J1(P z)=f d'q[z-(P'+p i+q')] '(lq'-z)"'.
(41)

As p-0 and z-0,
J1(p, z) - f„,d'q (z —q') ' (-,'q')" '

WpHere we have set k23=k, k, =p, k2=q, ana

2(s ~2 )1/2

(3 2 )1/2

(34)

(»)
(36)

fA more careful analysis gives —v 31/ln[a2(p2 —z)]
but this does not affect the final result. } inserting
(42) into (40) and making the changes of variable
I3 zf, 6 / k=x, 6'/ p=y gives

2 ' t

Is = -3~3(2v') '~31/8 'ln —' dsxdsy
8

where

x[z —(k +;-, p2)] 2 Js(ts, z), (40)

To evaluate I&, make the change of variable q
=s --,'p. Then

3~3(2 2)-S fdSt -3882/4 Is 1f dSk -( k2)-2

x fd's(z —s') '. (37)

The integrals are now easily done (provided one
does the k and s integrals first), with the result

I, =-2V 21/X-3 .

I~ is readily evaluated in the same manner. How-
ever, all we require is the result that Ia is finite,
and thus

I,.'= O((a/~)').

On the other hand I3 is divergent: The q integral
diverges logarithmically at its upper limit. This
occurs because a small-momentum expansion has
been used for the t matrices, but the integration
range is still taken from zero to infinity. The
exoression (31) for (bs)3, with the full t matrices
in it is convergent, and to obtain the complete low-
temperature series we would have to work with
this. However, the next term in the series can be
obtained from Is by the device of introducing a
cutoff on the q integration. From the explicit ex-
pression for (k'

I t(z) Ik), it is apparent that the
major contribution comes from the region where
ak is small. Thus the low-temperature behavior
of I3 can be found by cutting off the q integral at a
momentum of order 1/a. Specifically, ws'. restrict
q to be less than d, /a where d, is a number inde-
pendent of q and g. Then

I-3V3 (2w ) fdkdtsZ

x — . dg 8 '
[g —(x'+-,' y')] '+ 0 —

2

= s/s v'i. (-„').o((~)' )
. (43)

The multiple-scattering series gives rise to 24
terms containing four t matrices. If we use only
the first term of expansion (2V) for the t matrices,
the contribution to b3 can be expressed in terms
of two different integrals:

(b, ), = 3~3(2v')-'(I +» )a'+ ~ ~ ~

where

(48)

I4 = f d'k dst1 d'q d's Z, ' [z —(k'+ —,
' p2) ]

'

x[z (p +p' 11+q )] [z (q +0 s+s )1

From (32), (38), (39), and (43) we have the result

(bS)3, = -2v 21/(a/X) +8~3(a/X) 1n(a/&)+ O((a/A) ) .
(44)

The contribution from the second six terms con-
taining three t matrices is

(b3)Sb 3~3 f d k ~8 (klk2k31 Got1GotSGotSoo1 k1kzks &

(46)
This is treated in the same way as (bs)3, , with the
result

(b, )„=——', &21/(a/X)'+ 8V 3 (a/X)4 ln(a/X)+ O((a/X)4) .
(46)

Thus the total contribution to 53 from terms con-
taining three t matrices is

(b3)3 (2v 2 11 + 3~21/ ) (a/X ) + 1 6' (a/X) 1n(a/X )

+ O((a/X)') . (4V)

C. Four t Matrices
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x [z —(p'+p ~ s+s')] ', (49)

I, = fd'bd'pd'qd's Z, '[z-(u'+k p+p')]-'

x[z —(b'+k q+q')] '[z —(s +s q+q')] '

x[z —(s'+s p+p')] ' .
Both I& and I& are divergent as they stand. We
adopt the same procedure as before, and intro-
duce a cutoff on the momentum:

multiple-scattering series involving fewer than
five t matrices.

From (30), (47), and (55) we have the final re-
sult:

b =2 — —— 2p

4

-p (4v —3v 3) — ln —I+oI —
I
. (59)

S, f-d'ad'p Z, ' [z (u—'+-.' p')] '~, (p, z),
where

J,(p, z)= f d'qd's[z —(p'+p q, +q')] '
s&dp/c

(51) IV. b3 FOR HARD SPHERES: BOSE-EINSTEIN AND
FERMI-DIRAC STATISTICS

Let
M(1'2'3') = (3VS/3! ) fd'u Z, '(z -E) '

x [z —(q2+ j ~ s+s )]
'

x[z —(p'+p. s+s')] ' . (52)

We need only the behavior of Jz(p, z) as p- 0 and
z-0. In Appendix B it is shown that

x(kil 213I I (z)II il zi s&. (60)

(61)

Then, from (20),

b ' ' =b'"+Z e PM(123) .

Z, (p, z) -,'-v'ln(- a'z) .
Inserting this in (51) leads to

I, =-2'3-"' 'X-'In(a/X)+O(X ') .

J~ is treated in a similar way, and an identical
logarithmic contribution is obtained. Thus

(53)

(54)

It is convenient to separate b3 into direct and ex-
change parts. If the particles have an intrinsic
spin s and the interaction is spin independent, we
can write

(&» —(2s, + 1)&by& y (2s + 1 )zb~)(~ & + (2s y I )bex(» ~

(62)
where

(bz)4= ——,
' 2 v(a/X) In(a/X)+O((a/A) ).

D. Higher-Order Terms

(55)

L, a' f (d'a)' -Z, '(z E) ' f—„,(d'u)' a '

a' f (d'b-)'Z, '(z —E) 'a '- (a/~)' . (57)

Similarly, for a term containing m E matrices we
find the general behavior

L -& f(d'b)z&'(z-E)-'f" (dn)" 'u''"-(a/~)'-
(56)

Thus all the higher terms give contributions of
order (a/X), and to find the total contribution to
b3 it would be necessary to sum this infinite se-
ries. The (o'/&) term corresponds to a true
three-body collision, and its determination would
involve a solution of the three-body problem. The
same conclusion is reached by Adhikari and
Amado' on the basis of the low-energy behavior
of the three-body scattering amplitude as given by
Amado and Rubin. 7 However, here we are only
concerned with contributions to order A ink, and
these are completely determined by terms in the

Consider a term with five t matrices. The lead-
ing contribution has the general form

4
a5 f (dsz)2 Q-1(z E)-2 f (ds~)8

g~
(z E )-1

(56)
This is divergent, but p."oceeding as usual and cut-
ting off the integrals at a momentum of order 1/a
gives

b"'= M(123)

bP ' = M(132) +M(213) +M(321),

b;*"'=b'"+M(231)+M(312) .

(63)

(64)

(65)

(67)
The remaining contributions from terms involving
two, three, and four t matrices can all be ex-
pressed in terms of integrals already evaluated
in the Boltzmann case. The results are

(b;*'" '), = 6(a/~)'+ 5V 2 w(a/~)'+ O((a/A)'), (6S)

(bs"'"')z = 4(a/X)'+ 3 v 2 7) (a/X)'+ O((a/Z)'), (69)

In (62) the plus sign refers to the Bose-Einstein
(BE) case and the minus sign to the Fermi-Dirac
(FD) case. bd~" is the same as bs for Boltzmann
statistics. The other terms contain the effects of
the statistics, b3" ' coming from processes in
which two particles interchange and b3 from
processes in which all three particles interchange.

We now proceed as before and substitute the
multiple-scattering expansion for T(z) In this.
case there are connected diagrams involving one
t matrix, and a straightforward calculation gives
the contributions

(b," ') =--'~2-- -I-~~ W2. -I+oI -I I,a al a') (a& &

L~)i'
(66)
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(box '
)o = —~o v 2o (a/X) +48v 3 (a/X)

x In(a/X) + O((a/X)4), (70)

(Iso*'h'o)o = —6W2v(a/x)o+32v 3 (a/x)4

x In(a/X)+ O((a/X)4), (71)

(5'"'"') = —64 ( /x)'In( /x)+ O((44/x)'), ('72)

(I 4*'"') = —~o v(a/~)' In(a/~)+O((~/&)'), (VS)

giving

f'*'"'=--'Wz -'+5 —' -~Ma& -'l

b "=—(a/X) —37r(a/X) +O((a/X) ),
b'o* = '; v 2 —(a/X)+sg(a/X) +O(a/X) ).

(v6)

(77 )

A comparison with the exact values shows that
both these expansions give quite accurate values
(within 1/p) up to a/X=0. 1. However, for larger
values of a/X, whereas (V6) still represents the
general trend of boo", (77) bears no relation at all
to the actual values of bz"'", which decrease very
sharply and are negligible by the time a/X=0. 5.
Physically, this rapid suppression of 52"'" with
rising temperature occurs because exchange ef-
fects are only significant when the particles can
approach closer than their thermal wavelength X.
If the particles are prevented from doing this by
the presence of a hard or repulsive core, then ex-
change effects are negligible. 2 For hard spheres,
Lieb has shown that

tsoxch = -', v 2 exp[- -'o'(a/&)'+ O(a/X)' ')], (76)

and Hill ' has extended this to general potentials
with repulsive cores. The same arguments apply
to bo"'", and although the analog of (78) ha.s not
been obtained, it is clear that b3"'" decreases
rapidly with increasing temperature, and that (74)
and (V5) are only valid for very small g/A. .

V. ba FOR GENERAL INTERACTION

In this section we allow the particles to interact
through a more general potential, with, however,
the restriction that no two- and/or three-body

(-:)'"(-')'iI;.')')-
2 3

4
—V(sw —sos)(—

) xn(
—)+oi(—) i

(ss)

The region of validity of expansions (V4) and

(V5) for the exchange terms is probably much more
limited than that of (59) for the direct term. This
is suggested by the behavior of the direct and ex-
change parts of the second-cluster coefficient. In
this case the expansions are'

bound states or low-lying resonances exist. In
Appendix C it is shown that the off-shell t matrix
has the following expansion:

&k'I&( )I&)=(2.') '(""l(- )"'- [ l( o--' o) -2xo]

Xo(k +k )+a4k ' k+ ~ ~ ~ ] (79)

where terms of order (momentum)o have been
omitted. ap, a~ are the scattering lengths for s
and p waves, respectively, and &0 is the effective
range. yo is a further parameter with the dimen-
sion (length)o, and it cannot be expressed in terms
of the two-body phase shifts. It is given in terms
of the two-body wave function by (C16) and is iden-
tical to the parameter (d'/6) introduced by Pais and
Uhlenbeck. '

If we now use this expansion in (60) we find that
the contributions from terms containing two, three,
and four t matrices are the same as before, pro-
vided the hard-sphere diameter a is replaced by the
g-wave scattering length go. In particular, the
logarithmic terms are still present in the general
case, and are not just a peculiarity of the hard-
sphere interaction. However, the contribution
from terms containing one t matrix must be modi-
fied. We find

(ho*'"')4 = - -,' v 2 (ap/&) —(ap/x)'+-, ' v 2 sr

x[ap(ap--,'ro)+16)4p —Qag]X '+O(X '),
(60)

(ho*'h '), = - -,' v 2 (ap/Z) —(ap/X)' +-', &2v

x [ao(ao x ro) +16yo+Qa&] & + 0(& ) .
(si)

The final results are

b'" = 2l —l

——W2o —
l

t'g()l' 4 aOI

a )4-y(4. -3&s) —"
l

in ~ +o(~-'), (62)

fexch, l 1 ~2 ~+5

4~s vYv(202ao+sapro 96yo+ 54a, )X

4

-16(4, -svs) a in
' l+o(~'), (63)
X)

)2fs'"' =3 ——,
'

v 2 +3

—
4~o W2o (138ap+sa pro —96yp —54g, )X

e(s. -s~s)(~) i.(P).o(s-). (ss)

VI. DISCUSSION

As mentioned before, logarithmic terms also
appear in the low-density expansion of the ground-
state energy of a many-particle system. For hard
sphere bosons the term is 6
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X27/ass (4v —Sv 3 ) (a'p) in(a'p),

where p =N/V, and for fermions it is'7 '
(SS) In E, we do the inverse transform first, using

(A4)

&qqv pJ (4v —3&3)2s(2s —1}(pea) ln(pea),
(«)

where p~ is the Fermi momentum. It is notable
that the same number (4v —SWS) appears multiply-
ing the logarithmic term in both the ground-state
energy and the expansion of b~ [Eq. (59)]. Lee
and Yang have shown how to obtain the ground-
state energ.„r from the cluster expansion, but since
this involves taking the limit z- ~ in P, b, z, it is
necessary to calculate all the b, 's to a specified
order in a/X. Possibly the same number (4n.
—SWS) occurs multiplying a logarithmic term in
all the higher 5, 's, but we have not attempted to
check this. 34

As Adhikari and Amado' have pointed out, the
occurrence of logarithmic terms in the low-tem-
perature expansion of 0, conflicts with a claim by
Maseheroni that for an everywhere-finite short-
ranged potential without bound states, the low-
temperature beha. vior is"

E-1

b, =Z C,
e=0

(sv)

APPENDIX A' EVALUA'I'ION OF INTEGRALS IN TVfO-
t-MATRIX TERMS

where the C, are constants. The restrictions on
the potential exclude the hard-sphere case, but as
we have seen, the logarithmic terms are still pres-
ent in the general case. It would seem necessary
to investigate the convergence of the expressions
for the C,

We have not performed the above calculations
with any hope of being able to make comparisons
with experimental results. s Rather our work
emphasizes the limitations of the binary-collision
expansion as a method of calculating cluster coef-
ficients at any but the lowest temperatures. The
term in & ink is the limit to which we can go by
such expansion methods —to improve on this in-
volves tackling the full three-body problem. It
would seem'thatany attempt to calculate bsat high-
er temperatures should treat it as a genuine
three-body problem from the outset, and not try
to approach it via an expansion in terms of two-
body functions.

Taking

then gives

3~3(2 2)-2 [( p)2/2 t] fd3t d3p ew (0 +St / )4

=2K (AS)

E& can be evaluated by making use of the con-
volution property

&,"[g(z)g(z)]=- f, da & (e')G (P P'),-(AS)

where G~(p) = Ss' g (z). However this leads to an
expression in terms of error functions, and the
whole calculation is rather tedious (cf. Refs. 12
and 21). It is much easier to write

E =Sos (2v')-'2 f d'pe »' "-Z '(- -)z'"

xf d't (z-n')-', (Av)

where we have used the translation property of the
inverse transform

2,'g(z —a) = e ~ S~'g(z),

and then do the k integral first, using

f d't (.—t ')-'=- -'"(-.)-'/'.

(As)

(AS)

The remaining integrals are trivial, and the re-
sult

Ep= 2&2 wA (Alo)

APPENDIX 8: LOGARITHMIC TERM FROM FOUR
t MATRICES

We require the behavior of Jz(P, z) as P-0 and
z-0. From (52),

follows immediately,
The above calculation illustrates one advantage

that the multiple-scattering expansion has over the
binary-collision expansion. If the later had been
used, the integrals obtained wouM already be in
the form which results when the convolution prop-
erty is applied to our integrals. As we have seen
this is not always the most convenient form for
their evaluation.

Inserting the expansion (2V) in (29) gives

(bq)2=Eqa +Eza + ~ ~ ~,2 3 (Al)

&,(P, z) fd'q d-'s (z - q') -'
s&d 2 la

&&[z —(qz+q ~ s+s')] '(z-s') '. (Bl)
where

E,=3~3(2v') 'fd'nZ '( -Z)' (A2)

3~3 (2 2}22 fde g-l(z E)3 (3 P2 z}1/ 8

(AS)

Using the Feynman identity '

(abc) = 5 2tg dt's f dta

[atqtz+ bt&(1 —tz)+ c(l —t,)] ~, (B2)
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the above integral becomes

f d'q d's f' 2t, dt, f' dt,

x[z —t, tz q s —(1 —t, + t, tz)qz —t, s z]~ . (B3)

The q integration can be done, giving

—4w f ds f tgdtyf dtz
s&d2 /a 0 0

x([4t, (l-t, +t, t,)-t', t,']s' 4(1 ti+titz)zf '
(B4)

&u, (r, k; s ') =j,(kr) —is h',"(sr) t, (s, k; s z), (C10)

which again has the asymptotic form (C9).
From (C3)

&k lt(z)»=(z-k") f d'r«'Ir)

x[(r
I
~(z) Ik& —

& r Ik)]. (C11)

Expanding th.e matrix elements in partial waves,
making use of (C10) and the result

%e now use the result that, as z-o,
f s ds (A.s ' —Bz) ' ' -—-'2 ' ' ln(- a z).

0

Therefore
1

Z, (P, z) - 6~' ln(- a'z) f ' t, d t, f dt,
0 0

(B5)
r' drj, (k'r) h', "(sr) = is-' (s' —k") '(k'/s)',

(C12)

t, (k', k; s ') = (k'/s) ' t, (s, k; s ')

+ (s' —k") f r'drj, (k'r)
x[4t, (1 —t, + t, tz) —t, t~] =+~ w ln(- a z) . (B6)

APPENDIX C: LOW-ENERGY EXPANSION OF OFF-SHELL
t MATRIX

We wish to extend the usual effective-range ex-
pansion of the t matrix to the off-shell case. We
start by deriving a general relation between the off-
shell t matrix and the half-off-shell t matrix.

Introduce the wave operator &u(z) defined by

x [(u, (r, k; s z) —~,(r, k; s )] . (C13)

This expresses the off-shell matrix t, (k, k; s )
in terms of the half-off-shell matrix t~(s k' s )
and the "off-shell wave function" +, (r, k;s ). '
Setting k= s in (C13) gives the relation between
the half-off-shell f, matrix and the on-shell t ma-
trix 9:

ti (k, s; s ) = (k /s) t I(s, s; s )

t (z) = v~(z) .
Using (26),

+(z) = 1+ (z —ho)
' v(u(z),

~(z) = 1+ (z —h,)-' t(z) .

(C 1)

(C 2)

(C3)

+ (s' —k") f "r'drj, (k'r)

x[&,(r, s;s ) —&u, (r, s;s )]. (C14)

&,(r, s;s ) is just the ordinary radial wave func-
tion with asymptotic form

We choose as basis the free-particle momentum
eigenstates l k) whose space representation is

&r$)= (2p) s (C4)

%e also need the partial-wave expansions

&~
~

k) = (2m) Q (2l+ 1)P, (r ~ k) i ' j, (kr),
l=0

(C5)

and from (C3) its asymptotic form is

~, (r, k; s')„-(kr)-' sin(kr- 2 le)—
r-1 si(8r-llrjz) t (s k. s z) (C 9)

&r~~(z)~k)=(2w)-'" Q(2t+I)P, (r k) i'~, (r, k;z),
(C6)

& k
~
t(z)

~

k) = (2w )
' Q P, (k ~ k) t, (k', k; z) . (C7)

l=0

From (C2), w, satisfies the differential equation

d 2 d t(I+1)z+
d 2 + z —v(r) &((r, k' z)

= (z - k')j,(kr), (C6)

to(k', k; s') = to(s, k; s') + (s' —k ")g+ ~ ~ ~, (C 17)

where terms of order (momentum)~ have been ne-
glected. From (C14) and (C17),

t, (k', k; s ') = t, (s, s; s z) + (2s z —k" —k') XD+ ~ ~ ~ .
(C 18}

The on-shell matrix is related to the phase shift
by

t, (s, s; s z) = —s ' e"&" sin6, (s) . (C19)

Thus its low-energy behavior can be found from the
usual effective-range expansions

, (r, s; s )„-(sr) ' e"~'" sin(sr- —,'lm+ 6,),
(C 15)

where 5, is the phase shift.
We require the behavior of the t matrix at low

energies in the case where there are no two-body
bound states or zero-energy resonances. Define

g= lim f" r dr[&'0(r, s;s ) —w, (r, s;s )]. (C16)
s-0

This is identical to the parameter (d'/6) introduced
by Pais and Uhlenbeck. From (C13)

where s=z' and we are assuming that Ims& Q.
%e also introduce the function s cot5, =-a, + , ros +0(s—),2 4 (C20)
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s' cot&, = —3a,'+0(s ), (C21)

t, (k', k; s') = a, —ia', s —[ao (~ ——,'r()) —2XO] s'

where @, a, are the scattering lengths for s and

P waves, respectively, and xp is the effective
range. From (C18)-(C20)

—yo (k"+ k')+ ~ ~ ~ (C22)

and from (C13), (C19), and (C21)

t, (k', k; s ) = —,
' a, k k+ ~ ~ ~ . (C23)

The expansion for the hard-sphere case can be
obtained from (C22) and (C23) by setting ao=a, = a,
tp= 0 and +=68
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