
PHYSICA L RE VIEW A VOLUME 6, NUMBER 6 DE CEMBER 1972

Cavity Detuning and Multimode Operation of an Optically Pumped Gas Laser

James J. Healy and T. F. Morse
Division of Engineering and CeiMex fox callid Dynamics,

J3xocen University, I'xovidence, Rhode Island 02912
(Received 13 April 1972)

In an earlier paper, the problem of the optically pumped gas laser was treated within the
formalism of a modified Boltzmann equation and the equation of radiative transfer. The laser
cavity was tuned precisely to the center of the atomic lasing frequency and only one cavity mode
was excited above threshold. These restrictions are now removed and the effects on the laser
population inversion, gain, and power output are presented. In the limitthat Doppler broadening
dominates collisional broadening, it is found that the power output for the single-mode operation
increases as the laser cavity is detuned, until an optimum occurs when the cavity detuning is
equal to the collisional linewidth. In the limit that collisional broadening dominates Doppler
effects, power output is independent of detuning, until the detuning approaches the collisional
linewidth. For multimode operation, it is shown that power output increases approximately
linearly with the number of modes in oscillation, provided that the Doppler width is much larger
than the collisional width and mode interaction is not occurring. When collisional broadening
dominates, no increase in total power output is achieved by allowing more than one mode to go
into oscillation. Most of these results are well known, for low levels of lasing intensity,
through the semiclassical analysis of Lamb. However, the formulation here provides a more
quantitative evaluation of the relative roles of inhomogeneous and homogeneous broadening for
all collisional linewidths and high lasing intensities.

I. INTRODUCTION

Cipolla and Morse' have employed a modified
Boltzmann equation and the equation of radiative
transfer to describe in detail the interaction of
line radiation with a gas. These equations are
similar to, but more general than, the formula-
tion of Bibermann and Holstein and were applied
to the problem of the optically pumped gas laser
by Healy and Morse. It was found there that one
could obtain a detailed solution for such quantities
as the population inversion, gain coefficient, and
output power in terms of the optical variables,
collision cross sections, and atomic parameters.
The analysis was restricted to the situation in
which the laser cavity was tuned exactly to the
center of the atomic lasing transition, and only one
cavity mode was allowed to be excited above
threshold. More general formulations involving
coupled kinetic and radiation equations exist,
but their complexity almost precludes their use in
seeking analytic solutions to problems where spa-
tial inhomogeneities or nonlinear phenomena ap-
pear. In the present paper, the formulation of
Ref. 4 is generalized to include cavity detuning
and multimode operation. In the following, the
formulation of the problem is briefly reviewed,
and then the case of a single detuned cavity mode
above threshold is considered. The situation in
which two modes are excited above threshold is
treated in detail, and some general conclusions
are drawn for more than two modes in operation.
Finally, comparisons are made, where appropri-

ate, with the earlier work of Lamb. ' It should be
noted that although this study is restricted to the
optically pumped gas laser, if one regards the ex-
citation rate as a parameter of the problem, the
results are then qualitatively applicable to any
type of gas laser.

II. THEORETICAL FORMULATION

Consider a Fabry-Perot cavity formed by two
plane mirrors of depth 2D and length 2L, as shown
schematically in Fig. 1. The lasing gas is con-
tained between the two mirrors by means of trans-
parent walls, and pumping radiation at approxi-
mately the resonance frequency v&0 is supplied to
the laser through these walls. The lasing radia-
tion at frequency v» propagates between the semi-
transparent mirrors, and the cavity dimension 21.
is such that one or more longitudinal cavity modes
lie within the Doppler width of the lasing gas at
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FIG. 1. Geometry of laser.
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Here f,(q„,q, ) is the velocity distribution function for
for atoms in energy level i, with normalization

n, (z) = f" f f, (s, g„,q, ) dq„dq, ;

z is the dimensionless separation of the transpar-
ent plates; v2 is the mean time of flight for an
atom to traverse the distance D;

a-=z /D, —1 ~g ~1; T =D/(2RT )~~a;
FIG. 2. Description of atomic energy-level model.

v2&. The oscillation frequencies of the modes
which are excited above threshold will be approxi-
mately determined by the passive cavity, but fre-
quency-pulling effects cause the actual oscillation
to occur at frequencies slightly removed from
those of the passive cavity. '

In the atomic model adopted here, a ground-
state level and two excited-state levels are pres-
ent, and for simplicity all degeneracies are as-
sumed to be unity. The levels are allowed
to have a collisional halfwidth e„e„andca (see
Fig. 2). For purposes of this work, these widths
correspond to the homogeneous broadening of the
energy levels caused by any process other than
Doppler shifting. For the optically pumped laser,
efficient utilization of the power source requires
that the atomic transition frequency v2p corre-
sponds very closely with the frequency of the
pumping radiation externally supplied, and in ad-
dition, one or more cavity resonance frequencies
must be close to the atomic frequency v». The
optically pumped laser is analyzed because the
complex collision phenomena associated with other
types of lasers are thereby avoided, and one can
obtain a self-contained solution for many of the
macroscopically observable quantities without
making any ad ho@ assumption regarding the rate
of excitation or the atomic velocity distribution
function. The best-known example of this type of
laser is t"s vapor pumped by a strong He emission
line. In addition, the possibility of broad-band
pumping of a N2-CO2 system by sunlight is cur-
rently under investigation.

As discussed in Ref. 4, the governing kinetic
equations may be approximated by

0, denotes collision frequencies for processes
which tend to destroy the population inversion and
result from a relaxation model of the exact colli-
sion integral. Finally, the terms Q„„aresource
and sink terms for atoms in levels m and n due to
emitted and absorbed radiation. If the collisional
linewidths of the m g transition are modeled as
indicated in Fig. 3, then it can be shown that

Q„„(f„)=-
~

dg„„dQf„
~OO 4' 4I

where

„H(W—(r„„—q 1) ) H( W+ (g„„-7l' 1) )
2$' 7

(2)

(N„+t )C
v„„(2ftT„)'"

is the dimensionless collisional linewidth for the

m —n transition,

v-vmn
vmn

C
(2HT )'"

is the dimensionless frequency difference based
on atomic resonance frequency v„„,H(X) is the
Heaviside unit step function, and f„(T)is the photon
distribution function for photons propagating in
direction l. A more realistic model for the line
shape could be used, but the evaluation of the

n. sfa
ez

= (M„-fa) oa+ 4w(Aaa fa+ Aga fg)fOp

n. sf' = (~~, -fa)&i+ &(Aa1fa A1Df1)
72

+ Aai Qai(fa -fi) (1)

&nm

(b)

FIG. 3. {a) True collisional
line shape. {b) Modeled colli-
sional line shape.
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integrals involved would require numerical tech-
niques. The "box" model retains much of the es-
sential physics, and was chosen in the interest of
simplicity. The equation of radiative transfer can
be replaced by two simpler equations, if there is
no overlap between v» and v20, and written as fol-
lows~:

=Da „H„[x(f,)-I'„„&(fo-f)],22

(Sa)
s .a1 = L»a&&2&I&21(fa)+fez&&21(fa-f&)]

(3b)
Here f„refers to photons whose frequency is close
to the mn resonance frequency, and emission pro-
files are given by'

X (f„)=-
C

v „(2RZ' )"'

H(W —(g „-&}~ l))H(W+(f„„-&&'1) )X

(4)
The three kinetic equations and the two radiative
equations comprise a set of five coupled integrodif-
ferential equations, as can be seen from the defini-
tions of Q„„andH . The boundary conditions will
be made as simple as possibl. It is assumed that
atoms leaving a solid surface after a collision are
characterized by a Maxwell-Boltzmann distribution
and that the pumping radiation at z = +1 is given by

III. ITERATIVE SOLUTION FOR GOVERNING EQUATIONS
AND POPULATION INVERSION FOR SINGLE-MODE

OPERATION

As discussed in Ref. 4, an iterative solution to
the governing equations can be obtained which con-
verges very rapidly, provided

I&vm&/kT» 1

and provided that the branching ratio for the upper
lasing level is such that

A„/2 Aa„«l .
The temperature of the laser walls 7.' is assumed
to be uniform, The restriction on the branching
ratio is fulfilled when trapped radiation is not of
primary importance, a situation to be avoided in
a laser to prevent the formation of a, "bottleneck"
in the terminal level.

The iteration procedure has been discussed in
detail elsewhere ' and involves iterating with Max-
well-Boltzmann values for the velocity distribution
functions in the governing equation for the propaga-
tion of pumping radiation. Using the boundary con-
ditions (5), the zeroth-order solution for f~m& is
then quickly found to be

f e&'= ~ 5(1+1,) exp[- p &22-S(1+z)e ' 2»& ] .
(~)

The + superscripts refer to pumping radiation
propagating in the + z and —z directions, respec-
tively, and S, the equilibrium optical depth, is
given by

y0f„(z=+1)= 6(1+1,)e 2 'h& . (6)
S=-FT2C A&6/2M&& vaa .

f~,=~.I"6(r.) &(1+I„), (6a)

where J is related to the energy in the mth mode
and each J must be self-consistently determined
later in the analysis. The oscillation frequency of
the mth mode is P „,and the frequency separation
between two adjacent longitudinal modes is given
by

C C
tm+ f~ 4L v (2RT )172 4c &

(6b)

where v» is the frequency of the unbroadened
atomic lasing transition and I. is the length of the

laser.

That is, the pumping radiation supplied to the laser
is highly collimated and is Gaussian in frequency.
The Doppler width of the lasing gas divided by the
bandwidth of the pumping radiation is defined as P
and it is assumed that P «1. The lasing radia-
tion for the m modes which are excited above
threshold is written

This solution for f„'2& together with (6) for f„„can
now be substituted into the definition (2) to find
q&'& ~d q&'& 4:

Qg &4»I»'c sho( &)1ze ', (6)
-n2where y, -=Se " z, and Qg& is the number of photons

in the 2-0 line capable of being absorbed by an
atom with velocity g, . The case is now considered
in which only one mode is excited above threshold,
and the lasing frequency is not identical to the
cavity resonance. Equation (6a) may be rewritten
as

f "&=I'6(~')6(1~1 ) (Qa)

C4v
t 21 021 4' ~ 0 v (2RT )1/2 (9b)

and b v is the difference in frequency between the
center of the atomic transition and the actual lasing
frequency. Using (Qa), the following result for
Qg& is obtained:
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+«b-
I e I+~.»(b+ le l-~.)], (10)

with

b =- ((.', + ea)C/()21(2RT~)'"

as the dimensionless collisional linewidth for the
lasing transition. The expressions for Qa(00' and Q.,'", '

are now substituted into the kinetic equations (1)
and the solution is found as in Ref. 4:

4)( () I Aao M~p e '[4(((A10 -Aa1) + o 1] coshIL2
[4(T(A20+ Aa, ) + oa ](4wA10+ o1) + [4() (A10+ Aao) + 01+&xa]A21Qa(1)

An expression for the population inversion is found from (11) by integrating over velocity space, and the
result is

16M(( e 'I A Ã[40'(A, -A, )+g,]cosh@ f b
I I~

erf(b+ Ipl) —erf(b —l(t)i)
[4)T(A~, +A21) + oa](4vA10+ o1)$(21n$)' ' + XO

e'e-e,"'= '' e ( ' " " '")"',~™-(ee)e(ee) )) eer)()
~

()e-
[4()'(Aao+ Aa1) + o'2](4&A10+ o1)$(2 lnS)

+
erf(l y I + b) —erf(i y I

—b) —b
+ XO

where

((A21L [4(T(A10+Aap)+ o1+ oa]
~(A20+ A21) + &2](40A10 + 01)

The following observations on the population inversions should be noted:

16)( () e 'I Aaoh[4()'(A10 -Aa1)+ o1]coshz
L 0

' ' $(2»$)'"[4(l(Aap +A'21+ 02] (4(TA'10 + o1)'

(12b)

This expression is independent of both detuning and collisional broadening and is identical to the expression
one obtains for an optically pumped slab of gas without end mirrors. For zero collisional linewidth,

( (1) (1)) 16))me I A20 %[4(((A10—A21) + o1]cosha
S(2 lnS)" 2[4(((A20+A21) + oa](4((A 10+o, )

' (13b)

Thus, regardless of detuning, the lasing frequency
is unable to interact effectively with the excited
atoms if there is no broadening of the lasing tran-
sition. 4

Finally, the following may be obtained:

much larger than either the Doppler width or the
collisional width of the lasing transition, then there
is no effective cavity feedback, and the population
inversion again approaches that for an optically
pumped gas slab of zero collisional width.

lim (na
' —n1 ')= lim (na

' —11I ').
Q

~ oo0 (III) )&b b Oy40
b40

(13c)
IV. GAIN. LASING INTENSITY, AND OUTPUT POWER FOR

SINGLE-MODE OPERATION

This shows that if the detuning of the cavity is very
I

From Eqs. (3b) and (4), the gain of the laser for
l„=+I may be defined as follows:

(1)( ) „() 4I0A2()l)ILCaA21[4(((A10-A2, ) + 01]
ale 2 ~21 21 21 2 1 ~~b 2 (2RT )1/2lT Ppg 0

-g -~2
dq, cosh', ze 'e "~

d1l„H(b+ g21 —n„)H(b—021 + 11„)e"&

„[41((A20+A 2, ) + aa](4((A10+ o,) +A 21 go, [4(((A 20+A10) + o1+ oa]

Us1ng Eqs. (Qb) and (10), the following symmetry
properties are easily proved for the gain:

G(y) = G(- y), G(&21) = G(- &21),

G(l„=+1;fa, ) = G(l„=—1; —F21),

G(.) = G(-.).
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Thus, in evaluating the integrals in (14) only l„=1,
0 &

$2& «, and 0 & (((( «need be considered. All
other cases can be found from (15).

The integration over g, has been treated else-
where. ' The integral over g„is complicated by
the fact that it can take on a large number of ana-
lytical forms, depending on the relative magnitude
of b, ((((, and Kp, . The results will be presented
only for the cases of greatest physical interest.

G "(K(n; L; b; P)
G' '(0;0;b; Q)

(18)

After a large amount of tedious but elementary
manipulation similar to that in the Appendix, the
following results are obtained:

A detailed example of the evaluation of the integral
in one particular case is given in the Appendix.
A normalized gain is defined as follows:

G=I'" '+~")+'"'
2 erfb (1+xo) erfb (1+2x,)

(17a,)

rrf(b r( ) r rrf(b —(„( rrfib r () —rrf(b r (()
2 erfb (1+xo) 2 erfb

erf b —f» +erf b —
I I erf b+ ( (

—erf b —
I I erf b+f» —erf b+ )

2 erfb (1+ 2xo) 2 erfb (1+xp) 2erfb
(17b)
(1Vc)

erf(b+ t'2, ) +erf(b toy) 2b+
I I

- &oi-2erfb
(17d)

Equations (1Va)-(1Vd) all apply to the case I P I

& b

Similar sets of formulas are found for the cases
b & I(b I

& 2b and 2b &
I + I

& ~. The expressions for
the latter two cases are given in the Appendix. The
physical content of these expressions is shown in
Figs. 4-8. As L -0 (no lasing action), the gain
always becomes independent of detuning. For a
given lasing intensity and collisional linewidth much
less than the Doppler width (b «1), the gain has a
"hole" which is centered on the actual lasing fre-
quency I fp, I

= P. Thus, as @ increases from zero,
the hole moves out from the center of the gain
curve (t'2, =0). Eventually, for g» 1 the hole is
far out in the tail of the gain curve, and lasing
action will cease. For collisional width much
larger than the Doppler width (b» 1), the hole dis-
appears, and for a given lasing intensity, the value
of P is immaterial, provided P & b (see Fig. 8).
The physical reason for the behavior is clear when
one recalls that the "hole" is caused by the fact that
only atoms with a limited velocity range can inter-
act with the lasing radiation when b«1, while all
atoms can interact when b» 1.4 Thus when b «1,

I

detuning the cavity causes the frequency difference
between the cavity resonance and the atomic reso-
nance to become larger, the region of velocity space
with which atoms can interact is shifted, and the
hole moves toward the wings of the gain curve.
For b»1, all atoms can interact with the lasing
radiation, unless P becomes so large that the
lasing frequency corresponds to the tail of the gain.
For Q & b, however, the gain will be insensitive
to (I&.

Consider now the effect of detuning on power
output for single-mode operation. First, the
self-consistent value of the lasing intensity L will
be investigated by requiring that steady-state gain
equal steady-state loss, at the lasing freuqency
given by K2, =Q. ~o Thus

G(C„=y) -=—,'f, (18)

where e f is the fraction of photons which survive
one trip along the laser axis in one direction, when
no amplifying medium is present. From (14), (17a),
and (18) the following results may be obtained:

f 27(e I A2g[41T(Agp Aag)+op] L ((po erf(b+ Ig I) —erf(b —
I Pl ) 2erf(b —P)

2 b(21nS) ~4(((A2o+A2t) +op](4((Aso+os)»m 1+XO

f 27(e IA2, [4(((A~o-Ap, )+(xi] I ~vo erf(b+ IP I)+erf(b —
I PI)

2 b(21n8) [4&(App+A2g) + op](47(Ago+ o'~) D v2 1 + xp

(19a)

(19b)

From either of these equations, the threshold pumping intensity I may be obtained by setting xo ——0 and
solving for I . For a specific value of (I( the pumping intensity at which lasing action can begin is given by
I . Thus (for @=0),
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IQ(LQ 0) I fb(21nS) [4'(A»+AQ~)+Q'~](47fA~Q+o~) D v»
4ve 'A»[4Q&„-A»)+o,l[erf(b+ I&I)+erf(b —lp l)l L v„ (20)

As p- ~ with b fixed, the threshold pumping intensity also increases without bound showing that if the cavity
resonance is far removed from the atomic resonance, lasing action is essentially impossible. As $-0,
Eq. (20) reduces to the corresponding expression in Ref. 4. From (19) and (20), the self-consistent lasing
intensity may be obtained as

b[4Q(A»+A»)+op](4QA, Q+o~) 2merf(b+ I/i)
AmAa, (4~(A, D+Azo)+rr, +rr~l erf(4+14))+erf(4 —IAI))

2merf(b+ ~g I)—1+ 1+8 m —I 3- (21a)

LQ b[4Q(A»+AQg)+oQ](4' fp+(7f)
m —1 JobvA„[4Q(A„+AQQ)+o,+o,] (21b)

where m=I/P, m~ 1, and m is dependent onboth
b and P.

Knowing the self-consistent value of L, the ex-
pression for the'coherent power output per unit
area at each cavity mirror can now be written4

q,„,=4Qhv»(2RT„)~~ TL /CP (22)

where T is the fractional transmission at each
mirror. The effect of cavity detuning on output
power can be investigated with the aid of (21) and
(22). For P =0, using (21a) it may be shown that

Q b[4Q(A»+AQ, )+oQ](4vA~Q+o, )
)

() 2QAQ'[4Q(A, Q-AQQ)+o)+oQ]
(23a)

while from (21b),

b[4v(A»+A»)+o, ](4»fQ+og)
( 1)lim L'=—

7)'AQ'[471(A'Q+A»)+op+op]

(22b)
Thus, if the pumping intensity I is appropriately
adjusted to maintain m fixed, the power output from
the laser always increases as the laser is detuned
from the line center, until P=b. Further detuning
will then cause the output power to decrease, as
can be seen from (21b) and (20).

For fixed I, the analytical expression for the
variation of LQ as P is varied is cumbersome and
the behavior is illustrated on Fig. 9. All curves
in Fig. 9 are arbitrarily normalized with respect
to the poweA'output atb=5and /=0. Figure 9
also shows that for a fixed I, there exists an op-
timum value of the collisional linewidth b, and
this optimum is dependent on both I and P. For
/=0, the optimum value of b has been derived
elsewhere. 4 For small values of b, P' is essential-
ly independent of P and there is almost doubling of
power outputas P is varied from 0 tob. For
b» 1, power output is essentially independent of P
until P = b. For intermediate values of b, the power
will increase with detuning provided (~/~) I p-Q» 1.

For (I'/I*) Ip Q
—1, detuning will cause I* to in-

crease and this will tend to hold the power output
constant as p is increased.

These predictions are essentially the "L™
dip, " ' although in the present case the theory
is valid for all values of the collisional linewidth,
whereas Lamb's theory is limited to situations in
which the only source of broadening is radiation
damping, which is normally much less significant
than either Doppler or collisional broadening.

V, POPULATION PERVERSION AND GAIN FOR BIMODAL
OPERATION

In general, if IQ/I*»1, and if either the Dop-
pler or collisional width is larger than the fre-
quency separation between longitudinal modes,
it is possible that more than one cavity mode
may go into oscillation. This will be discussed
in detail for two cavity modes in oscillation, and
the situation when three or more modes oscillate
will be qualitatively described.

For two modes above threshold the location of
the lasing frequencies, neglecting frequency-

1.0—
A3

ZO
g o08
O=
Ld~ —0.6

Xl
~O

0~~OA
Z

0,2

—2.0 —I.5 —I.O -0.5 0 0.5 I.O 1.5 2.0 2.5
4ai-

FIG. 4. Norma1ized gain for 5=0.2; /=0. 0
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FIG. 5. Normalized gain for b =0.2; /=0. 1. FIG. 6. Normalized gain for b =0.2; ft) =0.8.

pulling effects, will be as shown in Fig. 10. As
before, (3& = 0 defines the center of the atomic
resonance line. In general, the two lasing modes
will be displaced from the center at r @= Qo and

L@= —Q, as shown, with Qc= $0+ Qq. The separa-
tion between the two lasing modes is given by
Eq. (6b). From Eq. (6a) for the himodal opera-
tion, f„becomes

f„=[L'5(~Q+L'5(~& )]5(1 ~ &,)

=[Lob(g@ -(f&0)+L 5(g~+ Qg)] 5(1+1„);(24)

substituting (24) into (2) yields

LP
I:H(b le, l-n.»(b-leol n.)

H(b l@ I q)H(b ly l &)]

~, [H(b-l&,
l
-~„»(b,ly l+n. )

mL

+H(b —
l yg l

+q„)H(b+
l yg

l

—7/„)], (25)

where Qpp is given by Eq. (8), and the solution
for ( f~" -f,"') is given as before by Eq. (11),
with (25) replacing the earlier Eq. (10). When
the distribution functions are integrated over
velocity space, there are three independent pa-
rameters to be considered, $0, Pc, and b. The
analytic expressions for (n~

' -nq") for all rela-
tive magnitudes are too lengthy to be given here,
and only some of the most significant cases are
considered:

16&me I A ~ON [4w(AfQ+Ag$) + (7$ ] Cosh(g)
[4p(Ag)+A @)+ (rg](4' g p+ og)S(2 lnS)'~ (26)

where I is given by

erf(b+ I P, l) -erf(b+P, ) erf(b+ I g, l) -erf(b —
I @,I)f=erfc(b+ ly, )+ +

1+xo 1+xo+ xg

er (b —
I @,I) -erf(b —

I p, i) er (b —
I p, i)

1+xo+2xq 1+2xo+2xq

erf(b+ I g, l) -erf(b+ I g, l) erf(b+ I@&i)-erf(b —
I @,I)I=erfc(b+ Qo )+ +

1-'xo +Xp+ Xg

(26a)

I= erf(b —
I P~l) +1+2'

-f(b-l~. l).-f(b-le. i) "f(b-le.l) „,2b b.
l

1, 2b 26h

+ erf(9b —
l
@,l) —erf(b+

l y, l)1+x)

f (11b —
lQ l), Q =10b, g Q, 0 Q b (26c)

+ XQ

where

vA@L [4w(Aqo+AM)+ ol+ o'q]
Xg b[4w(A~+A~)+ era] (4vAgo+ og)

and xp has been defined earlier. In all cases, the
expressions for nq-nq reduce to Eq. (18a) as
L and L' both go to zero. Similar expressions
for other values of Qp Qg and b can easily he
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found by constructing diagrams as in the Appen-
dix.

From Eqs. (14) and (25), the gain for the bi-
modal operation can be determined. Again re-
sults are given only for the more significant
cases:

G (g»,'L';L imp'4iib)

I c'
,

( ),
~ i

(f -f)~(b-& +n.)

G"'(~»;L'; L'; ~p; 'bi; b)
G"'(0; 0; 0; gp,'Pg,'b) (28)

First consider the situation where the collisional
linewidth is larger than the frequency separation
of cavity resonances (b & Pc). As an example of
this situation we choose Qg= 0; Pp= Pc, Pc & b.
Then

x~(b+g» -q„)dq„dq,, (27)

and, as before, a normalized gain coefficient is
defined

erf(b)+erf(b —&») —2erf(b —(f&c) 2erf(b 4c) erf(b+~»)
2erfb (1+xp+ 2x') 2erfb (1+ 2xp+ 2x&) 2erfb (1+xp)

erf(b-yc)+erf(b -g») erfb —erf(b -pc) erf(b+4c) -erfb erf(b+g)»-erf(b y+)
2erfb(l+2xp+2x~) 2erfb (1+xp+2x') 2erfb(1+xp) 2erfb

+ . + + , ~c-

erfb+erf(b —g») erf(b+Pc) —erfb erf(b+K») -erf(b+Pc)
2erfb (1+x,+ 2x&) 2erfb (1+xp) 2erfb

erf(b+ Pc)+ erf(b —f») erf(b+ f») —erf(b+ Pc)
2erfb (1+xp) 2erfb

erf(b+ f»)+ erf(b —g»)

(29)

Equations (29) are plotted in Fig. 11 for b»1.
Since all atoms are capable of interaction with the
lasing radiation, there are no distinct holes, and
the two lasing frequencies are competing for the
same excited atoms. In Fig. 12, Eqs. (29) are
plotted for b = 0.4, and since not all atoms are now
capable of interaction with the lasing radiation,
hole burning is evident. However, the holes over-
lap since Qc & 4 b, and the two lasing frequencies
are still in competition for the same atoms.

Consider now the situation in which gc&4b, and
as an example let Q'= 0, Pp= Pc. For this case the
following may be shown:

I.O—

CL

O08-
K
UJ

O
a. 0.6—
O
4J
N
~ 0.4—
X
R
O

0.2—

I

-6

b=

b=5

erfb+ erf(b f») erf(b+—f») —erfb
2erfb (1+ 2x&) 2erfb

FIO. 9. Normalized power output vs detuning for
fixed I . Q' /I+)e 0, b 5
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operation.

O&g„&2b

erf(b+g»)+erf(b -0»)
2 ( (

2erfb » c

erf(pc —b)+erf(b —f») erf(b+5») -erf 4('c —b)
2erfb 2erfb (1+x, )

yc —2b -(lag 4c—
erf(pc+ b)+ erf(b - f») erf(b+ 0») -erf(pc+ b)

2erfb (1+xo) 2erfb

c(I »( 4c+2b

erf(b+ f»)+ erf(b —g»)
2erfb

Equations (30) are plotted on Fig. 13 for b «1. The
holes due to the two lasing lines are now distinct,
since each lasing frequency is interacting with a
different group of atoms. For b»1, Eq. (30) be-
comes identical to Eq. (1V) for Q = 0. This is be-
cause for gc band b»1, —the lasing line at r»=pc
is far out in the wings of the gain curve, where the
gain is very close to zero even with no lasing.
Thus for practical purposes, bimodal operation is
not possible for Q &cb with b» 1.

VI. POW'ER OUTPUT FOR BIMODAL OPERATION

The self-consistent lasing intensity is found as
before by equating the saturated gain at each lasing

0.25—

I

-2.0 —I.5 —I.O -0.5 0 0.5 1.0 I.5 2.0 2.5
42(-

FIG. 12. Bimodal normalized gain; &=0.4; fIP), &-0;
/~=0. 4; xp=@)=2.

frequency to the cavity losses at that frequency.
situations in which Pc ~ 4b, there is no interaction
between the lasing lines, and the intensity of each
line is independent of all the others. From Eqs.
(30), for example,

4me ~I Ap, [4m(A~-A»)+cr, ]
2 b(21nS)~~ [4m(A~0+A»)+cq](4', O+cq)

(31a)

with one line at f3~= 0, and

f 2me ~I A [4m(A, O -Aa, ) +(r, ]
b(2lnS)'~+4m(A0+A„) + ca](4',O+ c,)

&&
—

I

— '- (31 )
~vlcc erf(pc+b) —erf(yc —b)
Vag) 1+xo

with the other line at t'» = pc. The solutions for
and I- are then identical to Eqs. (21) where the

appropriate value of m is fixed by the location of
the lasing lines. However, if 4b(gc«1, then
I. and 2J are essentially equal, and the total ener-
gy stored in the lasing modes is almost triple the
amount stored for single-mode operation at g~, = 0.
Thus the output power will also be approximately
tripled in this case. Figure 14 illustrates the sit-
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FIG. 13. Bimodal normalized gain; 5=0.1; /&=0;

pc= 0.6; xp -x( = 2.
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uation where b «1 and two modes are detuned so
that they are as close together as possible without
being in competition. This situation would yield
the maximum power output for bimodal separation
(with b «1) and the total power is almost double
that for a single detuned mode with the same value
of b. (t)c) 8b is a necessary but not sufficient con-

dition for nonoverlapping holes.
The situation when Pc & 8b is more complex since

now there is always some degree of competition
between the lasing modes for the same excited
atoms, or in terms of hole burning, the holes par-
tially overlap. Using (29) as an example, we find

(e.- b):

2'((e I Ao t4(((A1o —
o ) +v1] I (voo (2 erfb —2 erf(b —

Q ) Rex'f(b —$ )
i

2 b(2lnS) [4(((A((o+Ao1) +o'o](4((A1o+ c', ) D )(v((1 i 1+xo+2x1 1+ 2xo+ 2x, I
(32a)

at g„=o,and

f brs 'r'Aar(4a(Ars-ks, )arrr)
L)~ ~v))' Rar)(b —ba) ar)b —ar)(b —bs) sr)(baba) —sr)b)

2 b(21nS) C47((Aoo+A») +Co](4((A1o+ c,) D (vo, & 1+2x()+ 2X, 1+xo+ 2x1 1+xo

(s2b)
at g»=pc. The solution of these simultaneous equation leads, in general, to a quadratic for xo or xi.
Defining m=I /I, where I is given by (20), Eqs. (32) may be written

2 erfb —2 erf(b —(t) c) 2 erf(b —Pc) erf(b+ (j))c) + erf(b —(t) c)+ g„=o
1+Xo+2x1 1+ 2x0+ 2X1 m

(33a)

erfb —erf(b —(I) c) 2 erf(b —(t) c) erf(b+ (I)c) —erfb erf(b+ Pc) + erf(b —(t) c)
— -'=--+ =— — '- + F21 4C '

+XO+ 2X1 1 + 2XO+ 2X1 + XO m

For $ «c,bEqs. (33) reduce to

Xo+X1—- —,'(m —1) .
Taking the same limit as in Eq. (21a) one finds, for
single-mode operation, that

xo=-, (m-l) .
Thus when pc «b, the total power output from two
oscillating modes is equal to the power from a sin-
gle mode. This is physically reasonable, since in
this limit there is strong competition between the
two modes for all of the available excited atoms,
and practically no further excited atoms are brought
into play if the second mode goes into oscillation.

For (I))c=b, Eqs. (33) reduce to

2 erfb erf 2b

1 +XO+ 2X1
) (35)

erfb erf2b -erfb erf2b
1+X()+2X1 1+X() Bl

Solving for xo and x1, the following results may be
obtained:

Thus the detuned mode will tend to extinguish the
mode at the line center when b «1 and (I)c- b.

For more than two modes in oscillation the fol-
lowing conclusions can now be drawn: When (t)c ) 8b,
b «1, each mode may interact with a separate
group of excited atoms, and the power in each
mode is then equal to the power which would be
available if that mode alone were in oscillation.
When Pc & Bb, there is always some degree of in-
teraction between the oscillating modes, and for
n modes the total power is less than that for ~ non-
interacting modes. Furthermore, when (t)c & 8b

there are situations in which the equations corre-
sponding to (32) indicate that multimode operation

l.O—

0.8—
G

0.6—

X1 =m(2erfb —erf 2b)/erf2b,

xo= 2m[erf2b —erfb]/erf2b —1.
For b»1, these become

x, =m, x()= —1 (pc=b).

(36a)

(s6b)
0.2—

I

-2.0 - 1,5 -1.0 -0.5 0 0.5 I.O ].5 2.0 2.5
Lzi-

Thus for Qc = b, bimodal operation is impossible
when b»1. For b «1, Eqs. (36) become

FIG 14, NOX'mRll. z)ed gMD 5 = 0 05' f g
= 25' ft)p = 65

xp=1. 7; x(=2.0.
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is impossible due to mode competition effects. An

exhaustive study for any given combination of b,

go, and Pc would require the evaluation of the in-
tegrals for the gain. The gain would subsequently
be equated at each lasing frequency to the cavity
losses. For n modes this generates, in general,
an nth-order algebraic equation whose solution
will indicate under which circumstances two or
more modes can simultaneously oscillate. The
present work has attempted to illustrate some of
the more significant cases.

VII. CONCLUSIONS AND COMPARISON WITH WORK
OF LAMB

It is of interest to compare the results of the
present study with an earlier work of Lamb. 7 Al-
though both papers deal with detuning and multi-
mode operation, there are considerable differences
in formulation and method of solution, so that di-
rect comparison in some cases is impossible. In
Lamb's work the analysis is not restricted to an
optically pumped system, but the rate of excitation
is an unknown parameter of the problem. The
only source of line broadening is radiation damping
and the validity of the results are restricted to low

levels of lasing intensity. Finally, the role of
atomic motion is incorporated in an ad hoc fashion
since the velocity distribution is not part of the
self-consistent solution of the problem. On the
other hand, by retaining the phase of the electro-
magnetic field, and by introducing a quantum-
mechanical treatment of the excited population,
Lamb's treatment is capable of making rather re-
fined predictions on a number of important phenom-
ena, which are intrinsically unobtainable here
(frequency pulling and mode locking, for example).

The situation which Lamb refers to as the Doppler
limit is essentially the case in which the line
broadening due to radiation damping is much less
than the Doppler width. Most of Lamb's results
apply to this situation, and the corresponding limit
in the present work is b «1.

In this limit for single-mode operation, both

approaches predict that the threshold for the onset
of os "illation increases with cavity detuning in
proportion to e~ . In addition, both find that the
power output passes through a local minimum
when the cavity is tuned to the center of the atomic
resonance, and that this effect will disappear as b

becomes larger.
For multimode operation, Lamb distinguishes

between two possible situations: "weak coupling"
and "strong coupling. " For weak coupling two or
more modes can coexist in stable oscillation, while
for strong coupling there is a tendency for one
mode to suppress the other. Weak coupling is
favored in the Doppler limit. Again, a similar
picture emerges from the present work. For
b «1 and Pc 8b, -two or more modes usually in-
teract with separate excited populations and will
not interfere with each other Fo. r Qc &4b, some
degree of mode competition will always occur, and

there are situations in which one mode will suppress
the other entirely. Thus the situation gc) 8b,
b «1, and nonoverlapping holes may be identified
with the weak-coupling case, and pc & 8b or b» 1

with strong coupling.
In the present work, the neglect of the phase of

the radiation means that frequency-pulling or fre-
quency-locking phenomena cannot be treated.
However, the frequency pulling could be found to a
good approximation by first assuming that oscilla-
tion occurred at the cavity resonance. One would

then evaluate the gain as has been done here, and

use the Kramers-Kronig relations to calculate the

phase shifts introduced by the active medium, as
was done by Bennett. '

In conclusion, it seems that using kinetic equa-
tions and the equation of radiative transfer to de-
scribe the gas laser is conceptually and mathe-
matically simpler than the semi-quantum-mechan-
ical self-consistent field approaches and provides
similar results within its domain of applicability.
Further, the method is not restricted to low levels
of lasing intensity and provides a clear description
of effects due to line broadening and atomic mo-
tion, through the velocity distribution function.
Ultimately, however, the kinetic approach may be
most fruitful in applications in which a flow pro-
cess is intrinsic to the lasing activity, as, for
example, in gas dynamic and chemical lasers.
The kinetic description seems particularly ap-
propriate here, and this type of problem will be
treated in a forthcoming paper.
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APPENDIX: EVALUATION OF SYSTEM GAIN

We are interested in the behavior of the integral over n„in Eq. (14) of the text .Thus, we have

dq„a(b+t.„-q„)a(b-g„+q„)e"
I 4a (Aap +Aal) + oa H4pAlp + o1) +A a)Qal [47)(A ap +Ay p) + oy + oa ]

I 0

[&(b -
I
el-~.»(b+

I
e I+~*)+&(b- I@I+~.)ff(b+ @

I

-~.)].
(Al)

As an example we will consider the case where I )t) I
( b and 0 (

I ga, I
(

I )t) I . The behavior of the various
Heavisidefunctions in this particular case is shown in Fig. 15. Thus for 0(

I &a, l(I PI(b, we have
-(b-y )

I= d'g~ 8

, [4))(Aap+Aag) + oa](4aAgp+ o)) + ()TAagL /b) [4))(Aap+A) p)+ op+ oa]

~b 4 -n2
d'g~ 8

) [4))(Aap+Aas )+ oa](4pA&p+ ot) +(2pA»L /b) [4)T(Aap+Alp) +ok+ oa ]

~ b+fg -n2
d'g~ 8

[4v(A ap+A») + oa H4aA1p+ o1) + ()TAalL /b) [4a(Aap+A1p ) + o1+ oa]

where

erf(b+K~)+srf(b —)~~) —2erf(b —p) Rerfp —y)
)2[4'(Aap+Aag) + oa] (47)Agp+ 0'g) 1+x 1+2x

0 pb
vAa&L 47) (A]p+Aap)+ o'i+ oa 2x:

b [4))(Aap+Aa)) + oa](4))A,p+ og)

(A2)

For L = 0 and fa, = 0, (A2) reduces to

1(Lp=o; g»=0)= v a2erfb
2[4))(Aap+Aai)+ oa](47)A&p+ o&)

'

From (A2), (A3), and the definition (16), we can then write

erf(b + pa&)+ erf(b —f„)—2erf(b —Q) erf(b -Q)
2 erfb (1+x) erfb (1+ 2x) '

(A3)

which is Eq. (17a) of the text. The evaluation for all other values of faq, P, and b proceeds in a similar
fashion.

For b (
Q (2b, we find

erf(b + f») + erf(b f») —2—erf()t) b) erf(p —b)-
2erfb (1+x) erfb

For )t) ~2b, we find

erf(b+)») —erf()t —b) erf(Q —b)+erf(b —ra~)
2erfb (1+x) 2erfb

G= erf(b + P) —erf(La, —b) erf(b + pa, ) —erf(b + Q)
2erfb (1+x) +

2erfb

G= erf(f a~+ b) —erf(f» —b)
2erfb

erf(b+gaq) -erf(fa, —b)
2erfb

erf(ga, + b) —erf(P —b) erf()t) —b) —erf(L —b)
2erfb (1+x) 2erfb

erf(b+ p) —erf(f —b) erf(b+ Kaq) erf(b+ &f&)-
2erfb (1+x) 2erfb

erf(b+ r.„)-erf(g„-b)
2erfb

2b —
&f& fn-

0 -'&ai-'2b+ 0

2b+P (fa&(~.

0-'(»-' y —2b

2b+Q ()' (ao
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Low-Temperature Expansion of the Third-Cluster Coefficient of a Quantum Gas
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The low-temperature behavior of the third-quantum-cluster coefficient is investigated using
the multiple-scattering form of the binary-collision expansion. For hard spheres and Boltz-
mann statistics we find

bs 2(a/Z) ———
q v 2 w(a/)J —'3 (4~ —Sea ) (a/X) ln(a/X) +0((a/X) ),

where a is the sphere diameter and g is the thermal wavelength. The first hvo terms were
obtained some time ago by Lee and Yang and by Pais and Uhlenbeck. The occurrence of a
term of the form g - le was predicted recently by Adhikari and Amado. The expansion is
a1.so given for Bose-Einstein and Fermi-Dirac statistics, and for the case of an intermolecu-
lar potential without bound states. The limitations of such low-temperature expansions are
discussed.

I. INTRODUCTION

For a classical gas, the cluster coefficients 5,
(and hence the virial coefficients) can be expressed
as integrals over functions of the two-body poten-
tial. Thus their evaluation involves a series of
quadr atures.

In the quantum case, the connection between the
cluster coefficients and the intermolecular poten-
tial is not nearly so direct. Only for the second
coefficient b~ is there available an exact expres-
sion' which allows its computation over a wide
temperature range. There exist formal expres-
sions for the third and higher' coefficients,
but these have not as yet been used for any exten-
sive calculations.

The limiting case of low temperatures has been
studied using the binary-collision expansion and
the related pseudopotential method. ' For the hard-
sphere gas Lee and Yang" evaluated b, as a series
in powers of a/X as far as the term in (a/&) . [a
is the sphere diameter and X= (2vh /mkT)'~ is the
thermal wavelength. ] Pais and Uhlenbeck'~ ex-
tended this to the term in (a/X) for bs. From this

it might appear that we have the leading terms of
an expansion for b, in powers of (a/X). However,
Adhikari and Amado' have recently shown that the
low-temperature expansions of cluster coefficients
higher than the second'5 involve ink as well as
powers of X. In particular, the third-cluster coef-
ficient (for Boltzmann statistics) has the expansion

b, = c, /X'+ c, /) '+ c,(inn)/) '+O(X '),
where the c, depend only on the hard-sphere diam-
eter, or more generally on the two-body g-wave
scattering length. The coefficient c3 can be found
from the leading terms of the binary-collision ex-
pansion, and we shall present its explicit calcula-
tion below. However this is as far as we can go by
present methods. The evaluation of the coefficient
of the A. term involves a solution of the full three-
body problem, and this is a calculation of a higher
order of difficulty.

It should be mentioned that other quantities re-
lating to many-particle systems have logarithmic
terms in their expansions. In particular, the low-
density expansion of the ground-state energy of a
system of bosons'6 or of fermions'~' contains a


