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We calculate the two-photon exchange (retarded van der Waals) potential between neutral
spinless systems, including the effects of highex partial waves in the atom-photon scattering
amplitude. This is equivalent to including higher multipoles in the interaction of the charges
in the atoms. We show that this potential can be expressed as an infinite series of terms,
with coefficients that can, in principle, be measured in atom-photon scattering. The be;
havior of the various terms, at small separation and large separation of the system, is dis-
cussed. We show that the leading term in the contribution of each multipole has the property
that it has one more power of R in its large-R behavior than in its small-R behavior.

I. INTRODUCTION

A recent analysis' has shown that the two-photon
exchange (retarded van der Waals) potential be-
tween spinless atoms can be expressed in terms of
the scattering amplitudes for photon-atom scatter-
ing by the individual atoms. An exact expression
for this potential has been given, involving an inte-
gral over these amplitudes, evaluated at positive
photon energy, and at positive, and therefore un-
physical, momentum transfers. In the previous
analysis, it was shown that when the dependence of

the scattering amplitude on momentum transfer was
neglected, the potential could be expressed in
terms of the atomic polarizability evaluated at
real frequencies, a quantity directly measurable
in photon-atom scattering. The approximation so
made is equivalent to neglecting all partial waves
other than s wave in the photon-atom scattering
amplitude. The result obtained is an extension of
the retarded van der Waals interaction of Casimir
and Polder, generalized to include magnetic ef-
fects and relativistic effects.

In the present work, we shall retain the depen-
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0 0

dK, K„p„"„(K„)K,p„'.(K, )

dfe 2 P„(fR)
(g2 K2){)2 K2) t ( ' )

where the notation is as in FS with the addition that
p„"„is defined by

1m' „"(K„,f) =Z p„"„(K„)f".

Another form, analogous to (1.5) of FS is

V„„= 4 &~ 2(„, ) fR P„ f dK f(2KR)

xfReP„"„1m'„' +1m'„"„ReS,„]}. (1.2)

dence of the scattering amplitude on momentum
transfer t and show that because of the analyticity
of this dependence for small t, it is possible to ex-
press the van der Waals potential as an inverse
series in R, with coefficients which are again quan-
tities that are measurable in photon-atom scatter-
ing. The corrections to our previous result can
be identified for small 9, as higher-multipole
(e. g. , dipole-quadrupole, quadrupole-quadrupole,
etc )c.ontributions not included in the Casimir—
Polder theory. At large R, these terms then give
the retarded form of the higher-multipole correc-
tions. We therefore arrive at a compact form,
valid at all separations, and containing all the con-
tributions to the van der Waals potential. This
form can be expressed in several ways, as is the
case when we neglect the dependence on momen-
tum transfer. One form, analogous to Eq. (1.3)
of FS is given by

d2(n+ m)
~-5

4 2R dR2(n+m)
n, m=0

In Sec. IV, we discuss the possibility of obtaining
the F„„from various measurements. Finally, in

a series of Appendices, we consider in Appendix A

the analytic properties of the atom-photon scatter-
ing amplitude, in Appendix B the relation between
the E„„and the multipole polarizabilities, and in

Appendix C we present an explicit calculation of
some of the V„, „ for two hydrogen atoms.

II. DERIVATION OF THE GENERAL FORMULAS

To fix our notation, consider the scattering of
a photon by an atom. If we neglect recoil of the
atom, we can write the scattering amplitude as

~= K'~, e,'[F,5, +. F„(5, K', S—C, )](-1/Sv) .

Here t. and q' are the incoming and outgoing po-
larizations, K and K' the incoming and outgoing
momenta (K=

~ KI =
l
K'

[ =K'). Ez and F„are the
electric and magnetic form factors, which are
functions of two scalar variables, which may be
taken as Kand f-=2K(2cos8 —1), with cos(()=K K'.
Note that t, the momentum transfer, is negative
in the physical scattering region, i.e. , when K is
real and I cos8 I

& 1.
The form factors Il~ and E„are complex func-

tions, in general, and we can define p„(K, t)
—= ImI"„(K, f), where x is E or M.

In terms of these variables, we can write the
van der Waals potential arising from two-photon
exchange between the atoms A. and 8, according
to Eq. (2. 61) of FS as follows:

&„(R)=-,—Z df exp( Rf )-dE dK
(4))) R „„g W 7

t; p„"(tt~, t )p„(tt, t) p, (ttt, Itp, t))

(2. 1)
It follows from either of these formulas that as R

~, the ()), rn) term behaves as
d2(n+ m)

)+

R-(')+ 2n+ 2m) + 0(R-(()P 2n+ 2m&
)

while for K(&R small, where K2 is a typical atomic
wave number, they behave as

d2(g+ m)'"- R dR"-&(R '+"
This shows that for every multipole the effect of
retardation is to introduce an extra power of g, in
the long-range behavior compared to the short-
range behavior, of the leading term.

In Sec. II, we derive the formulas above by the
method of FS. In Sec. III, we consider the small-
A and large-g limits of the formulas, and the in-
terpretation of the coefficients appearing in them.

(2T T )
gtttt( B) gntt( A)

gy A g y2 Z28 A

with T = 2K/t '~ and

g&,2 = T —T(2+2T + T )tan T '=g„„;
g»= T —T(2T +T )tan T =g» .2 2 4 -1 -1

(2. 2)

In these expressions, following the discussion in

FS, we have neglected terms of order m, /M„.
In order to proceed, we provisionally assume

that the form factors E„of each atom are analytic
functions of t in some region including t =0, an

In this equation, the subscripts x, y each take on
the values E and M. We note that the integral over
t is over positive, and therefore unphysical, values
of this variable, so that the integral cannot be di-
rectly calculated in terms of measurable quantities.
The quantity C„, is a phase-space factor, given
in FS as
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assumption to be justified in Appendix A. We then
have

E„(K, t)=Z E„„(K)t" for t&t, ,
n-"0

and therefore

(2. 2)

p„(K, t)=Z p„„(K)t" for t&t2,
n=0

where, for real t,

1 d"E„(K, t= 0)p„„=ImF„n =—Im

(2.4)

(2. 5)

We now write the t integral in Eq. (2. 1) as a
sum of terms, denoting all of the integrand other
than the exponential by I(t):

We note that the quantities p„„and F„n involve the
scattering amplitude only for t= 0 and therefore
are related to quantities that occur in physical
atom-photon scattering. The measurability of F„n
is discussed in detail in Sec. IV. The F„n are
also related to the coefficients f, (K) of the expan-
sion of F„ in Legendre polynomials, through the
equation t = 2K (cos8 —1). This relation is given by

1 (t+n)(
" " (2K)'"( ~)' "' + (t — ). '

where

E„(K,cos8)=Z (2f+l)P, (cos8)f„,(K) .

provided that the integral on the right-hand side
exists. This will be demonstrated in Appendix A.
It follows that this term also decreases exponen-
tially with g, has the character of a short-range
potential, and so can be omitted from the van der
Waals potential. Therefore, the potential of in-
terest is given by the term S((1/R) alone. For-
mally, this term is obtained if we use the power
series for I(t) at all values of t, and carry out the
g integral from zero to ~ term by term. We shall
follow this procedure, and write

V@, = f e ' I, (t)dt+0(e '~ ), (2. 9)

where I, (t) is obtained by substituting the expan-
sions (2. 4) into I(t) for all values of t. The re-
mainder of our work consists in a discussion of
the integral in Eq. (2. 9).

We note from (2. 1), (2. 4), and (2. 5) that

&& Z t""p„„(K„)p„.(K, ) . (2. 10)
n ~

The integral over t can now be carried out term by
term, integrating by parts several times as de-
scribed in FS. The result can be written

v, „=Z v„, ,
X5$

(2. 6)
where we choose g0 to be the smallest of the radii
of convergence of the expansions (2. 4), for the two
atomsA, I3, andfortwoformfactors F~ and F„. In
the first term, we can then substitute the series ex-
pansion (2. 4) for each form factor, which generates a
correspondingexpansionfor I(t) Thiscanthe. nbe
integrated term by term. The result of this js

f e ' I(t)dt=S (1/R)+e '() S (1/R),
(2. 7)

where S&, S~ are power series. The first term
arises from the lower limit of integration (t=o)
and the second term from the upper limit (t= t()).
We shall see in Appendix A that /0 is typically
on the order of 1/a(), with a() the Bohr radius. The
second term is therefore similar in structure to
the short-range forces coming from electron ex-
change, or wave-function overlap, in that it de-
creases exponentially and is negligible outside a
few atomic radii. We therefore do not include it
in the van der Waals potential.

The second term in (2. 6) can be bounded above
as follows:

f, ~ """I(t)««""
f,0 t0

n, fn

y2&™& ]1 A
dR2(n+ m) R5

4m 8 0 (2. 11)

' K„p„"„(K„)K,p', „(K,)

2
I

dK'K'p„, „(K')
(2. 12)

It then follows, upon exchanging orders of integra-
tion, that V„, can be written

d2(num)
V 16v'R dR2("'")

""
dye ""P., (CR)

(g2+ K„2) (g'+ K', )

with P„(gR) a set of polynomials, given by

Pee(x) = P„„(x)= x'+ 2x'+ 5x'+6x+ 3,
P „(x)=P~e(x) = —(x +2x +x ) .

This is the equation given as (1.1).
To derive the other form given as (1.. 2) in the

Introduction, we use the assumption that the quan-
tities E„„(K)satisfy unsubtracted dispersion rela-
tion, of the form



2436 C -K E. AU AND G. F EINBERG

x[R ' f dg e ' P„,(&R)F„"„(g)Fs„(g)]. (2. 13)

This form is a generalization of a well-known ex-
pression for the dipole contribution to the van der
Waals potential, expressed as an integral over the
polarizability at imaginary frequencies.

Finally, following FS, we define D„, „
E„„(K)F,„(K), which also satisfies dispersion

relations

2 K' dK'

4 0
(2. 14)

xy nm
= Re+x n Im+y m + Rely m I x n

and D„, „„(g)= E„„(g)F, (g) is real. It then fol-
lows that

I ee d2((le ))!)

()e4)( d))ee &
)) die '&„((R), , e e [Re «„"„(K )Im e, '„(K')e Re»', „(Z')Im»'„" (X')])

n, m=p

(2. 15)
d2(n+ m)

=6 4R ~~ dR2&nem) fR P., f dKf(2KR)[HeF„",„(K)imF,' (K)+ReFs (K)lmF„"„(K)]]r nm0 0
(2. 16)

which is Eg. (1.2). Here f(x) is the function

f(x) = cosx s—ix —sinx Cix

and P„", are given by

g 2 d d
SR dR4 R dR3 4R dR2 3R dR+3

~4 3 2
Po~ = —R

~ —'R d, 2 d 0
EM=16 dR4'4 dR3

-4R dR2= NE

This completes the derivation of the formulas
given in Sec. I. The detailed discussion of their
implication is given in Sec. III.

III. POTENTIAL AT SHORT RANGE AND LONG RANGE

The formulas of Sec. II, e. g. , (2. 11) or (2. 16),
express the van der Waals potential over the whole

range of interest, extending from a few atomic
radii to infinity. The indicated sums over n, m are
expected to converge rapidly in this region. This
is because the quantities Il„„involve successive
derivatives with respect to the momentum-transfer
variable t, and such derivatives generally behave

as F„„(K,t =0) = a "E„o(K, t= 0), where a is the
atomic radius.

Therefore, the sum over yg, nz generates an ex-
pansion in powers of (a/R), which is small
throughout the region of interest. We shall see
that this is equivalent to saying that the higher-
multipole corrections are usually small compared
to the dipole terms everywhere.

It is possible to calculate, at each value of R,
any term in (2. 16) numerically, assuming that the
corresponding I"„„I', are known. In general,
this is what would have to be done if R is some-
where in the middle of its range of interest. An

example is given in Appendix C. It has however

been customary, in previous treatments of the
yg=nz=0 term of our expansion, to consider the
potential in two regions, corresponding to K+
« I and KQ & I, where Ko is a typical atomic
wave number. The potential is expressed as an

ascending power series in R in the "small-R" re-
gion, and as a descending series in the large-R
region. This is accomplished for example by using
the small-argument or large-argument expansions
of the function f(2KR) that appears in (2. 16).

A similar procedure can be carried through for
each term with a given value of ~ and n in (2. 11)
or (2. 16). To do this, it is convenient to calculate
the quantity

R- 'P ~f(2KR)

which occurs in each of the terms, in the small-
argument and large-argument limits.

A. Small-R Region

First take the case KR «1, then

R P+ f(2KR)-2vR —~KR + —' K R —+qK R

+ 2vK R '+IK ln(2KR)+ O(const) (3. 1)

and the same for R 'Pg„ f(2KR);

R P gs f(2KR)- —
g
—KR +2nK R —~K R

+ ,"mK R '+ —', K In(2K—R)+O(const) (3.2)

and the same for R 'Pg„ f(2KR). These expres-
sions can be substituted into (2. 16) and the neces-
sary derivatives carried out term by term. The
result is a sum of explicit functions of R, with co-
efficients that are integrals over E of products of
the form factors F„„(K). We delay for the mo-
ment the discussion of the convergence of these in-
tegrals, and exhibit the first few terms':
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V AB
—1

8~'R

d2(n +m)
w -5 AB, 0

2 dR2(n+ &
(R )48, n

n, m=0

w)&, &

4 dR2(n. ) (R )fez', .
n2 m= 0

2(n+ m)
7T -3 AB, 2

+2 ~ dR2(n+m) (R )4s, nm
n, m=0

d2((n +m) -2 AB, 3

n, m~ 0

~2(n+ m)
-1 AB, 4

dR2(n+ m) (R ) Izz,'nm
n, m= 0

22 d2(n+ m)
AB, 5

18 n, m=0

+ImFs, „(K)ReF„(K)]dK (3. IO)

and for V» a similar expression obtained by the
exchange F—M everywhere.

From the dispersion relation (2. 14) for D„„
it follows that

I"„, „' = f KImD„"„„„(K)dK

= —
2 &(lim [K D„„(K)].

K~~
(3.11)

However, according to the dispersion relations
(2. 12), and also by direct calculation for hydrogen
atoms, we find that

lim D„, „(K)= O(K ),
K a)

and hence

+ ~ ~ ~ (3.3) AB21-
Ixy, nm

= 0 ~ (3.12)

where

Iss'„"„—= f K"1m')( „„(K)dK (3.4)

= f K"[ReF,"„(K)imE', .(K)

I)(&I'"„=f K" ImD"„~2 „„(K)dK (3.8)

= f K"[ReE"„„(K)ImEg (K)

+ReE2 „(K)ImE"„„(K)]dK. (3.7)

Finally, we obtain for Vzz.'

d2(n+ m) -4 AB, f
4

~ dR2(n+ m& (R ) I2'&(', nm
n, m= 0

d2(n+ m) -3 AB, 2+
2

~ dR2(n+ m) (R ) I 2)(', nm
n, m= 0

VAB'"=8:R '

d2(n+ m)
-2 AB, 3

dR2(n+m& (R )I Z)(,nm
n2m~ 0

d2(n + m)
-1 A B24+

2
~ dR2(n+ m& (R )I EM, nm

n, m22 0

d2 (n+ m)
AB, 5

+3 dR2(n+ m) (InR)f Z)(,nm
n2m= 0

+ ~ ~ ~

with

I",s "„„=f K" imD", '„,„„(K)dK (3.9)

= f K" [HeE", „(K)1~„„(K)

+ReFz~ „(K)ImEs „(K)]dK. (3. 8)

A similar expression can be written for V"„B,
with I"„„'"n substituting for IEE'"„, where

Therefore the terms with R 4 in parentheses van-
ish in each of the V~.

Ne note further that the form factors I „are ex-
pected to be significantly large over some region
of K of the order of typical atomic wave numbers.
It follows that successive values of r in I„",B„'"

should 1 e related approximately by

IAB'~+1/IAB'" = Exy2nm & x3)2nm .
.0 s

where K0 is a typical atomic wave number for an
atomic transition. It follows that the terms in

V„, „arising from successive I", will be of rela-
tive order K(&R, and therefore for a fixed value of

n, m, the expansions (3. 3) and (3.8) are expansions
in K(&R, which is assumed small in the region we
are now considering.

It is of interest to note the occurrence of terms
proportional to lnR, which show that the "small R
expansion" is nonanalytic. This lack of analyticity
for small R originates in the fact that the form fac-
tors E„(K)do not vanish exponentially at large K,
but instead fall off as a finite power E . As a re-
sult, if one tries for example to expand the inte-
gral in (2. 13) in powers of R, one finds that the

terms beyond R have as coefficients integrals that
diverge for large K. This occurrence signals a
nonanalytic behavior of the integral at small R.
From this argument, one might have expected
terms of order R lnR to occur in (3. 3) or (3.8).
These terms however cancel identically because of
the form of the polynomials P„„and the first log-
arithm appears in order lDR. Because the succes-
sive terms in (3.3) or (3.8) are of relative order
KOR, the logarithmic singularities appear to be far
too small to detect in practical experiments.

If we look at a term, say in VEE, proportional to
a given power R~, we see that this term gets con-
tributions from many different terms in the expan-
sion (3.3). For example, the term going as R 2
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has as its coefficient,

r
I 2vIEE pp+ 27) 12(I@@'gp+I@&'pg)
r3 AB, O j. AB, g AB, g

24(izz'pp+Izz'&& +Ized'QQ)]+ ~ ~ ~ . (3. 1, 3)

It is easy to see that this coefficient, and that of
all other inverse powers, involve those I»'"„, in
which r —2(n+m) takes on some fixed value, as r,
n, m vary. From the previous discussion, we
have seen that increasing r by two units will ap-
proximately multiply I by Kp, while increasing n
or m by 1 unit will approximately multiply I by a~.
Hence the leading term in a given coefficient will
be that with r, n, m taking on the minimum values
consistent with r —2(n+ m) taking on the required
values. The other terms will in general be small-
er than this leading term by some even power of
(Kpa), which is a number of order 10 (= o.).

We write here for convenience these leading co-
efficients for the dominant powers of R:

r3 -6 AB, Q 1 -4AB, 2 g -3 AB 3~gg —
8 4 [p&R I»'pp+ 2&R Igg'pp 6 R Igg, pp+ ' ' '

+ p 1T 2 OR (I @'
g p + I~@'

pg)

+ pal'120R (I@@ pp+Igs gg+I~gg pp)]+

(3.14)
It may be seen from our estimates of the rela-

tive size of the I„",„'", that the term R I"„„pp will
always be the largest within the region of interest.
However, the relative size of the terms with pow-
ers of R greater or less than —6 will depend on
where R lies in this region. It can be seen, for
example, that the term in R is greater than the
term in R 4 when R ( a(Kps) ~~p- 10a, and is less
when R) 10a.

Consider next the convergence of the integrals
over K that define the quantities I"„„'". The criti-
cal place for the convergence of those integrals is
obviously K-. The convergence will depend on
the behavior at K-~ of ReF„(K) and ImF„(K).
From the dispersion relations, and from explicit
calculation for hydrogen we find that5

limReF„(K) =O(K ) .

For ImE„(K), no simple theory is available. In
the case of ImF, (K), related by the optical theo-
rem to the total cross section, we can get some
information if we assume the nonrelativistic photo-
electric effect to dominate the total cross section.
This would then give ImEp(K)- K '~ P as K- ~, and
then implies that the integrals I» pp will converge
for r & 5 and diverge for r & 5. However, relativ-
istic corrections might well change this estimate,
as might the inclusion of other terms in the total
cross section, such as the high-energy limit of the
elastic scattering itself or the creation of pairs.

where the powers of a are inserted for dimensional
convenience. These formulas may be inserted into
any of the formulas [(2. 13) and (2. 16)] to reexpress
the potentials in terms of the perhaps more familar
multipole polarizabilities. Upon doing this, we
note that the values of K giving the major contribu-
tions to integrals are such that Ka- +, whereas the
quantities o„p~+&/a ' are all expected to be com-
parable in size. It follows that a good approxima-
tion to integrals over the form factors can be ob-
tained by taking only the first term of Eq. (3.15);

F„„(K)=( ), o„~.i(K).Sm (3.16)

If we substitute into Eq. (2. 13), we get the retarded
generalization of the van der Waals potential, ex-
pressed in terms of polarizabilities at imaginary
frequencies;

R
64~g d2 (n+ m)

~~m 16 3R "o
dC e ""E„„(CR)

X n„s, g(ik)a„Pm+i(iC) .
3 1~)

(2n+ 2)! (2m+ 2)!

The term involving 02~ s&2~. ~ may be regarded as
the retarded generalization of the 2"' ~ pole-2 ' ~

pole force familiar from the Coulomb contribution
to the smaLl-R version of the van der Waals force. '
However, the presence of terms beyond the first
in Eq. (3.15) indicates that this formula is only
approximate, and that the form factors E„should
replace the o.pn. x in the exact formulas (2. 13).

B. Large-R Region

Consider next the region of R in which KR» 1,
for those K that contribute significantly to the in-
tegrals (2. 16). This is the region in which "re-
tardation" effects are important. In this region,
we find

23 129 5112R Pssf(2KR) p 3 p + 3 Jp +O(K R )

(3.18)

The explicit calculation for hydrogen (see Ap-
pendix C) gives an IrnF„(K) which decreases about
as K ' "' ~ '. This suggests that for higher-multi-
pole terms, it is likely that the convergence will be
still better than for I"„,pp. However, it would ap-
pear that in any case, only a finite number of the

I„„,'" will converge and that the expansion (3. 8) is
to be regarded as asymptotic rather than as exact.

We show in Appendix 8 that the F„„(K)are re-
lated to the frequency dependent 2" ' ~ multipole po-
larizabilities op„,i(K). The relationship is of the form

F (K)
"' ( )+O(K' ')

(2gy2)t g

+O(Ka) "8 ( )+.. . , (315)a'
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and the same for R 'Pg
Mf(2KR);

) =
4KR' ' SK'R' 3--= "'0(~'" ")4'' 8K R 3m R

(3.19)
and the same for R 'P+~~ f(2KR).

U'pon substituting these into (2. 16), we obtain a
series of descending powers of R, with coefficients
that are integrals over K of products of form fac-
tors .

AB, 1 XB,1

3 4 4
42(dMM, ')0+d'MM', 0))R (s. as)

while the quadrupole-quadrupole term goes as

:1 23 1 11——2964J».EE, 31 (3. 27)

large R than at small R. Thus, for example, the
dipole-quadrupole interaction behaves asymptot-
ically as

dR~(n+ m) ~ ~ EE,nm
n, m=0

=
-1

EE

129 " d2(n+ m) -8 AB, 3
dR2(n wm) (R ) ~ME, nm

n, m=0

5112

n, m=0

where

+ ~ ~ ~ ) (s. ao)

Z"„'"„„-=f K "rmD-",', „„(K)dK (s. 21)

= f K."[Res",„(K)rms,' „(K)

d2(n m)

V = —
& +- (a- 81 JAB~3

MM 3 (R 3 dR2(n+ m) (R I MM, nmr n, m=0

+ ImE)) „(K)ReEz (K)]dK . (3. 22)

A similar expression may be written for V» in
terms of JA»B'"„, with J"„~B"„defined similarly in
terms of magnetic form factors. Similarly, we
obtain for VE~:

7 ~ d2«™& -B AB, 1
dR2(n+ m) (R ) ~MM, nm

n, m~0

dK'(K') ' ~lmD (K')

(s. 29)
and therefore, setting 2p+1=y, which is always
odd in Eq. (3.24), we find

AB ~ 7f 1 d DAB
J„„nm —

2 ( 1) f dKr-) nr, nmlK 0 (s. so)

Finally, from the definition of D„"„„,we have

Again in this limit, a given inverse power of R gets
contributions from several terms in the series.
However„here the coefficient of a given inverse
power always gets its main contribution from the
terms J„"„00. The higher-multipole terms now

make contributions to a given term that are smaller
by factors (K0a)0"' than the dipole-dipole contri-
butions.

If we assume, for the moment, that the integrals
defining the J„„are convergent, we can identify
them with form factors and their derivatives,
evaluated at K=O. To see this, we note from
(2. 14), for sufficiently small K,

2 [
" K'dK' (K

&0 g 0

(s. as)
Hence

5 d ( -)0 gas
32 d 2(n+m) (R ) MM nm

n~m= 0
n~, nm-a (~ 1)( dKr-) [&n.n&r, m]lr. o ~ (s. 31)

where

~z)I,'nm = f K" ImDMM . (K)dK

(3.23)

(s. 24)

= f K "[rteP",-„(K)Imp'„„(K)

+ ImF" „(K)Item „„(K)]dK, (S. 25)

and a similar expression for V», with E and M
inter changed everywhere.

One may regard a given term in these expansions
with particular values of y, n, ng, as the large dis-
tance limit of the term with the corresponding val-
ues of r, n, ))), in the expansions (3.3), (3.8), etc.
Hence we see that the leading term of all inverse
powers of 8, and not only the 8 B dipole-dipole in-
teraction, falls off with one extra power of R at

e have seen that the quantities E„„(K=0)are
proportional to the static 2"' ' multipole polarizabil-
ities. It follows that the J„',„,and hence the
leading term in the large-R expansion of the van
der Waals potential can always be expressed in
terms of these polarizabilities. The correction
terms, containing J„,„„(r&1)', involve derivatives
with respect to Eof E„„,evaluated at E=O. Ac-
cording to Appendix 8, these can also be expressed
in terms of derivatives of the static multipole po-
larizabilities. However, in this case several
terms will occur in each derivative of Il„. It is
not difficult to see that if the polarizabilities are
regular at E=O, then an 1th derivative of E„can, in

general, be expressed as a sum of polarizabilities
and their derivatives from 0„ to ~„„. Of these
terms, the important one is always
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d Eg, ff 8P d &afI+ 1

(2~+ 2)! dK' K=0
(3.32)

Consider next the convergence of the integrals
defining the J„"~„'". Since D„, „decreases as K- ~, the integrals converge at ~. Furthermore,
it is not hard to see that the contribution from
finite K, other than K=0, is finite, even in the
"zero-width approximation, "where the resonances
are treated as real poles. The only question of
convergence of the J comes from K=0. Here we
must distinguish two treatments of the form factors.

(a) In the "zero-width approximation, "we ap-
proximate the imaginary part of the form factors
by a series of Dirac 5 functions contributed by the
various state resonances, and a continuum contri-
bution, for K& K~, the ionization energy of the atom.
In this case, itisobviousthat ImB„,~„=O, when K
& K&, where K, is the lowest excited state energy of
the atom. Therefore, the integrands in J vanish
for K& K, , and these integrals therefore converge
at small K.

(b) If we want to improve upon the "zero-width
approximation, " then we must include the effects
of the "tail" of the resonances, on ImE, for small
K. This can be done in a relatively model-inde-
pendent way as follows: We know from the optical
theorem, that ImE„0 can be related to the total
cross section for photon-atom scattering. This
relation is given by

Im(Es ()+E„())= o'r (K)/K

But for small K, we expect az, (K)= a K, from the
usual analysis of Hayleigh scattering. This sug-
gests, since usually E»» E»,

lim (ImFs, ) = a'K' .
K" 0

On the other hand, ReE~ ~(K=0) is given through
the dispersion relations, by contributions from
K&0 resonances, and behaves as

lim (ReEz z) = a
K 0

These behaviors suggest the following conclusions:
(i) The contributions of small Kto J~s M and
Jgg 00 are finite, and are smaller than the reso-
nance and continuum contribution by a factor- (K,a) —10 . (ii) The' integrals defining J'~~~ M

for z& 3 diverge at small K. Strictly speaking,
this implies that in this case the expansion defined
by Eq. (3.20) does not exist. Actually, the rea, —

son for this is apparent. If it is necessary to in-
clude contributions from very small K to the un-
expanded integrals such a.s (2. 16), then it is not
possible to use the expansions Eg. (3. 18) for
R P+ f(2KR), since these are valid only when KR
» 1. It would then be necessary to use the unex-
panded form (2. 16) even for 8-~, to pick out the
correct contribution of small K. In the case of
V», this can be done explicitly, with the following
result. In addition to the series of terms given in
Eq. (3.20), the small values of K contribute a
term proportional to a R . This term, of an
analytic form intermediate to those in the series
in Eq. (3. 20), is small everywhere in the region of
interest. It is therefore probably sufficient gen-
erally to follow the procedure described in (a)
above, i. e. , the zero-width approximation, and
the expansion Eq. (3.20), which involves J's that
are now all convergent.

IV. MEASURABILITY OF THE FORM FACTORS

In order to apply the formulas of Secs. II and

III to specific atoms, it is necessary either to cal-
culate, or to obtain from experiment, the form
factors E„„(K). In Appendix C, we present a cal-
culation of these form factors for hydrogen atoms,
and apply it to some calculations of the higher-
multipole potentials. Such calculations are likely
to be difficult for atoms other than hydrogen, since
they involve substantial information about the wave
function in the ground state and excited states.

We consider here instead how to obtain the
E„„(K)from measurements of the elastic scatter-
ing of light by atoms. This problem is rendered
more difficult by the fact that, in general, the
amplitudes are complex. This implies that in gen-
eral, it is necessary to supplement measurements
of the cross section by other information to deter-
mine the F„„(K). We write the scattering ampli-
tude as

M = q( e) tK E~6 () + K F~(6 ()
—K', KJ )] (- I/8w) .

The corresponding cross section without any sum
over polarizations is given by

da(E, F.') 1
=64,~ «.l~j ~f'(K'IE. I'6„6„+K'IE.I'(6„-K,'K, ) (6» —K,'K, )

+K'F,F+6, (6„, K,'K, )+K'F+F„-6„(6„—K,'K, )] (4 1)

4

2 [(e ~')(s' ~*')lF~l'+(~. ~' —K'
64m.

«e')(~* ~'*-K'' &*K e'*)IFul'
Jl

+ e ~ &'(e* ~ e*' —K' ~ gK e'*)F@F~+(e ~ c —K' sK e )t* t *EgE~] ~ (4. 2)
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The use of complex polarization vectors is essen-
tial here if we are to allow (as we must) for the
possibility of circular polarization of the incident
or outgoing photons. By measuring the initial and
final polarizations, we can determine from experi-
ment the quantities IF~l, IF„I, and F~E„*, which
leaves undetermined the relative phase of F~ and

F„, which must be the case for any quantity bi-
linear in the matrix element.

An obvious candidate for the extra information we
must supply is the unitarity relation, as this in-
volves both linear and quadratic terms in F& and

F„. In FS, it was mentioned that in the approxi-
mation where all terms other than F~ 0 are
neglected, it is possible to determine ImFE 0 in
terms of the total cross section by using the opti-
cal theorem

ImE, (K) = (I/K)o (K),
and then to determine ReEs 0(K) by measuring the
elastic cross section. This procedure can still be
used to fix (ImEs 0+ImE„O), even when we do not

neglect higher partial waves. However, the opti-
cal theorem alone does not give any information on
the relative phase of F~ „and F„„for n& 0.

Such information is given by the general unitarity
relations for nonforward scattering. To clarify
this question, we divide our discussion into two

regions of K, i. e. , those K below the threshold

Kl for inelastic processes, and those above this
threshold. When K& KI there are simple rela-
tions between BeF„„and ImF„„ for each ~. These
relations follow from the fact that the F„„are
linearly related to amplitudes M~,. with definite
angular momentum and helicity, and the latter
amplitudes, in the region of purely elastic scatter-
ing, satisfy individual unitarity relations between
real and imaginary parts, of the general form

(4. 3)

This is analogous to the scattering of spinless par-
ticles, where the partial-wave amplitudes f, satisfy

Hence, in the elastic region, measurements of the
cross sections for polarized photons, together with

the unitarity relations, are sufficient to determine
HeF„„and ImF„„, apart from ambiguities in sign,
which can be settled by the dispersion relations.
In the inelastic region however, the unitarity equa-
tions relate elastic to inelastic amplitudes, and, in

general, a determination of the real and imaginary
parts of all amplitudes must be done simultaneous-
ly through a measurement of elastic and inelastic
cross sections in all coupled channels. In the
present problem, this would mean the measure-
ment of differential cross sections for the photo-

electric effect and for the scattering of electrons
by ions, as well as for the elastic scattering of
photons by atoms. If all these quantities can be
measured, there would be as many equations as
unknown quantities, and the real and imaginary
parts of all amplitudes can be determined.

I et us see how this would work in the case of
two coupled channels consisting of atom-photon
(channel 1), and of electron-ion (channel 2). We

assume the ion to have spin —, for simplicity. The
complications of polarization are most easily
treated by using helicity amplitudes. The scatter-
ing amplitude may be written as a sum of ampli-
tudes for a given total angular momentum, evalu-
ated between definite helicity states:

M&~ zx. -HM&~ ~~. C~„, (K, K'), (4.4)

where i, 4 are channel labels and A., X' helicity
labels. The C~~. can be expressed in terms of the
rotation matrices D~„,. The helicity scattering
amplitudes satisfy unitarity relations of the form

kX le ~X~» .~ gk~ lX z kL ~ lX (4. 5)

and are linear combinations of the form factors we

have used previously.
In the present case, there are 12 such amplitudes

for each value of J. The unitarity equations give
12 relations among these amplitudes. Another 12
relations can be obtained by measuring the differ-
ential cross sections

iR
dg $x, » (4. 6)

Again there are 12 differential cross sections that
could be measured, and these equations together
with the 12 unitarity equations determine (up to
certain sign ambiguities) the 24 quantities
HeM, ~ ». , ImM, ~ ». . If the number of coupled
channels is greater, there will be more of each
type of equation, but it is still possible, by mea-
suring enough cross sections, to determine BeM,

&

and ImM&. However, if any of the channels in-
volve states of three or more particles, these
measurements are unlikely to be feasible.

In view of this, it may be of interest to see a
different approach to the determination of the elas-
tic amplitudes, which involves the measurement
only of elastic scattering and of total cross sections
for atom-photon scattering. The method makes
use of dispersion relations to supplement the ex-
perimental data, and is analogous to one that has
been used in high-energy physics. ' We illustrate
this method for the most common case, where F„
«F~, and is neglected. The more general case
can be found in the thesis of Au. "

We consider the amplitude with the factor of K
reinserted into the amplitude:
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f(z, t) = (K'/4v)F, (K, t) . (4. 7)

These A„'s are related to the partial-wave ampli-
tude f, defined by

f=Z (2l+ 1)f, (K)P, (cos8)
l

(4. 9)

in the following way:

1 (l+n)!
A„(K)=( )3„(,)g Z (2l+1)f, (z)

( )',

(4. io)

f (K) Q ( 2)K@A (K)an. ~D
1

n&l
(4. iS)

We write down a series expansion in t for f instead
of the common partial-wave expansion:

f=Z A„(z)t" . (4 8)

for Ex „, a dispersion relation is assumed to be
valid for A„/K . Equation (4. 21) can be rewritten

AOR —ibAg=gg . (4. aa)

Dividing (4. 22) by K and writing down a dispersion
relation for A&/K in terms of its real part, we
have

R(K) gg(K) 2b(K)K R(K') dz'
K' (K' —K3 —jg)

(4. as)
or

R(K) g~(K) 2b(K) K |" R(K ) dz
Z' A, (K)Z' A, (z)v J, K"(K"-K'-i~) '

(4. 24)
Noting that the 6-function kind of singularities in the
scattering amplitude at resonances are in fact sym-
metrical, highly peaked, but finite functions, we
define the following two functions:

where

(- 1) (l+ m)! 1

=o (m') (l —m)' 8+m+ I (4. 12)

y(z) =- R(z)/z',

r(z) = g,(z)/A, (z) z' .

(4. 25)

(4. 26)

But, experimentally, we measure !f(K, t)!~,

we write lim gq(K)- K (4. 27)

We also note the following asymptotic behavior:

if(z, t)i'=aug„(z)t" .

From (4. 8), we have

!f (K, t)
~

'=2 A„(z)A*.(z) t" - .
n, m

(4. is)

(4. 14)

K 0

lim Ao(K) —K
K»0

lim b(K) -K',
K 0

(4. 28)

(4. 29)

Comparing coefficients we have

Ao (K) A(~) (K) = 2 go,

Ao (K) A~( (K) + A(~) (K) A g(z) = 2 gg(K),

(4. 15)

(4. 16)

Imf (K, t = 0) = Im Ao(K); (4. 18)

hence, by the optical theorem, ImAO is measur-
able. By measuring the differential cross section
in the forward direction, we can measure ReAO at
least up to a sign, which can be fixed by a disper-
sion relation. Hence AO is determined. We write

0 and Ag as

Ao= a+i b,

Aj=R+iL .

(4. 19)

(4. 20)

(The dependence on K is understood. ) Then (4. 16)
gives

aR+ bL =g&, (4. 21)

A, (z) Af(z)+A, (z) Ag(z)+A](z) A, (Z) = 2 g, (Z),
(4. 17)

and so on. But

lim g (K)-const,
K»

lim Ao(K) —const,
K

lim b(K)-K 't
K

lim R(K) —const,
K

(4. so)

(4. 31)

(4. sa)

(4. 33)

K(K, K) = (4. s5)
A, (z) (z+z') (K' -z —t~)

b(z ) 2K b(z) b(Z')
, Ao(z ) Ao(K) (K+K ) Ao(z')

x, (4. 36)

which follow from the usual nonrelativistic theory
of atom-photon scattering. This shows that P and
7' are regular function in the interval (0, ~). Equa-
tion (4. 24) then becomes a singular integral equa-
tion of the Omnes type

y(K) =r(K)+ (I/v) J"K(K, K') y(K') dZ', (4. 34)

where K(K, K ) is the singular kernel

where now a, b, g, are experimentally available.
Fe „ is related to A„as Ee,„=(4v/K )A„. As we
have assumed the validity of a dispersion relation

Writing

b(K)/A (K) = h*(K) = e '" ' sinb (K), (4. 37)
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K(K K )-0 as K- ~ or K - ~ . (4.40)

This matches the boundary conditions of the kernel
Omnes assumed. ' Thus according to Omnes our
singular integral equation in (4. 24) is reducible to
Fredholm's type (with regular kernel) and hence is
soluble. Different techniques depending on the na-
ture of the kernel are used to solve integral equa-
tions of Fredholm's type and are widely available in
the literature. " Once R(K) is known, L(K) can be
obtained from (4. 21), and hence, A~ is known.
Equation (4. 17) can be written as

A, Ag+AaAg =2g2(K) —IA, I'. (4.41)
Call

2g, (K) —~A, ~'= 2 g,'(K), (4.42)

and let

A, =- It'(K)+ iL'(K) . (4.43)

Equation (4.41) can be reduced to a type of singular
integral equation like (4.24) with similar boundary
conditions. The same technique that we have gone
through for A, applies and we can find Az. Having
found A&, we find that A3 and, in general, A„are
of the form '

n-i
ADA„*+A„Af =2@„-ZA„A„*» (4.44)

Hence all A„'s can be calculated provided Ao to A„&
are known, and so all the A„'s are calculable in
sequence.

V. DISCUSSION

%'e have established a series of formulas ex-
pressing the two-photon exchange van der %aals
force in terms of quantities referring to individual
atoms, and in principle obtainable from experi-
ments on the individual atoms. Earlier versions
of these formulas have been used to do practical
calculations of forces between hydrogen and rare-
gas atoms. If our present formulas are to be used
similarly, detailed experimental data on elastic
atom-photon scattering will be needed, which we
leave as a challenge to the experimentalist.

It is of some interest to ask about what aspects

which is possible since 5= ImA0, we find that

S(K) =tan-'f(K)/a(K) . (4. 38)

From the boundary conditions (4. 27) to (4. 33), we
see that the function 5(K) is regular in the interval
(0, ~) and falls off at infinity faster than 1/K. De-
noting the second part of K(K, K ) by

2K t (K) I (K')
~A, (K) (K+ K') A, (K')

(4. 39)
we see that K(K, K ) is a regular kernel with bound-
ary conditions

of the van der %aals force are omitted from the
present theory. One such aspect, alluded to in
previous work, is that when electromagnetic radi-
ative corrections to the photon-atom scattering
amplitude are included, this amplitude is no longer
an analytic function of K and t, near E or t= 0. As
a result, expansions of the form (2. 3) and (3.28)
are impermissible, when such corrections are in-
cluded. However, there is some indication ' that
the first few terms in an expansion such as (2. 3)
are correct, even including radiative corrections,
and that the leading nonanalytic terms behave as
t" lnt, vrith n& 0. This would imply that the first
few terms of Eq. (2. 15), for example, are correct
but that the remaining terms would have to be
modified. Detailed conclusions however will re-
quire a calculation of the radiatively corrected am-
plitudes, as a function of K and t, which does not
seem to be available.

Another aspect omitted from our theory is the
exchange of more than two photons, corresponding
in other language to the use of higher orders of
perturbation theory. These effects can, in prin-
ciple, be treated in much the same way as Feinberg
and Sucher have done the two-photon exchange, by
first computing a general vertex for the process
atom + antiatom - n photons, and then analytically
continuing the form factors appearing in this ver-
tex. Virile we have not carried through this pro-
cedure because of the immense labor involved, a
simple estimate indicates that the leading term in
the three-photon exchange would behave as R ',
for R- . Again, we must leave this question to
be investigated elsewhere.

Finally, our explicit calculation for H atoms uses
the nonrelativistic atom-photon scattering ampli-
tude, and it would be desirable to improve this by
including relativistic effects. %e emphasize that
our general formulas for V include relativistic
corrections, and it is only a matter of putting
these effects into the expression for the scattering
amplitude.
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APPENMX A: SOME ANALYTIC PROPERTIES OF THE
FORM FACTORS

1. Anomalous Threshold in the Channel Atom + Antiatom
+27

The spectral functions appearing in Eq. (2. 1) are
given by the imaginary part of the form factors in
the atom-photon amplitude in the s channel, i.e.,

p„(s, f) = ——,'i [E„(s+ie, f) F„(s —ie, f)], — (Al)

where s = m&+ 2m&K. The poles and cut on the s
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plane correspond to the well-known resonances and
the photoelectric threshold. It can be shown' that
corresponding to each pole, the spectral function
is expressable as a 5 function in the variable s.
F(s, t) is analytic in t for I t I & t, , where to is the
lowest anomalous threshold, or in the absence of
such anomalous threshold, the square of the light-
est masses that can be exchanged in the t channel.
The problem of anomalous threshold has been ex-
tensively studied by Karplus, Sommerfield, and
Wichmann. These authors found that anomalous
thresholds are very common in weakly bound sys-
tems, for example, the deuteron. We have fol-
lowed the methods of KSW 1 and KSW 2 to study the
possibility of an anomalous threshold in the crossed
channel for atomic Compton scattering. We find
that such an anomalous threshold does exist, and
particularly for hydrogen, it occurs at to =4/a~ in
the nonrelativistic case. This agrees with the re-
gion of validity for power series expansion in t for
the hydrogenic Compton amplitude of Gavrila and
Costescu. '

It was pointed out long ago in KSW 1 that for a
triangular vertex (Fig. l) which denotes the con-
version of a particle of field Pz (mass M~) to one of

' field Ps (mass M, ) by a virtual quantum of the field

P& with invariant momentum-transfer square q, if
the masses of the intermediate fields P„P,, and

g, are m„m~ and m„an anomalous threshold
exists if

(mq M2+ m, Ms)/(mq + m~) & m, + bmm, . (A2)

In the case of the electromagnetic one-photon form
factor, of an atom, we have (Fig. 2)

Mz = M, = M = mass of the atom (antiatom),

D ATOM~ t

ATOM IN

FIG. 2. Triangle graph generating an anomalous threshold
in the electromagnetic one-photon form factor of an atom.

located at

t= to = —
2 [(ma+ m, ) —M ] [M —(mo —m, )2j .

(A4)

M= ma+m &3

~he~e E~ - o./a is the binding energy for the e],ec
tron, or

E& = o.'/2a for hydrogen, (A6)

we find that condition (AS) is satisfied for atoms
and that it gives an anomalous threshold at to- l/a2,
which for hydrogen is at

t, =4/a' . (AV)

For scattering of atoms by photons we really have
to consider the graph in Fig. 3. In the discussion
that follows, we shall abide by the notations of
KSW 2. Consider a vertex in this graph with a pho-
ton as an external leg. In the notation of Fig. 3,
and of Eq. (4) of KSW 2, we have

m~ = m, = mo = m, (mass of the electron) 2 2
Pp$ mp + m) 2m' m~ p (A8)

m, = mass of the singly ionized atom

= M~ (mass of the proton in the case
of hydrogen);

Pq4=P34=(mass of photon) =0, m&=m3=m4=m,2= 8=

condition (A2) simplifies to

M &m, +m, (AS)

OUT

and the branch point (the anomalous threshold) is
$)NQL'( IONIZED ATOM

FIG. 1. General form of a triangular vertex graph.

PIG. 3. Graph generating an anomalous threshold in
the atom-photon scattering amplitude. Intermediate parti-
cles cut by the dotted line are put on the mass shell.
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3 14
= 1 = $34 (A 9)

Hence by the criterion given by the inequalities (22)
of KSW 2, the domain of analyticity is determined
by case (ii) of KSW 2. As shown in Appendix A of
KSW 2, it is the same as the case of a triangular
vertex. The above is equivalent to choosing one of
the n's in the Feynman representation of the scat-
tering amplitude to be zero where the n's are the
Feynman parameters. We particularly choose
here Q.4 to be zero. Then

FIG. 4. Lower half of Fig. 3 for hydrogen, appearing as
a graph for photoionization.

2 — — 2
Pt3= ~= —6' (A10)

and the denominator D~ of Eq. (3) of KSW 2 reduces
to the denominator of Eq. (A4) of KSW 1. Since the
vanishing of this function determines the singulari-
ties of the Feynman amplitudes, the argument in
KSW 1 follows, and we are led to the same con-
clusion on the anomalous threshold as for the tri-
angular vertex.

2. Analytic Properties of the Spectral Functions

It is not difficult to see that the graph being
studied in Fig. 3 gives the lowest possible t sin-
gularity in the atomic Compton amplitude, and so
its imaginary part determines the spectral func-
tions. To evaluate the imaginary part of the am-
plitude corresponding to Fig. 3, we employ Cut-
kosky's idea of generalized unitarity and put the
intermediate particles in the s channel on the mass
shell. Then the lower and upper parts of Fig. 3
are immediately recognized as photoelectric ef-
fects. Since the electron and the proton are both
on shell, the graph (Fig. 4) is energetically pos-
sible only if the photon energy is above threshold.
Hence the spectral function coming from the graph
of Fig. 3 actually corresponds to the imaginary
part of the Compton amplitude for photon energy
greater than threshold evaluated as if the continu-
um states (the Coulomb scattering states) were the
only intermediate states. However, the discrete
states only give rise to 5-function-like terms and
once the photon energy is above threshold, the
argument of the 5 functions can never vanish.
Hence we conclude that the spectral function coming
from the process in Fig. 3 is just the imaginary
part of the Compton amplitude with all the atomic
states as intermediate states. Moreover, since
contribution to the van der Waals potential from the
spectral function is important only for s close to
the square of the mass of the atom, i. e., for photon
energies of order n/a, the nonrelativistic form of
the Compton amplitude can be used. The nonrela-
tivistic hydrogenic Compton amplitude has been
evaluated by Gavrila and Costescu. ' The electric
and magnetic form factors F~ and I'~ are related
to the scattering amplitude f in the following way:

f (K, 8) = A(K, 8) e ~ e + B(K, 8) & ~ K & ~ K, (A I 1)

where (K, K, e) and (K', K, e ) are the energies,
momenta, and polarization of the incident and out-
going photons, and 6) is the scattering angle. Then

F~= —4mB(K, 8),

Fs = 4'(K, 8)/KK + 4mB(K, 8) cos8 .

(A12)

(A13)

Since the only graph that gives an imaginary part
is the direct graph, we have from (A12) and (A13)

together with the results in Ref. 5

ps= —
z ImP'(K, t)+Imp'(K, t) 1+24m t

8 ~2 (A14)

p„= (-4&/K') imq'(K, f),
where

12& y5 X3 Fg(2 —v; 2, 2; 3 —T; xg, xp)

[(x+x)'+K']' 2 —7

2048 x X K Fg(3 —r, 3, 3; 4 —w; xg, xp)

[(x+&)'+K']' 3 —~

X = Z/a= 1/a for hydrogen,

X,= 2m(EQ —K), Eo ——Z n/2a,

(A16)

(AI6)

(Al l )

(Al &)

(A19)

(A20)

(X —A. —K) +4X(K ~ K )
[(x+~)2+K']'

f- 4X'(K —K ')' [X'(K+K ')'+ (X' —y' -K')']j'"
[(x+~)'+ K']'

(A21)
I" and Q' have integral representations in the forms

ie'" 1
'P= I 2K&X

2
.

[( )~

p''( p+pp')' p, (—2 )
~c

2048 ~' X' ie"'
[(X+X) +K ] 2sinwr

x p '(I -sp+Pp') 'dp, (A23)
c
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where
S X1+X2 s P X1X2 )

and C is a contour that runs from 1 on the real axis
to the right of the origin, encircles it, and runs to
1 again. For t & 4/a in the H-Compton amplitude,
Gavrila and Costescu showed that the followihg
series expansions in f for P' and Q' are valid:

P'=Z P'„(Z)t"

2)(2 (2)2 t )'
(X+X)'+Ka, p'

(Fig. 5):

KIII= 4&t&
K —1

K K (K —2)
K-1 K —1 K —1

(A31)

(A32)

(A34)

2EI(1) 1 p —T~ 3 +p —Tq 3I)'

2+p T

Q'=Z Q'„(z) t"

(A24)
K K-2

VI=(t=4, K=2] .

(A35)

(A35)

2Z' (3),
(X+y)'+Z' p! 4y'~

2EI(1, —2 —p —7, 4+p —r; 33) (A25)
3+& —7

where

I= [(X-~)'+Z']/[(X+X)'+Z'] = (x, x,)"'.
Equations (A24) and (A25) were acnieved by employ-
ing the identity

(1 x1P) (1 x2P) [1 (x1x2) P]

(«+ "~ 3 (««) ) p)[1 —(x1xa)" 'p]'

and the binomial expansion

[(1—x, p) (1 —xa p)]
' = [1 —(x, xa)'~' o] 3

„p (b).)~'(«+*a -'(««) ")~.
) (~„)

p-o P' l [1-(x1xa)"'P]'

which is valid only for Itl 4&/a. For t&4/a, we
write

(I -xI p) (I -xa p) = [1 + (xI xa)'~ p]'

X1+X2+2 X1X2 '
[1+(x,x,)' 'p]'

and use the binomial expansion

[(1 —x,p)(1 —x, p)] '=[1+(x,x,)' 'p]"
(t))2 [xI+xa+ 2(xI xa)"'] p'I '

(A2S)P! [1+(xIxa)'~ p] j
which is valid for

Regions IIU IIIU IV are covered by the inequality
(ASO). We then find

64@ ~B e 2/X
ImP(K, t) =

3 (1 2)3

xaEI(2 —iI!,2+iI!;2, v) if (K, f) C I, (A37)

, , 255II q'(I+-,' I!') e '""
ImQ(K, t)= cP K 15 (1 2)a 1 -2~

xaE1(3 —iI!,3+iI!;2I!,v) if (K, t) &I, (ASS)

~6 ~"2m X
mP(K, t) =

3 (1 2)3 1 -a@3

x 2E,(2 —iI!,2+irp —,', 1 —v)

if (K, t)E IIUIIIUIVUVI, (ASS)

(k-Z)
k- I k- I

k-I

2(Z 2 —2Z+ 2)
K —1

(ASO)

and we have put a= 1. %e shall also neglect K corn-
pared to ~ in the region of interest. %e define
K= jC2a/(2, and we divide the subregion in the K(s f
plane (K & 1, f & 0) into the following six regions

k= I

FIG. 5. Subregiona in the (Ret (S ReK, Z&l, t &0) plane.
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X=2tan 1(K —l)I~ z, v = [(K—1)/K jt.
For (K, t) in IVUV, we notice that !x1xz!=1, xI,
x2 are both real. Thus either l x& I & I and t x2l & 1,
or vice versa. We take, without loss of generality,

t x, I & 1 and I xat & 1. Then expanding the factor
(1 —xz p) by the binomial series in the integral rep-
resentation of P and Q in (A22) and (A23), we find
that P and Q are both convergent for (K, t) in IVUV,
and they have the same series representations.
(The detail of this proof is given in Ref. 11.) Now

analytic continuation of ImP and ImQ into V as
given by the Gauss type of hypergeometric func-
tions (A39) and (A40) exists and since IV is a non-

empty region, we conclude by the uniqueness of
analytic continuation that ImP and ImQ have the
same form as (A39) and (A40) in region V. From
(A37) to (A42) we see that p„has a discontinuity
at t= to=4/a'. This comes as no surprise and in
fact, conforms with the Mandlestam representa-
tion.

3. Convergence of the van der Waals Potential Integrals
in the Case of Hydrogen

To demonstrate the assertion we make in (2. 8)
of Sec. II we have to examine the behavior of I„„(t)
as t- ~. We note that in

1 it) f ~a p" (tt t) tt, (tt t)
p) 77

x 4 (K„,Kz, t) (A41)

the E integral is convergent from the explicit
forms we have for ImP' and ImQ*, and that the
main contribution comes from K- II/a. Hence to
examine the asymptotic behavior of I(t) as t -~ it
is sufficient to examine the behavior of p„(K„,t)
x p, (Kz, t) 4 (K„,Kz, t) as t - ~ and for K„Kz- tz/a. This results in the examination of

,F,(2- iI), 2+ iI!,—,', 1, —v),

zFI(3 —tI!, 3+i g, ~, 1 —v),
and 4'~(Kz t Kz, t) as t -~, since the only t depen-
dence of ImP' and ImQ' occurs in v. Using the
explicit form of C,„ in Sec. II, we find

+KK = +zz- «)"', (A42)

C'~~ = 4 ~~ - const .
On the other hand we can use the formula

r(c) r(b- a)E(at bt ct z) —r( ) r(b)

z z 256II I!z(1+-,' I! ) e '""
ImQ(K) t) = II K

15 (1 z)z 1 -zttt)

x zFI(3 —1I!t 3 + $I! t z Iit 1 —v)

If (K, t) 6 Ilu Ill ulvu Vr, (A40)

x (- z) ' F(a, a+ 1 —c;a+ 1 —b, z ')

ImP'(K, t)-t ' for K- n/a,

ImQ'(K, t) - t ' f» K- o/a ~

(A44)

(A45)

Thus we obtain

I,,(t)-t"'

Ized«) -t ',
(t) t-11/ z

which establishes the boundedness of

f II (t)l«.

(A46)

(A47)

(A48)

APPENDIX 8: S-MATRIX APPROACH TO MULTIPOLE-
ELECTROMAGNETIC POLARIZABILITIES

It is shown in FS that the electromagnetic form
factors at zero-energy and at zero-momentum
transfer, denoted as Ez o(0) and F„o(0) in this
paper, are related to the dipole electromagnetic
polarizabilities by

Ez, o(0) = 4voz,

EII,o(0) = 4vuz .

(Bla)

(Blb)

In this Appendix, we demonstrate similar rela-
tions between the derivatives of the electromag-
netic form factors with respect to the momentum
transfer evaluated at zero momentum transfer and
the multipole- electromagnetic polarizabilities. "
Such relations can be summarized as

E„„{0)= 8IIet, z„+I/(2n+ 2)!,
where x=E or M, e.g. , &~ 22 would be the static
electric quadrupole polarizability, and

gn~
(0) =— (~, t)

~gn
40)zo

Note that in this Appendix we use co instead of K,
to avoid later confusion in taking derivatives. We
also wish to point out that (B2) is true only in the
static limit. In general

a

+ O(o)'a') '","+ ~ ~ ~ . (B3)

To prove (B2), we follow the arguments of Ap-
pendix A of FS and obtain the second-order S-ma-
trix element corresponding to double scattering
(Fig. 6)

S'"=-,'(er) f (F,P.P, +z Ezg.,)

+ (- z) ' E{b+1—c, b; b+ 1- a, z ')r(c) r(a- b)
I'c —b I'a

and we obtain
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( )n+m ( 1)m
n, m

8,. K . . .8, K 8) K . . . 8~ E

PIG. 6. A tom-photon scatter'ing kinematics.

+(4Elg 0 gpp+ E2 g 0)5 (K)5 (K )d p . (812)

In the nonrelativistic limit, . the form factors I &

and Fp are functions of Kp and t, [t = —(R —R ) ].
Since the derivatives are taken only with respect
to the spatial components of K, I & and F& can be
regarded as functions of t only. To evaluate (812)
we note that

where
P„=(p„+p,'),

xF ,(- K) Ep„( K ) dP- (84) 8, (K). . . 8, (K) E(t)

= (-2)"(K,. -K, ). . . (K,. -K; ) E"(t)+[(-2)"0 F" I(t)

I 8'

P =P —K=P +E
Pa-

P =P /m 2mgp,

gEp( )x8 Z agyg ~ I XI ~ XI g zg 1)2p 3
n~0

(Ba)
where

a„„.. . = —,8„(x)...8, (x)F„„(x)~„~ forn-1
(89a)
(89b)= E„„(x)

~ ~0 for n = 0 .
For a static field, we get

F„„(-K) = (2v)'6(K, )

X=(4po'p, ) "'-(2m) ', (»)
as we go to the nonrelativistic limit, and E„„(K)is
the Fourier transform of E„„(x), the electromag-
netic field tensor. On expanding E„„(x)in a Taylor
series about the spatial origin, we get

&& 6~; (K;0 -K,'0). . . (K, -K,'. )+permutations]

+terms involving lower derivatives of F(t) .
(813)

Because the external field satisfies the Laplace
equation, we see that only the first term in (813)
mill contribute. Also all the E,, to E, must be
differentiated when me take the derivatives
8&,(K'). . . 8, (K') because of the adjoining 5 function
in (812). This requires m to be equal to n. On
differentiating, me obtain n. ways of contracting
the indices. Since the order of the indice's are
unimportant, we have

X8, (K'). . . 8, (K')E(d, t)5(K)5(K')d'P"

8n
=5„„2"nl „E(t)(,0 a „,ap„, , (814)

u-"0

8n
4 n Ei geo goo4m 8t"

On substituting this into (84) and going to the non-
relativistic limit in (86) and (BV), we have

(4F,g 0goo+ Epg, ) 6(Kp) 6(K0)—&p~ t(2x) 1

8"

where

Eoy= a~)...] ag„; „„w 5E 5K d P

(815)

(816)

"Z (i)"'"a„,..., 8, (K). .. 8, (K)

where

xa „, , 8,,(K'). . .8, (K') 5(K) 6(R') d P",
(811)

8, (K)=-, etc., and 8& (K)=8 8
1

1

%'e can integrate this by parts using the relation in
(85) and obtain

8,. (x). . . 8, (x)E,(O) 8,,(x). . . 8,. (x)

x F»(O) e' o'-»" d'x (81V)

(Bla)

after going back to coordinate space. Here 9,. (x)$1=—8/(8x, ,), etc. Then using

g 0 goo 9.,(x) ~ 9;„(x)E 9;,(x) ~ ~ ~ 8; (x) Ep

= —8,,(x). . . 8,. (X)Z, 8,,(x). . . 8, (x)g, ,

g., 8, (x). . . 8,. (x)E „8,,(x). . . 8,. (x)E,„
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=2[-e, (x). . . e, (x)E~e, (x). . .e, (x)Z,

+e, (x). . . e,. (x)H, e,. (x). . . e, (x)H, ], (819)

-1 8"„„F,(O)+„„F,(O) = „'„=n!F, „(O),

] eel 8tl„„F,(O) = „„F„(O}=n!F„„(O)

and rewriting E",z as

(82o)

(821)

xH, e,. (x). . . e, (x)H, ] . (824)

The n = 0 terms in (824) reproduce the results in
FS. We must now identify this Hamiltonian with
the Hamiltonian describing the energy shift of an
atom in external fields, in order to make the iden-
tification in (82). Consider for example the case
of an external electric field. The energy shift is
then given by

oo 2+
&E=-2 Z el (e, . . .e, V),

2 ))~, (825)
2 ~., ' 'i' ' ' '~ (2f, ! ) '

where 8, . . .8,. V is the derivative of the perturb-
ing potential evaluated at the origin, and the factor
2 /(2I. )! is inserted to properly normalize the po-
tential. The quantities &~1, are the multipole po-
larizabilities. " Since E& = —8, t/', comparison with
(824) shows that these two Hamiltonians are the
same provided that (82) is satisfied. Similar argu-
ments can be given for an external magnetic field.
The extra factor of 4v in (82) comes from the
change of the Heaviside unit to the Gaussian unit of
charge.

For a nonstatic field, say a sinusoidal one, we
have to replace the 5 function in (812) by

5'(z) - 5(fc, —~) s(R),

5'(z')- 5(sc,'-~) 5(R') .
(825)

Also, in this case, the field would satisfy the wave
equation, and the terms that we throw away in
(813) will survive.

A contraction is now possible between any two
indices among i&. ...i„and any two among j&. . .j

&"o=(„!)o S(Po Po-)(p'I e;,(x) "e; (x)F„,(0)

x e,,(x). . .e, (x) F,„(O) i p), (822)

where I p) denotes the state with wave function
e+', we finally obtain

S&'& = —2' 5(p,
' —p, ) (p~ H'~ p), (823)

where
H'= ——,'Q 2"[F „(0)e, (x). . . e; (x)@

x s, (x) . . . e,. (x) Z, + F„,„(O) e, (x) . . . e,„(x)

Such a contraction will decrease th~ order of the
spatial derivative by 2 and will give a multiplica-
tive factor of 4g e. g.

2
O'Vfgfpfso ~ ~ f& )gap 0Pfq ~ ~ ~ 0

Consequently, in the expression analogous to Eq.
(84) for a sinusoidal field, we have terms like

(82'7)

H' = ——,
' Z'[Fx,o((u) + O(&u' a') Fo, (((u)/a'

+ O((u' a') Fo, ,(~~)/a'+ ~ ~ ] —
o e P, eg &g [2Fo,g((o)

+O(~ a') Fs,o((o)/a'+ ~ ~ ~ )+ ~ ~ ~ . (828)

If we define e& as the coefficient of —,'E' in H and

o4 as the coefficient of 8, E& 9, E& and so on, we ob-
tain

4 ~,( ) =F,(~) -4~'F, +0{~'a') Fs, ,/a'+ ~ ~ ~,

—u, (oo) = Fs, g((u) + O((o'a') Fs,o/a' (829)

+ O(~' a') F, ,/a'+ ~ ~ ~

4m2 2 2 2

(») a,i(&) = F, , &(~) + O(~ a ) F &/a + ~ ~ ~

On inversion we obtain

Fa,o=4mao+o o(u +4+0(~ ) +o+ ~ ~
8 I 4

etc.

APPENDIX C: APPLICATION TO POTENTIAL BETVfEEN
HYDROGEN ATOMS

a =f"(Z, f)+I-(ff, t) -O,
a=q'g, t)+q-(x, f), (C2)

where +, —refer to the direct and crossed graph

As is clear from our discussion in Sec. II, the
long-range forces corresponding to higher-multi-
pole interactions can be computed if we know the
form factors I'„„in the physical region. Because
both the nonrelativistic Coulomb Green's function
and the hydrogenic wave functions exist in exact
analytic form, these F„„'sfor hydrogen in the non-
relativistic approg. mation, can be calculated in

closed form, It is actually enough to lmow the
imaginary part of I„„.The analytic expressions
of these E„„for hydrogen are essentially contained in
Appendix 9where we discuss the analytic properties
of the spectral functions. However, because of
the availability of the one-dimensional formula
(2. 16), it is also advantageous to know ReF„„.
Therefore in this Appendix, we present the analyt-
ic forms of HeF„„and ImE„„fox hydrogen in the
ground state and also some numerical results of
our computation for the H-H system.

The two form factors A and B defined in Appen-
dix A2 have the general form
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and 0 refers to the seagull term, and

P-(K, t) = P'( K,-t),

q (K, t) = q'(- K, t) .
Fs(K, t) and F„(K, t) are given by

(C3a)

(C3b)

F.= a (0-P'-P -(Q'+9 )(I+t/2K')],
(C4a)

-4mF.= K. (e e). ( C4b)

(C6)

Only the direct graph gives an imaginary part and
we recover the result in the early part of Appen-
dix A2.

0 is a function of t only and is given by

We remark that X, is purely imaginary above the

photoelectric threshold. Then using (C13), we can

verify the assertion me made on the asymptotic
behavior of F„(K) in Sec. III.

F„~(K) can be computed by computing P~(K) and

Q~(K). But P~(K) and Q~(K) are singular as K ap-
proaches (I —I/n~) o./2a, corresponding to reso-
nances. These singularities can be regulated by
making the photon energy complex, and we can ex-
press the imaginary part of P~(K) and Q~(K) in

terms of 5 functions. Such techniques have been
used by one of us previously. ' We shall not go
through the details here but simply give the result.

Singularities in P~(K) and Q~(K) occur in the

hyper geometric function

,F,(1, 1 -P —~. , 3+P —~. , u)/(2+P —~.)

where
a~=r(a+p)/r(a) .

Defining

X,= 2m(ED+K),

P'(K, t) =2 P~(K) t~,

q'(K, t)=Z q', (K) t',
we have

(2)p

(X+~)'+K' P I 4y'

(C6)

(cv)

(CS)

(C9a)

(Ceb)

This becomes singular if v, is equal to an integer
n ) 2+p. Now we find

~F~(1, —1 —P —r„3 P+—w„u)
2+p —T.

g (-1—&. -p)i „i
2+p —~, , (3+p —~,),

By making K complex K- K+ie and using the iden-
tification

lim, ,z ~ = w6(K —&z„),

where ~„=(1 —I/n ) n/2o. ', we obtain, on expansion
in series of E, and keeping only the leading terms,

~ 2Fg(I, —I —p —&„3+p—7„u)
+P 7

C10
TABLE I. The first correction term (E-E part) in the

generalized formula of the van der Waals potential for
H-H.

PFg(I, —2 —P —w„4+P —~„u)
( I)

3+P 7y

Qn comparison we obtain

Pq(K) = Qq g/2PK

The above expressions are valid as long as I t I is
less than anomalous t-hreshold. Above the photo-
ionization threshold, ImP~(K) has the analytic form

64' I ~, l (I+ I 7, 1 ) exp(-2 I r, l y)
3g 1 —exp(- 2m I ~, I )

~' x', (2 —7,), (2+ ~,),
[(X', —~'-K')'+4X', K']' (-',),P 1

X(—X P
+

(X'.-~'-SC'1'+4''X.')

0.100 (02)
o.2oo (o2)
o.3oo (o2)
0.400 (02)
0.500 (02)
o.v5o (o2)
0.100 (03)
o. 25o (o3)
O. 500 (03)
0.750 (03)
o. 1oo (o4)
0.125 (04)
o. 15o (o4)
o. 2oo (o4)
o.4oo (o4)
o. 1oo (o5}
o. 1oo (oe)
o.1oo (ov)

H-H
Cgg@0

0.1247 (03)
0.1247 (03)
0.1245 (03)
0.1244 (O3)

O. 1242 (O3)

0.123e (o3)
0.1228 (03)
O. 1162 (O3)

o.1o2e (o3)
0.8988 (02)
0.7898 (02)
0.6994 (02)
0.6246 (02)
0.5095 (02)
O. 2833 (02)
0.118r (02)
0.1188 (01)
0.1188 (00)

gfgo

o.124v (o4)
0.2493 (04)
O. 3736 (04)
0.4975 (04)
0.6210 (04)
0.9269 (04)
O. 1228 (O5)

o.29o4 (o5)
0.5132 (05)
o.ev41 (o5)
0.7898 (05)
0.8742 (05)
0.9368 (05)
0.1019 (06)
O. 1133 (Oe)

0.1182 (06)
0.1188 (06)
0.1188 (06)

gs a /It2g)go

0.1247 (01)
O. 3116 (00)
0.1383 (-01)
o.vvv4 (-o1)
O. 4968 (-O1)
0.2197 (—01)
0.1228 (-01)
0.1859 (-02)
0.4106 (-03)
O. 1598 (-O3)
O. 7898 (-04)
o.44ve (-o4)
o. 2vve (-o4)
0.1273 (-04).
0.1771 (—05)
0.1182 (—06)
0.1188 (-09)
0.1188 (-12)

where
2y I X, IX=tan» ', and 0& X&g.X+K +X, (C14)

~(n) indicates a multiplicative factor of 10". R is in
units of the Bohr radius a; Hz, & ———Vzz &OR, in units
of G. av.
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TABLE II. Asymptotic limit of Vzz „~.

2451

R 0

—
Vpp (R)

6.5 ~ a5
R6

—Vpi +)
62. 35 g av

Rs

—Vp2(R)

1077 n a'
R"

—VP3(R)

28960 n a"
Ri2

—Vii (R)

1140 ~ ao
Rip

—Vi2(R)

31930 (y aii
Ri2

5086 g a
R

5.94x 104 g a8 1 246x106 g aiP
Rii

3.246 x 107 Ot ai2
R"

1.185x 108 g a 3.120 x 107 ~ ai2
Rii

1 ~ (-1 —7, -p),Im ' I'
2+p —~, (3+p —~),

(n+p+ 1) e s 2

(n -p —2)! (2p+3)!
where

dg e-2'
(~ ~ ~a) (K s 13) ~ (C16)

R d 3R d 19R4 d4 d09
16 dR 8 dR 8 dR dR~

where

&& ~ 5 x —1 ——e, (C15)
~

d' d
+42R —90R —+ 90 . (C17)dR~ dR

K
o./2o.

This is the zero-width approximation because E

can be interpreted as the width of the nth, excited
state. 0, P~, and Q~ are regular for all K; and
P' and Q' are regular off the resonances. At reso-
nances, ReP~ and ReQ~ are obtained from ImP~(K)
and ImQ~(K) through dispersion relations. Then
calculation of the higher-multipole forces with the
one-dimensional integral can be proceeded with
the method presented in an earlier paper.

We have constructed pe 0(K), ps ~(K), pe, 2(K),
and pe, (K) for hydrogen by following the above
procedure. The potential V» M(R) has been cal-
culated in a previous paper. According to (2. 11)
the potential Vgg io can be written as

,go(R)=, , Qs
—1 oy

4m R

K~ pe, i(K~)Ka pz, o(Ke)
~B A B

0

This potential has been computed for various dis-
tances for A = B= H. The results are given in Ta-
ble I. Also we have calculated the long- and
short-distances limit for the potentials V~~ Oz,

V@@ 03 Vgg ia Vgg ia The results are given in
Table D together with the corresponding values
for V~~8 00 and V~~ &0. We also conjecture a sim-
ple .interpolation formula V», to(R) similar to the
one given by O'Carroll and Sucher ' for V» 0~.
This conjectured formula works very well for hy-
drogen and we are encouraged to generalize it to
all values of n and m. We define

We conjecture a possible interpolation formula
V» „(R)for Vss „(R)as the following:

—1 2 t( vD„„'t
V», nm(R) = -R6+2(n+wc& Cnmtan
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