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A Fokker —Planck equation for the joint probability density of the orientation and angular
velocity of a body of general shape is derived by use of a rotational Langevin equation. Equa-
tions governing the seperate distributions of orientation and angular velocity are deduced from
the equation for the joint probability density. For the special case of a spherical body, two
expressions for the orientation distribution are calculated, one valid for small values of the
frictional constant occurring in the rotational Langevin equation, and the other valid for large
values of the frictional constant. The latter expression includes previously presented results
of rotational-diffusion theory and Steele's modification of rotational-diffusion theory, and the
calculation provides conditions of validity for these theories. Expressions are calculated for
time-correlation functions of spherical tensors, such as spherical harmonics, which involve
functions of the orientation of a, body.

I. INTRODUCTION

The theory of translational Brownian motion is
concerned with the calculation of the joint prob-
ability density for the position and velocity of a
particle in a fluid. The theory is usually based on
Langevin's equation, which is Newton's second
law with the assumption that the force acting on
the particle is the sum of a viscous retarding
force proportional to the velocity of the particle
and a rapidly fluctuating force whose statistical
properties are such that the probability for the
velocity of a particle approaches a Maxwell-Boltz-
mann distribution. By use of Langevin's equation,
a Fokker-Planck equation for the distribution func-
tion of position and velocity can be derived, and
the equation can be solved. ' '

The analogous problem of rotational Brownian
motion is concerned with the calculation of the
joint probability density for the orientation and
angular velocity of a body in a fluid. The rotational
problem is more complicated than the translational
problem, primarily because it is not possible to
specify the orientation of a rigid body by a vector
whose time derivative is the angular velocity of
the body. The specification of the orientation of
a body requires three coordinates, such as Euler
angles, whose relations to the components of
angular velocity are not particularly simple.
Nevertheless, if the rotational analog of Langevin's
equations, based on Euler's equation, is intro-
duced, and the orientation is specified by some
appropriate coordinates, it is possible to derive
a Fokker-Planck equation for the distribution
function for orientation and angular velocity.
However, an analytic solution of such an equation
for the general case has not been given.

Theories of rotational diffusion, concerned with
the probability density just for orientation and
not also for angular velocity, have been developed

by several authors. ' ' Ivanov has obtained a
theory of rotational diffusion as a limiting case of
his solution of the rotational random-walk prob-
lem. '~ Steele has presented a theory of rotational
diffusion which includes inertial effects not con-
tained in the results of Refs. 5-10. ~ However,
all of these theories of rotational diffusion, in-
cluding Steele's, have the fault that they do not
reduce in the appropriate limit to the correct re-
sult for a freely rotating body.

Fixman and Rider have derived a theory of ro-
tational Brownian motion for the special case in
which the direction of a single vector fixed in a
body is of interest, rather than the complete
orientation of the body. They have numerically
evaluated (P„(cos9(t)))for a symmetric top, where
P„is a. Legendre polynomial and 8(t) is the angle
made by the symmetry axis with its initial di-
g ection. '

Gordon has calculated dipole-correlation func-
tions for a linear molecule by assuming that the
molecule undergoes collisions in which either (i)
both the magnitude and the direction of the angular
velocity of the molecule are randomized ( J dif-
fusion) or (ii) the orientation of the angular ve-
locity is randomized but its magnitude remains
unchanged (M diffusion). ~~ McClung has applied
Gordon's model to spherical-top molecules to cal-
culate correlation functions of orientation and
also of orientation and angular velocity. ' Fix-
man and Rider have also employed Gordon's
model to calculate correlation functions involving
the orientation of a spherical molecule. '~

In Sec. II, a Fokker-Planck equation for the
joint probability density of the orientation and
angular velocity of a body of general shape is de-
rived in terms of Euler angles specifying the or-
ientation and in terms of the components of angular
velocity in a principal body-coordinate system.
In Sec. III the probability density is expanded in
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terms of rotation matrices, which leads to matrix
equations for the probability density and its
Fourier transform with respect to angular velocity,
which are useful because they involve quantum-
mechanical angular-momentum matrices whose
properties are relatively simple. In Sec. IV, the
distribution of angular velocity is obtained by in-
tegrating over orientations, the primary purpose
being to establish the relation between the fric-
tional constants and the fluctuating torques that
occur in the rotational Langevin equation. In Sec,
V the general equations governing the distribution
of orientation are obtained. Section VI is con-
cerned with the distribution of orientation of a
spherical body. A generalization of the procedure
used by Wilcox to derive the Magnus expansion'
is employed to derive two expressions for the dis-
tribution of orientation of a spherical body, one
valid for small frictional torques, and the other
for large frictional torques. An important con-
sequence in the latter case is the establishment of
the conditions under which rotational-diffusion
theory, ' and Steele's modification of it, ' are
valid. In Sec. VII expressions are derived for
time-correlation functions of spherical tensors,
such as spherical harmonics, which involve func-
tions of the orientation of a body.

II. BASIC EQUATIONS

Let S' be a principal coordinate system fixed in
a rigid body. The orientation of the body is spec-
ified by the Euler angles g=—(o. , P, y) of S' with
respect to a laboratory coordinate system 8. '6

The components with respect to S' of the angular
velocity of the body are denoted by e„v2,and

When (d occurs as the argument of a function,
t eprese ts (d1 (d2 and (o3.

Let P(ar, g, t; &oo, go) represent the conditional
probability density that at time t & 0 the body has
angular velocity e in d & and orientation g in
dg=sinPdudPdy, if it had angular velocity &oo

and orientation go at t = 0. An equation for
P((o,g, t; &oo, go) can be derived by a procedure sim-
ilar to the derivation of the Fokker-Planck equa-
tion for translational Brownian motion. '3

It is assumed that the rotational motion is a
Markov process, so that

P(u&, g, t+ bt; &oo, go)

= fd (he@)fd(4g ) P(&u, g, d t; a& - «o, g - hg)

xP((o —b,(u, g- ~, t;(oo,go) . (2. 1)

bg is defined by the fact that the orientation g is
obtained from the orientation g- ~ by a rotation

The last P in Eq. (2. 1) can be expressed as

P((d- 4a&,g- hg, t;&u , o)go

= e "'e ~"' P(ur, g, t ~o go), (2. 2)

where J is the quantum-mechanical angular-mo-
mentum operator for the body, in units of 5, and

~ is a rotation through angle 8 about the direc-
jon of 8 17 18

It is assumed that, for small values of &,
P((d, g, bf;oo —h&u, g- ~) is zero unless l=(d&,
so that Eqs. (2. 1) and (2. 2) give

P((o, g; t+ r t; (go, go) = Jd (A(o)p(u), ht; ~ —b(o)

"P('»g f' (oo go) (2 3)

where P((o+ b(o, ht; z) is the probability density
of a change in angular velocity from ~ to ~+ 4~g

in time 4t; p is assumed to be independent of the
orientation of the body, since ~ represents com-
ponents of the angular velocity in the body coordi-
nate system $'.

Application of the operator e'"" to Eq. (2. 3),
followed by expansion of the left-hand side of the
resulting equation as a power series in ht, and use
of the expansion

in the right-hand side, along with the fact that

fd (6(d)p((d + +(» lU
& (o) = 1

&

gives the equation

do(b(o) (- b(o ~ v„)"p(rd+ a(o, At; (g)„1nt

x P(» g( f ( (do( go)

= —Z s [(&(d;) Pl

8 8+- Q f(~~,~~,)P]
2

& & 1 8(d~ ~OPS

where

(+(ds n»o ~~a )

=—f b, ~~ zL(do erg& p((d n+(d, nf; (d) (f (+(d) z (2 5)

and the symbol O((b&o')) in Eq. (2.4) represents
terms that contain the quantity (2. 5) with p+v+K& 2.

In order to evaluate the quantity (2. 5), a rotation-
al Langevin equation will be used, analogous to the
Langevin equation employed in the theory of trans-
lational Brownian motion. '
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The rotational motion of a rigid body is governed
by Euler's equations, which can be written

&u; = r; e& v» + 1V, /I;, (2. 6)

where i, j, and k are a cyclic permutation of 1, 2,
and 3; co, is the derivative with respect to time of
the component m,. of the angular velocity along the
ith principal axis of the body; I,. is the principal
moment of inertia and N& is the external torque about
the ith principal axis; and

r; = ( I~ —I» )/I; . (2. V)

(A, (t)) =0;
(A, (t )Ag(t ) ) = 2a; 6 jg h(t —t ),

where a,. is a constant;

(A, (ts)A~(ta) ' A» (tan+i )) = 0;
and

(A, (t, )A, (t, )
~ A, (t,„))

(2. 9)

(2. 10)

(2. 11)

= Z (A,.(t )A~(t,)) (A (t„)A,(t, )). . . , (2. 12)

where g represents a sum over the (2n)! /n! 2"

ways in which the 2n A.'s can be taken in pairs.
Use of expression (2. 8) in the Euler equations

(2. 6) gives the following rotational Langevin equa-
tions:

v,. = r, e& &u» —B m +A (t) . (2. iS)

The rotational Langevin equations and the prop-
erties (2. 9)-(2.12) can be used to calculate the
averages (2. 5) that occur in Eq. (2. 4). Integrating
Eq. (2. 13) over a short time 4t, one obtains

0+&0
&&0;= (r;w& &u» —B;'&u;)&t+ f A, (t ) dt

(2. 14)
Because of property (2. 9), the average of Eq.
(2. 14) gives

(&~,) = (r;~&&u» —B,&u, )&t . (2. iS)

If expressions of the form (2. 14) are used for both
&u; and «u,', it follows from property (2. 9) that

In analogy to the theory of translational Brownian
motion, we assume that the external torque N,. due
to the interaction of the body with its surroundings
is the sum of a viscous retarding torque propor-
tional to ~, plus a torque I,.A,.(t) that fluctuates
randomly at a rate rapid compared to the rate at
which ~,. changes appreciably:

K;/I; = —B; e;+A;(t), (2. 8)

where B,. is independent of t, w, and the orientation
of the body. Again in analogy with the theory of
translational Brownian motion, ' we assume that
ensemble averages of the fluctuating quantities
A, (t) satisfy the following equations:

(~00, ~~, , ) =O(rt')+ 1 dt'1 dt" (A, (t')A, .(t")).
(2. 16)

The integral can be evaluated by use of property
(2. 10), giving

(Du&, &&@,.) =O(t»t )+2a, 5«..&t . (2. 1V)

It is apparent that a similar calculation of
(bv&" b&uo"6&uo"), using Eq. (2. 14) and properties
(2. 9)-(2. 12), gives a result for which

8 '(. 8 83
&+ Z~itdJ p — I», (rRoi'l-a, p) = 0,8('d

g

(2. 19)
where

(2. 20)

and i, j, and k are a cyclic permutation of 1, 2, and
3.

Equation (2. 19) is the Fokker-Planck equation
for rotational motion. It should be remembered
that the ~& which occur in the equation are compo-
nents of co along the axes of a principal body-co-
ordinate system S', since Euler's equations have
been used in the derivation. Thus the components
J& of the quantum-mechanical angular-momentum
operator which occur in Eq. (2. 19) must also be
the components in S'.

The initial condition on P(Po, g, t; Po~, go) is that

P(~ia'i 0i&oigo) =6(~ &0)6(g g'0) i (2. 21)

where 5(g -go) is zero unless the orientations g and

go coincide, and Jl(g —go)dg =1.

III. EXPANSION OF I((d g t ' 4)0 g() )

Consider the functions of orientation

J 2J+ 1 JQ
MME(g) = p BME(g) i8

which are defined in terms of the rotation matrices

B',„(g)=(jm'! e '""e '"~e '""~j!m),

Op lp ~ ~ ~ j -j~m
~

pl~j

that occur in the quantum theory of angular mo-
mentum. " If the orientation of a rigid body is,
specified by the Euler angles g —= (o., P, y) of a prin-
cipal coordinate system S' fixed in the body with
respect to the laboratory coordinate system S, then

/MAL(g) is an eigenfunction of the square of, the total

lim (&»"&ea"&000")=0 if p, +v+g&2.
~~-o ~t

(2. i8)
If Eq. (2. 4) is divided by t»t. the limit &t- 0 is

taken, and Eqs. (2. 15), &2. 1V), and (2. 18) are
used, one obtains the following equation for
P(»g ti &0 go):
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angular momentum of the body, 2) with eigen-
value J(J+1); the z component of X in S, J„with
eigenvalue M; and also the z' component of f in
8', J3, with eigenvalue K. These properties are
true for a body of arbitrary shape. For the special
case of a symmetric top, („»(g)is also an eigen-
function of the rotational Hamiltonian, but this fact
is irrelevant to its use here. The g„»(g}form a
complete set, in terms of which a function of the
Euler angles specifying the orientation of a rigid
body may be expanded, no matter what the shape
of the body.

The („»(g)satisfy the orthonormality relation '

f dg4&»(g) 4))» (g'} = 5zz 5»)) 5»» (S.3)

and the closure property
ao J

5(g -go) = ~ ~ tI'u» (go) 4))»(k") ~

J =0 NsK= J
(3.4)

where

(JMK~ Jg
~

J'M'K') = f de *„(g)JtI), , (g) .

(S.6)

(3.7)
It follows from Eqs. (2. 21) and (3.3)-(3.5) that

the initial value of f~~„is

f»»(~) 0) "»go) =5("—o) o) t)')')»(go) (S.8)

It is shown in Appendix A that the matrix ele-
ments (3.7) are

( JMK~ J)
~

J'M'K ) = 5 .5»». (JKI J~
~

JK ),
where

(3.9)

(3.10)

Now consider the expansion of the probability
density in the form

P(o))g) ') &o)go) = ~ ~ f»»(o)) f) o)o) go)4»»(g)
J'~0 NsK~ J'

(3. 5)
Substitution of (3.5) into Eq. (2. 19) and use of (3.3)
leads to the following equation for f ~»~(&o, f; ohio, go):

8 8 ~ 8
&~(~ }+&~ o f»»8t ) y e(dg N

= —i 2 o)( 2 (JMK) J~ (IJ'M'K')f»». ,
y=l J'V'K'

3 J
Z (JK~IJ, I JK')f ».„.(3.12)

K'=-Z

(3. 13)

The anomalous sign for the matrix J2, and hence
for the right-band side of Eq. (3.13), is a conse-
quence of the fact that (S.9) represents matrix ele-
ments of the components of the angular momentum
with respect to the body-coordinate system S'.22'23

The anomalous sign of J2, of course, does not af-
fect the usual relation

Jo -=J, + Jo + Jo = J'(J+ 1)I . (S.14)

Let f(o), f; o)o, go) be a square matrix of dimen-
sion 2J+1 whose RMth matrix element for a given
J is f»„(o7,f; &oo, go). Equation (S.12) can then be
expressed conveniently in matrix form for each
value of J as

8 3

+ Z i oy J~ — Ey ((d )
~ ] 8(d)

82
—ag o

~

f(o)) f) (0o)go) =0 ) (3. 15)
840) j

where the derivatives operate on everything to
their right.

The initial condition (S.8) can be expressed in
matrix form

f(&o) 0; o)o ) go) = 5(o) —&o) Q, (3. 16)

where Q is a square matrix of dimension 2J+ 1
whose KMth matrix element is g»(go}.

Rather than dealing with the matrix f, it is more
convenient to introduce another matrix F defined by

f (o)) f ) o)o ) g'o }= F (o)) f ) &o) Q (3. 17)

Let J» J2, and J3 be square matrices of dimen-
sion 2J+1, whose KK' matrix elements are given

by (3.11) and the expressions that follow from
(3. 10) for (JKIJ, I JK') and ( JKIJ, I JK'). Also let
J -=(J„Jo,Jo), which has the properties of a vector
whose components are matrices. For a given J,
the matrices Jj and J3 are the usual matrices for
the x and z components of angular momentum, but
J2 is the negative of the usual matrix for the y com-
ponent of angular momentum. Thus the matrices
are Hermitian, and satisfy commutation relations
implied by

J&&J=-~J .

(JKi J, [JK') =K5„».
Hence Eq. (3.6) can be written

3
—Z Eg(o) )88

g g BQ)g

28
+~I o f»u(»f) o)o)go)

eQpg

( (3.11)

F((o, 0; (o()) =5((o -&u, )I . (3. 19)

for a given J, so that

f»»~&) ~) &o) go) = & &»~~+) f) +o)4z(go) ~

(3. 18)
It. is apparent that expression (S. 17) for f will be
a solution of Eq. (3.15) if F(o), f, &u~) is a solution
of that equation. But the initial condition on F is
simpler, since from (3. 16) and (3.17),
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It follows from (3.5) and (3. 18) that

P(oopg'p tp (dopgo)

ao J
PEN(+p t p (oo ) (tN))((go) 4Mlc(g)J 0 EyesÃ~ J (3. 20)

It is useful to introduce the Fourier transform
of Ez„((d,t; (do) with respect to (d, which we denote
by Gz„(R,t; &ao) and define in matrix form

G(k, t; (d ())
=—fdo(d e '"'"F(((), t; ohio) . (3.21)

I' is then given in terms of G by

F(o), t; &Z~) = (2v) o f doke'"'" G(k, t; (oo) .
(3.22)

It follows from Eqs. (2. 20), (3. 21), and the fact
that F satisfies Eq. (3. 15) that the Fourier-trans-
form matrix G(k, t; (do) satisfies

at ', , -&8k, " ''sk,
8—ir/k/ +a&k/ G=O, (3.23)

where the subscriptsi, j, A' are a cyclic permutation
of 1, 2, 3.

Equations (3.19) and(3. 21) give the initial condi-
tion

't et

G(k 0' (d ) =e '"' oI (3.24)

P((d, t; (oo) = f dg f dgoP((d, g, t; o)o, go)/8n .
(4. 1)

It follows from definition (2. 2) that Dooo(g) = 1, so
that (2. 1) gives (ooo(g) =(8vo) ~o. Hence the orthog-
onality relation (2. 3) gives

f dg ter(g) (8v ) ' 5—zo5 ~o5ro .
Therefore, use of expression (3.20) in Eq. (4. 1) .

gives

o) =choo(o/p t p (do) ~

With J'=0, Eq. (3. 15) for F gives

(4 3)

83
&/(~)+a/, ~ P((d, t; ~,)=0,8') ~

8or& )
(4. 4)

IV. DISTRIBUTION OF ANGULAR VELOCITY

Let P((d, t; (do) be the conditional probability
density that a body has angular velocity (d at time
t» 0 if it has angular velocity ohio at t = 0. As be-
fore, or and oro represent components in the prin-
cipal body-coordinate system S'. P((d, t; (do) can
be obtained from P(uYpg, t; (do, go) by integrating
over all values of g and averaging over go. If it is
assumed that all initial orientations go are equally,
probable, so that the probability of go in dg, is
dgo/8w, then

and Eq. (3.23) gives

.3 8
+ Q B/k/

j-"1 8k~

82
—ix/k/ =+a/k/ G(,()(k, t; u)()) =0 (4. 5)

8A'y 8k]

for the Fourier transform Gooo of Eoo, and hence of
P ((d p t p (d o) .

It is reasonable to expect that, as t-,
P(v, t; (do) should approach the Maxwell-Boltzmann
expression

Po(+) = G expl. —(Il(dl +IS(()2 + 3 o )/ "8 ]
(4.6)

where k~ is the Boltzmann constant, T is the tem-
perature, and C is a normalization constant having

the value

Q = (I~I~Io) /(2vke T)

Substitution of Po(~) into Eq. (4.4) reveals that it
is a solution of that equation if

(4. 7)

a, =By, T/I, . (4. 8)

+ Boo&k&
e" &', 4. 9

in which the relations (4. 8) have been used. It then
follows from Eqs. (4. 9), (3.22), and (4. 3) thato4

/

P((dptp o)o)= II 2 k T(1 ae/t) I-
I((di (do/ e / ) (4 10g exp —
2~ 1 pg~g ~ x ~

It is apparent that the limit of this result as t-
is indeed Po ((d ), Eq. (4. 6), when I, = Io = Io =I. —

V. DISTRIBUTION OF ORIENTATION

Let W(g, t; go) dg be the probability that a body
has orientation g within dg at time t» 0 if the body
has orientation go at t =0. The conditional prob-
ability density W(g, t; go) can be obtained from
P((o, g, t; (e)o, g()) by integrating over (e) and averag-
ing over ohio using the Maxwell-Boltzmann distribu-

Hence, if it is required that P(e, t; ~o) approach
Po(~) as t-~, then a, and B, must be related by

Eq. (4. 8). We shall henceforth suppose that rela-
tion (4. 8) is satisfied.

The solution of Eqs. (4. 4) or (4. 5) is simple
only for the special case of a spherical top, for
which I, =Io=I, =I. In this c-ase, x =(I/ —I~)/I, =O,

so Eq. (4. 5) reduces to a linear first-order partial
differential equation, which can be solved by stan-
dard procedures. The solution which satisfies the
initial condition (3.24) is

3

Ge, (e, (; ee)=expI —Z )e&"()—e ~ )
)=1 )
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tion Po(v~) for &oo. Thus, using Eq. (3. 20),

W(g, &; gp) = f&'4) ld'(u, PO((u())P((o, g, f; (o„g,)
00 J

~K«(f)(AfN(gO)INK(8) & (5' 1)

K ««(f) = fCf (d fd (doPO((dp)E ««((d~ f: (Oo)

(5. 2)

In this section we consider the determination of the
distribution of orientation W(g, f; go) for a body for
whichI~=I2=IB—=I. Inthis case, r, =—(I& —I„)/I,= 0, so
that Eq. (3. 21) reduces to a first-order partial differ-
ential equation for the Fourier-transform matrix
G(k, f; &oo), which is a considerable simplification.
%'e shall also suppose that the friction constants
about the three principal axes are equal: B,= B2
= 83=B. The calculations can be carried out with-
out assuming the B&'s are equal, but it seems
likely on physical grounds that in most cases in
which the I&'s are equal, the B&'s will also be
equal. Furthermore, if the B&'s are equal, the
equations can be written concisely by use of vector
notation. In particular, Eq. (3. 15) for F can be
written

+Ceo'J —3B—BGo'V~ —BQV~ F (0 t~ Q)0 =0
~

~ ~

(6. 1)
where J is the vector whose components are the
matrices Jyq Ja~ and J3q

e =- (&o, , a&2, &ra); V„=—(8/8a&, , 8/8ur 2, 8/8&v ~);

n= ksT/I . -
Similarly, Eq. (3.23) becomes

(6. 2}

—J ~ V~+Bk ~ V'~+Bah 6 k, t; m0 =0 .~ ~
~

(6. 3)
Equations (6. 1) and (6. 3) are still quite compli-

cated. Since they are matrix equations, each rep-
resents a system of coupled partial differential
equations. Even for the simplest special case of
a spherical body we have been unable to obtain an
exact solution in closed form of either Eq. (6. 1)

and P~(&~u is given by Eq. (4. 6).
It is apparent from Eq. (5. 2), and from the

definition (3.21) of the Fourier-transform matrix
G(k, f; ~,) of F(ar, f; &u, ), that

w(t) = Jd'(u, P,((o,)G(0, f; (o()),

where w(t) is the square matrix of dimension 2J+ 1
whose ÃNth element is w «„(f)for a given J. The
relation (5. 3) is used in Sec. VI to determine w(t),
and thus determine W(g, t; go).

VI, SPHERICAL BODY

or (6. 3). However, we derive below two iterative
solutions, one of which provides a good approxi-
mation for small values of B, and the other of
which provides a good approximation for large val-
ues of B. But first, for purposes of later refer-
ence and to develop some useful techniques, we

consider the case of a, free spherical body.

A. Free Spherical Body

If a spherical body experiences no interactions
with its surroundings, then 8= 0 in Eqs. (6. 1) and

(6. 3), so that

+2(d'J F (o~tp 400 =0~
~ (6.4)

(6. 5)

a, ;„(f)= g ' e'"" "'dy
~

(s"-")«(e '"-')z,«
J"0 ~ 0

&& sin8 d8I &(t)/4v

where

—,5«„Q
~

(e"'3)«~(e '"-')~«sin8 d8 1~(t),
J" J"0

(6. 10)

I~(t) =4m J d(u (u'Po((u)e '"'~ (6. 11)

The solution of Eq. (6.4) that satisfies the initial
condition (3. 19) is obviously

F((o, f; u)o) =e '"o'-"5((o —(o()), {6.6)

so that, from (4. 3) and (6. 6), P(&u, f; ~o) =5(e —&oo),

as expected. The Fourier transform (3.21) of ex-
pression (6. 6) is

G(k t &u ) =e '"'"'e ' o'-' {6;V)

It, is easily verified that expression (6. 7) is the
solution of Eq. (6. 5) which satisties initial condi-
tion (3. 24}.

Substitution of (6. 7) in Eq. (5. 3) gives

w(t) = fd'coPO((u)e '"'", (6.6)

where we have omitted the subscript on the vari-
able of integration v0, and have used the fact that
Po(&o) =Po(&o) for a spherical body

In order to evaluate the integral in (6.6), it is
useful to introduce the spherical coordinates ~, 8,

Q of (o. It is shown in Appendix B that, as a conse-
quence of the commutation relations satisfied by
the matrices Jy J2 J3

e-fU Jt e~e Jsegeaae ~@0Jse-feJae-fe J3 (6. 9)

Since J3 is the diagonal matrix (3.11), then (e' -3)«
= 5«~ e+o«, so use of (6.9) in (6.6) gives for the
KN matrix element
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This integral can be evaluated in a straighforward
manner, using for Po(co) expression (4. 6) with

I, =I, =I, =I. The result is

I', (t}= [i I.'-nt' tz.-t(en/~}'(']e-' "' ".
(s. ia}

It follows from definition (3. 2) that

b = 0 which satisfies the initial condition (6. 23):

(p s, ~ ) e 'l1I toy 'l(or IS (e. 26)

Substitution of (6. 24) in (6. 20), followed by multi-
plication on the left-hand side by Up', results in

the following equation for g-""""~'.

~ j (+) e-la. m' dg ( P) -Imq

where
(6. 13)

(e. 14)

(
S Z' H

Ss
——J(s) v —bi&@& p+bp g +bp Ie"-=0,

p )
(s. as)

where

-')ix- « -')zi de(B)- (6. 17)

Use of Eqs. (6. 15)-(6.IV) gives for the integral
over 8 in Eq. (6. 10) the value 2/(2J+ I). Using
also (6. 12), Eq. (6. 10) then gives

n)'„(t)=8 „(u+I)' ~ (1 —L,'nt')e

(s. 16)
This result and Eq. (5. 1) give the conditional prob-
ability density for the orientation of a free spheri-
cal body.

B. Weak Interactions

It is useful to introduce dimensiqnless variables

p, s, and ~& defined by

Definition (3.1) and orthogonality relation (3.3) then

give

f d (P) d *(P)sinP dP = 5 ~ [2/(ad+ I)] .
(e. is)

Because the matrix J, is opposite in sign to the
corresponding matrix of the component J„in the
laboratory coordinate system, it follows from
(e. i4) t at

(6. 16)

Since ~J is Hermitian,

J( ) U-lg U ef klg ' Js g !Ale' fg (s. av)

Since e-"=I if 5= 0, 8 has the following form as
a power series in b:

(s. 26)

(e. 29)

An expression for the derivative of an exponen-
tial operator or matrix is

„(BHt, -~z Hdxe-
I

—
I

e "-e- .
Ss „(Ss)

Hence, from Eq. (6. 26) for H,

(e. 30)

y ~ d~ pH a ~-xH~HSQ,
SsN

p

(6. 31)

The familiar expansion of e"-"Qe *-" in powers of x
can be written 6

AH@ -xa g g( ~
t )-1(pf Q

)'» p

(e. 32)

where the repeated' commutator bracket is defined

by

H(p, s~ (dg) = Z' t(R (p, s~ (dg)
n=&

Since it must be that H(p, 0; v, ) = 0, it follows that

R„(p,0; &ui)=0.

p n k
q

s= n t, (op=coo/n (e. is)
(6. 33}

Equation (6. 3) in terms of these variables is

(
S ~ ~ py~+ bp p~+ bp U(p, s; ~~) =0,

where

U(p, s; ~, )=-G(k, t;~,)

b= B/n' =B(I/k T—)' '

(6. 20)

(s. 22)

If expression (6. 32) with Q= BR„/Ssis used inEq.
(6. 31), and the integral over x is performed, one
obtains

—~H=E s E . , E b"R.~, —H„I8&S

Bs „g q. o (j+1)t
-

BR, , BR,b=- +b + — R~,Ss Bs 2 —' Bs

The initial condition (3.24) gives

U(p, 0; &uq)=e
"' "~I . (e. as)

We now seek a solution of Eqs. (6. 20) and

(6. 23) which is valid for small values of the dimen-
sionless parameter b. Let

U(p, s'v ) —= Uo(p, s; vq)e" '""~~', (e. 24)

where Uo(p, s; ~, ) is the solution of Eq. (6. 20) when

(BR~ 1 BR) 1 S~R~
+bs +— R, + — R&,

&Bs 2 .~' Ss 2 —' Bs

8, H,
SR,

"»
I+ o(b') e-" . (e. 34)

Ss )

There is a similar expression for ~~e" given by

Eq. (6. 34) with 8/Bs replaced everywhere by V~.
U this expression and Eq. (6.34) are used in Eq.
(6. 26), and the equation is then multiplied on the
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right-hand side by e —, the resulting equation is a
power series in b equal to zero, so the coefficient
of each power of b must be zero. The requirement
that the coefficients of the first two powers of b

be zero gives the following equations:

BBq —J(8) '
Vp Rl = (z(d 1

' p —p )I (6. S5a)

8~B —J(s) y, R,

ee——J(s) V,e = (i~1 —2p) J(s)s . (6. s7)

88)
, Rl +~ J(S) ~ [Rl, V1, R1] —p ~ VqR1 .

(6. 35b)
In order to solve Eq. (6. 35a.), let

R, (p, s; ~, )=1(tZ, . p —p')s+e(p, s; ~, ) . (6. S6)

Substitution of this expression into Eq. (6. 35a) re-
veals that it is a solution of that equation if the
matrix e(p, s; ~, ) satisfies

g(S, (dl) = 2( 8 (11 ' J) S

+ [J —(jg ~ J) ]a& (&u,s —sin+is)

+1(n J)~1 (—,'~1 s +cos~ls —1)j .
(6.45)

Equation (6. 35b) can be solved for R~(p, s; ~1)
in a manner similar to the calculation of R„but
the calculation and the result are complicated, and

will not be presented here.
If the number b defined by Eq. (6. 22) is small,

it is plausible to expect that (6. 24) is obtained to
good approximation by reta. ining only the first term
in (6. 28), winch gives

U(p, s; &ul) = Uo(p, s' e&) e""-'""'~1' (6.46)

It will be assumed that this expression is valid for
small values of b, and it will be used to ca,lculate
this distribution of orientation of a spherical body.

From Eqs. (6.46), (6. 25), (6.42), and (6.44),
it follows that

Let

e(p, s; u&&) = (i+i —2p) V(s)+g(s, &ul), (6. 38)
U(0, s; &u&)=exp(- t~&is»+ 5[2t~gn»'+g(s, ~1)]] ~

(6. 47)
where

V(s)=- f ds' J(s')s' . (6. s9)

Expression (6. 38) is a solution of Eq. (6. 37) if

8g= —J(s) v g = —2J(s) V(s) . (6. 40)

The solution of Eq. (6. 40) which satisfies g(0, a&i)
=0 is clearly

g(s, ~, )= —21 ds' J(s') V(s') . (6. 41)

J(s) = J —[J —n(n J)] (1 —cose,s) —(nx J) simous,
(6. 4s)

where n= ~, /~, . By use of (6.43), the integrals
in (6. 39) and (6.41) can be evaluated, with the re-
sults

x[&s +el (1 —cosa&&s —&o,s sin+is)]

+ (SxJ)(01 ((dlS Cosh)1S —slntdlS) (6. 44)

Therefore, the solution of Eq. (6. 35a) satisfying
the initial condition Rl(p, 0; ~, ) = 0 is

Rl(p, S,' (dl) = I(1(dl ' p p )8

+ (i(u, —2p) V(s)+g(s, ~,), (6. 42)

where V(s) is given by (6. 39) and g(s, ~, ) is given
by (6.41).

It is shown in Appendix C that, as a consequence
of definition (6. 27) and the commutation relations
Jx J= —iJ, J(s) can be expressed as

From (5. 3), (4. 6), and (6. 19),

w~„(t)= (») "'fd'(o, e "1 "Ux„(0,s; ~,),
(6.48)

where U~ is the Kith matrix element of U and

s = a. '~ t. It is convenient to use the spherical
coordinates ~, , 8, P of &u, as variables of integra-
tion in (6.48). If (6.45) is used in (6.47), the re-
sult substituted in (6.48), and (6.9) employed, the
integrals over the angles 8 and P can be evaluated
as in (6. 10) and (6. 15), giving

~;„(t)= 5,(2J+1) ' Z I, (t), (6. 49)

where

I (t)=(2/ )"'j d
0

x exp(- 2b[J(Z+ 1)~ (&s —sin&us)

+ I [s s —v (&s —sin&us)]

+iL[(u-'(-,'u)'s'+cos(os —1)——,'(us']}) .
(6. 50)

When 5= 0, I~(t) reduces to the 1~(t) of Eqs. (6. 11)
and (6. 12).

Consider (6. 50) for L=O:

I~(t) = (2/vr)1' 2 f d(u (u e " ~ '

xexp[- 2M(Z+ I)&o (~s —sin~s)] . (6. 51)

The behavior of the integrands of both (6. 50) and
(6. 51) is determined primarily by &u e " ~, which
increases from zero at w =0 to a maximum of
2/e at ~ = 2't 2, and then decays rapidly as ~ in-
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creases. As a consequence, the entire integrands '

have appreciable values only for 0& & & 1. Thus,
if s «1, the approximation (ds —singes = s ((ds)
can be used in the integrand of (6. 51), with the re-
sult

I (t) s- b 1(J'+ l &s / 3
0 (e. 52)

But this approximation is not very useful since it
does not show how Io(s)'decays as s becomes large,
because it is valid only for s «1, and because
also we are considering b«1.

A more useful approximation can be obtained as
follows. The integral Io"'(t) obtained by omitting
sin~s in the integrand of (6. 51) can be evaluated
exactly, with the result 7

Io"(t) =I1+2[bj(j+1)s]~/exp(-2[bj(j+1)s]'~~) .
(e. 53)

From the definitions it is apparent that Io("(0)=1
= ID(0). Since &us —sin(ds =a&s for &us» 1, or saying
itanotherway &s —singes-~s as s-~ if F 40, and
since the integrand of Io(t) is zero at (d = 0 because
of the factor co2, it can be expected that Io"'(t) is a
good approximation to Io(t) for large values of s,
as well as agreeing exactly at t = O. Hence, we
shall approximate I~(t) by Io("(t).

Now consider I~(t) for LOO. If b=o, Eq. (6. 50)
for I~(t) reduces to Eq. (6. 11) for I~o(t). Accord-
ing to (6. 12), I~(t) decays in a time s -=a'~»t= 1 if
I.t0. But for 0&g&1, the factor involving b in the
integrand of (6. 50) is approximately unity if

. bj(j+1)«1. Thus, if bj(j+1)«1, and if LAO,
Iz, (t) decays in approximately the same manner as
I,'(t).

Therefore, if I~0(t) is used for I~ (t) when LC0,
and (6. 53) is used for Io(t), Eq. (6.49) becomes

A—= n/B = (&AT/IB ) =1/b~ . (e. 56)

The primary objective of this paper is the calcu-
lation of the orientation distribution. Thus it fol-
lows from (5. 3) that it is sufficient to calculate

(e. eo)

From (3.24), (4. 6), (6. 57), and (6. 59), it follows
that

z(q, o)=l .

We now seek a solution of Eqs. (6. 60) and (6.61)
in the form

(6. 61)

n & )
Z(q, r)=e pxZ A"S„(q,7 )

~
. (e. 62)

The sum in (6.33) begins with n= 1, since it is ap-
parent thatif , A=o, the solution of (6. 60) and

(6. 61) is Z =I. In view of initial condition (6. 61),

s„(q,o)=o . (e. 63)

Equations for the matrices S„(q,r) can be de-
rived by the same procedure used to obtain Eqs.
(6. 35). The equations governing the first three
R„are
8Sg —e 'J v' S, = —e'q J,

87
(e. 64a)

f d (doPO((do)G(k, t; &uo) = fd POPO(vo)X(q, r; (() O)

-=e-"''""z(q ~) (6 59)

since, from (5. 3), w(t) = Z(0, Bt).
If Eq. (6. 56) is multiplied by Po((()0) and inte-

grated over d v0, one obtains the following equa-
tion for the matrix Z(q, w) defined by (6. 59):

(
8 T——e 'J V, +As'q J Z(q, v)=0 .

au~„(t)=n „(2J+ () '(((+2[bJ(J+ 1)s] i )

x exp(-2[b j(j+1)s]'~2]

J 22+25 (( —C's')e ~' ")
L-"1

(e. 54)

8S3 —e 'J &S3

(6. 64b)

8Sg P 8S2
)S2 + &Si87. ' —' 2 8v

' —'
8Sq

+ —Sg, , Sg

—(' 'J V, SP=2, 8g + —,e 'J [Sg, V,S~],

where s—= n'~ t. Expression (6. 54) can be expected
to be a good approximation if bj(j+1)«l.

C. Strong Interactions

It is useful to introduce dimensionless variables

+s J ~ (»[Sz, V,S&]+»[Sq, V~5]

++[8„[S„V,S,]]] . (6. 64c)

q—= Bke s', 7
—= Bt . (e. 55)

These equations can be solved by the same pro-
cedure used to solve Eq. (6. 35a). The results are

Since 8/St= BB/Sw —Bq V, and V»= Be 'V, Eq.
(6. 3) gives S,(q, T ) = q Jhn(T) —j(j+ l)h&0(T)I'

where

(e. 65)

where

X(q, 7; (() ) —= G(k, t; ) (e. 57)

b„(~)-=(1-c'), b„(~)-=(~+e-'-1);

S,(q, v)=q Jh2, (7')- j(j+1)h,o(&)I,

where

(e. 66)

(6. 67)



PAUL S. HUBBARD

h»(T) = - —,'(e' —2T -e '),
73 (T) -=—,' [2T- 5+4(T+ l)e '+ e '];
S,(41, T)=- J(J+1)7„(T)1+(IJh„(T)

(e. es)

(e. 89)

where

+ h33(T)[J(J+ l)(7' I ((I J)' ], (6. 70)

7430(T)= 3—0[217' —76+ (18T +72T+36)e '

+36e 3'+4e "], (6. '7l)

h3l(T) =- l3 [Ve' —6T —12T+ 12

—(1ST+15)e-'- 4e-"],

7433(T) —= —
43 [e '- ee'+ 6T+ 3+ 2e '] .

(e. v2)

(e. v3)

w(t)= I e ' '" ' if J(J+l)A«1. (e. ve)

Expression (6. 76) is the result obtained in theories
of rotational diffusion of a spherical body. ' ' The
present derivation shows that such theories are
valid only if J(J'+ l)A«1.

Since Steele discusses the limit of expression
(6. '75) as B 0, it is of some interest to consider
the behavior of the more general result (6. 74) as
B 0. It can be shown from expressions (6. 66),
(6.69), and (6. Vl) that

&,0(T) = —,'T'+ O(T3),

@„(T)=~ 7'+ O(T'),

30(T) 144 T + O(T )

(6. vv)

(6. V8)

(6. 79)

Since from (5. 3), w(t)= Z(0, Bt), it follows from
(6. 62) and (6. 65)-(6. V3) that

w(t)= ttEtt)tr(3„(0, Bt))
n~l

= I exp(- J(J+ 1)[AA,0(Bt)+A h30(Bt)

+A h30(Bt)]+ O(A4)}. (6. V4)

It appears from expressions (6. 66) for h,0(T),
(6. 69) for h30(T), and (6. Vl) for h30(T), that the
series in the exponent of (6. 74) converges rapidly
if A«l. In this case, w(t) is obtained to good
approximation by retaining just the first term in
the exponent of (6. '74):

w(t) = I exp[ —J(J+1)A(Bt+e e' —1)] if A«1.
(e. vs)

If expression (6. 75) is used in Ell. (5. 1) for the
conditional probability density for orientation,
one obtains the same time dependence previously
given by Steele for the case of a spherical body
with equal principal moments of inertia and equa, l
frictional constants about the three principal
axes. It is clear from the present derivation
that this result is correct only if A«1.

If, in addition to A «1, it is also the case that
J(J+ l)A«1, then it follows from (6. '75) that, to
good approximation,

Since A-=n/B and T= B-t, it then follows that the
limit of expression (6. 74) for w(t) as B-0 is

w(t) = I exp(- J(J+ 1)[-,'(nt')+ —,'4 (nt')'

+ ml'4(nt')']' ' 'j (e. 80)

The results obtained above can be used to calcu-
late time-dependent correlation functions of func-
tions of the orientation of a body. The functions
that occur in practice can be expressed as linear
combinations of irreducible spherical tensors, so
it is sufficient to calculate the correlation function
of two such tensors. A spherical tensor of rank
k has 2k+1 components T~, where nz= —k, —k+1,
. . . , k. The tensors considered here have the prop-
erty W&„=(-1)"T3, . As before, suppose that S'
is a principal body-coordinate system whose Euler
angles with respect to the laboratory coordinate
system S are g =—(nPy). Components T~ in S are
related to components T~„in 8' by

T„„=Z &'„*(g)T))„.
n"- k

(7. 1)

We consider here spherical tensors that depend
on the orientation of a body, but not on its angular
velocity. In this case, the components TI',

„

in the
body system are constant, and the time dependence
of the components TI, in the laboratory system is
due to the time dependence of the Euler angles.
The correlation function of two such tensors, say
T~ and S~. ~, is then

prom the manner in which the S„(41,T) in (6. 62)
are calculated, it is apparent that the omitted
terms in the exponent in (6. 80) will involve t"

where n&8.
The exact expression for w(t) for a free body

(B= 0), Elf. (6. 18), approaches w(t) = I (2J+ 1) ' as
t- ~. But expression (6. 80) apparently approaches
zero as t- ~. Thus (6. 80) cannot be correct for
large values of t, presumably because the series
in the exponent does not then converge.

On the other hand, the omitted terms in the ex-
ponent of (6. 80) are of order (nt )4. Hence, the

expansion of (6. 80) itself (not the exponent) to
third power in (nt ) can be obtained by using just
the terms in the exponent to O((nt ) ). It can be

shown that the expansion of (6. 80) obtained in this
manner agrees with the expansion of the exact ex-
pression (6. 18) for a free body to the third power
in (nt').

Thus, while the exponent in (6.74) is finite as
8- 0, the resulting expression is not correct ex-
cept for small values of. t. However, as we have
noted above, E(ls. (6. V4) and (6. '75) appear to
provide a good approximation for all t & 0 if B is
sufficiently large that A =—n/B3 «1.

VII. CORRELATION FUNCTIONS
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w'„„.(t) =5„„w»(t). (7.6)

The specific expressions calculated in Sec. VI all
satisfy this relation, as can be seen from Eqs.
(6. 16), (6. 49), (6. 54), and (6.74)-(B.VB). Thus,
for a spherical body,

(T' (t)S„„,(O)& = 5,„,5„., (2u+ I)-'w" (t) Z T,'„*S,'„.
(V. 7)

A spherical tensor that occurs frequently in
applications is the spherical harmonic Y»„(Q&),whose
spherical angles Q, =—8, , Q, specify the orientation
in the laboratory coordinate system S of a vector
r& that is fixed in a body undergoing rotational mo-
tion. Thus T» (t) = Y~(Q&(t)) and T»„=Y»„(Q,),
where Q,'=—8,', P,

' are the constant spherical angles
of r& with respect to the body-coordinate system
in which r& is fixed. The correlation function of
two such spherical harmonics is given by (7. 5) for
a body of arbitrary shape, and by (7.7) for aspheri-
cal body. Since the addition theorem for spherical
harmonics gives'

Z Y»»'„(Q,') Y„„(Q,') = P»(cos8„), (V. B)
(2u+ 1)

where PI, is a Legendre polynomial and 8,&
is the

constant angle between r, and r& fixed in the body,
it follows from (V. V) that

&T* (t)s, .(o)&

n

Z (D„'„(g(t))D„",*„,(g(o))) r,'„*s,',„,.
n=-u n'=-n'

(V. 2)
The joint probability density that a body has ori-

entation g at t and orientation go at the earlier
time t=o is W(g, t;go)/Bv, where W(g, t; go) is
the conditional probability density discussed in
Sec. V, and I/Bv~ is the probability density for go,
assuming that initially all orientations are equally
probable. Hence, for t&0,

&D.'„(g(t))D."*„.(g(o)))

= f dg f dgoD„"„(g)D„".~i(go) W(g, t; go)/Bn'
(V. 3)

If expression (5. 1) is used, and also definition
(3.1), the integrals over dg and dgo in (V. 3) can be
performed by use of (3.3), with the result

(D„"„(g(t))D '*„.(g(0))) = 5...5„.„w'„„,(t)/(24+1),
(7. 4}

where w„„.(t) is defined by (5. 2).
Use of (7.4) in (7. 2) gives, for t&0,

(T+ (t)s„.(o)) = 5„,5 „,(a+I)-'

w»„,(t) T,'„*S,'„.. (V. 5)
n, n~=-I

The equations given above in this section are
valid for a body of arbitrary shape. In the special
case of a spherical body, it can be shown that '

= 5ggt 5@»»g5»»t[(eT+M )(cT+ M + 1)]

The spherical components of J in S are'3

(A2)

T„-=+(2)'"(Z„+m,), T, = Z, , - {A3)

and the spherical components with respect to S' are

T„=w(2)' '(8, +M,), To=

Since the spherical components are irreducible
spherical-tensor operators of rank one, 34

(A4)

1
T' = Z T~' (g), (A5)

n= 1

where g= (nPy) are the Euler angles of S with re-
spect to S. These same Euler angles are the argu-
ments of the g»(g), so that from (A5)

&~MIf
I
T-'I ~'M'If '& = ~ «~M I T.D-'(g)

I

~'M'If'&
tp 1

= Z Z &ZMZ T„I~M Z '&

II -a Z"Z"Z«-

x(Z"M"A" ID' (g)IZ'M'A') . (AB)

It follows from (Al), (A2), and Eq. (5. 19c) of
Ref. 18 that

«Mff
I
T„l~"M"If"&

5»» ~ [Z(J+ I)] ~ C(ZIJ; M nM), (AV)

where the C is a Clebsch-Gordan coefficient. "
Use of (A7) in (AB) gives

(Y* (Q, (t))Y, „,(Q, (O))) = 5„„.5„„w'(t)P„(cos8,,)/4v.
(7. 9)

In Eqs. (V. 7) and (7. 9), which apply to a spheri-
cal body, w (t) is given by (V. 6) combined with
(6. 16) for a free spherical body, with (6. 54) if
bk(A+I) «1, and with (6. 75) if A, «1,

APPENDIX A

The components of the angular-momentum op-
erator J with respect to the laboratory coordinate
system S are J„,J„andJ„andwith respect to
the body coordinate system S are J&, J&, and J~.
The (»~»(g) defined by (3. 1) are eigenfunctions of
J2, Z„and J3, with eigenvalues J(J+1), M, and

K, respectively. From the explicit expressions
for the operators J„,J„J„andJ, given in Sec.
2. 5 of Ref. 17, it is clear that J„,J, , and J, com-
mute with J3. Hence the matrix elements of J„,
J, , and 8, between two ('s are diagonal in K, and

have the usual expressions with regard to J and

M:

(Al)
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= [J(J+1)]' 3 Z C(J1J; M 'nM)
n, Sr"

x(JM"K~D'„(g)I O'M'K') . (AS)

prom the expression for the integral of three D's, '

(JM"K~D'„.(g)
~

J'M'K')

~ ~

~

u+s C(JIJ'; M"nM') C(J1J'; KmK') .
(A9)

If (A9) is substituted in (A8), the sum over n can
be performed by using the property

C(J1J'; M 'nM') = C(J1J'; M'n) 6~.,s.i,„.(A10)

If one also uses the fact that

[J„J,] = —iz, ,

where the subscripts i, j, and A are a cyclic per-
mutation of 1, 2, 3. Hence

so
[J„J,+is,]=+(J,+fJ,),

f '(Q) =+if (Q) .

(84)

The solution of this equation which satisfies the
condition f(0) =J, + iJ2 implied by definition (81) is

e'~'-3(J, + iJ,) e '~-'s = (J,+ iJ,) e"' . (85'

By adding and subtracting the two equations (85),
one obtains

Q C(ZIJ; M", M M) C-(J1J'; M", M-M") =6
gsi

(All)
the result is

e oISJ, e '~-&=J~cosg+Jzsing

e'~-SJze '~-s= J2cosg - J~ sing .

(86)

(87)

=6~~.5ss. [J(J+I)] I C(JlJ'; KmK') . (A12)

Since Tg = (- 1) T', and since

C(J1J'; KmK') = (- 1) C(J'IZ; K', —m, K),

it follows from (A12) that

The equations obtained by cyclic permutation of
the subscripts 1, 2, and 3 inEqs. (86) and (87)
are also correct, since (86) and (87) depend just
on the cyclic commutation relations (83).

Now consider

~ ~ J =&o[sin0(cosg J~+ sing Ja)+ cose J,] . (88)

Using (86), and then a cyclic permutation of (86),
one obtains

Comparison of (A14) and (AV) shows that

&JMKI T„"
~

J'M'K') = (ZKM
~
T„~J'K'M ) . (A15)

&o ~ J =ye'~-s [sin8 J,+ cosa J~]e '~~s

$tt s~ $83' -$8J (89)

1
T' = ZD„' (g)T„. (A16)

APPENDIX 8

Consider the matrix function of P:

f (y)
—chez g J s-fez~

The matrix elements (3.9)-(3.11) in the text follow
from (A15), definitions (AS) and (A4), and matrix
elements (Al) and (A2).

It is worth noting that result (A15) is also ob-
tained if the transformation equation (A5) is
written

If follows from the relation J && J = —iJ, Eq.
(3. 13), that

[&u ~ J, J]=i(~xJ) .
Thus, if the expression J(s) given by (6. 27) is
differentiated with respect to s, one obtains

J'(s) = —(u, x J(s) .
A second differentiation then leads to

(Cl)

Equation (6. 9) then follows from (89) and the power
series definition of g"'"'-' .

APPENDIX C

where J,=J&+iJz. Differentiation of f(P) with
respect to P gives

J"(s)++~ J(s)=to,(~, ~ J) . (CS)

f '(y) =is"'-3[J„J,~fJ,]e-"'-~. (82)

But the commutation relation (3.13) can be written

The solution of Eq. (CS) which satisfies the initial
conditions implied by the definition of J(s) and by

(C2) is Eq. (6. 44).
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We calculate the two-photon exchange (retarded van der Waals) potential between neutral
spinless systems, including the effects of highex partial waves in the atom-photon scattering
amplitude. This is equivalent to including higher multipoles in the interaction of the charges
in the atoms. We show that this potential can be expressed as an infinite series of terms,
with coefficients that can, in principle, be measured in atom-photon scattering. The be;
havior of the various terms, at small separation and large separation of the system, is dis-
cussed. We show that the leading term in the contribution of each multipole has the property
that it has one more power of R in its large-R behavior than in its small-R behavior.

I. INTRODUCTION

A recent analysis' has shown that the two-photon
exchange (retarded van der Waals) potential be-
tween spinless atoms can be expressed in terms of
the scattering amplitudes for photon-atom scatter-
ing by the individual atoms. An exact expression
for this potential has been given, involving an inte-
gral over these amplitudes, evaluated at positive
photon energy, and at positive, and therefore un-
physical, momentum transfers. In the previous
analysis, it was shown that when the dependence of

the scattering amplitude on momentum transfer was
neglected, the potential could be expressed in
terms of the atomic polarizability evaluated at
real frequencies, a quantity directly measurable
in photon-atom scattering. The approximation so
made is equivalent to neglecting all partial waves
other than s wave in the photon-atom scattering
amplitude. The result obtained is an extension of
the retarded van der Waals interaction of Casimir
and Polder, generalized to include magnetic ef-
fects and relativistic effects.

In the present work, we shall retain the depen-


