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The correlation energy of a degenerate electron plasma in an extremely high magnetic field
is calculated taking account of the dominant local principal plasmon mode's zero-point energy,
as well as the statically shielded electron-electron interaction energy involving the quantum
strong-field counterpart of the Debye —Thomas-Fermi static-shielding law. Other plasmon-
mode-resonance correlation-energy contributions are estimated in the quantum strong-field
limit, and shown to be small for an extremely high magnetic field.

I. INTRODUCTION

One of the most important problems in the his-
torical development of modern many-body theory
and its implications concerning collec tive phenomena
was the calculation of correlation energy of an
electron-gas quantum plasma. ' The term-by-
term divergence of the power series representing
expansion of the correlation energy in powers of
the electron-electron Coulomb interaction reflected
mathematical and physical difficulties in treating
collective self-consistent aspects of the quantum
plasma. This power series, which can also be
described as an expansion in ring diagrams and
also as an expansion in powers of the free-electron
polarizability, suffered term-by-term divergencies
at low wave number due to the long-range character
of the Coulomb interaction. The resolution of this
difficulty was achieved by summing all powers of
the free-electron polarizability ("sum-on-ring dia. —

grams" } into a closed-form expression for the in-
verse dielectric function whose collective-mode-
plasrnon pole and self-consistent static-shielding
behavior absorb the low-wave-number divergences
of the power series into a convergent result for the
correlation energy (e. g. , zero-point plasmon ener-
gy).

Our object in this work is to analyze the effects
of a high magnetic field on the correlation energy
of a quantum plasma. In particular we shall carry
out this calculation in detail in the quantum strong-
field limit for a degenerate plasma subject to an
extremely high magnetic field, so that only the low-
est Landau eigenstate is populated. Earlier
works ' on the problem of evaluating magnetic-
field effects on correlation energy have not explored
this physically interesting regime of extremely
high magnetic field strength. Our own earlier es-
timates indicate that this regime should be of inter-

est, and we have already made a preliminary re-
port' of the physical and mathematical approxirna-
tion scheme which permits explicit calculation of
the correlation energy in an extremely high mag-
netic field. This calculation is carried out in de-
tail below in a manner which takes careful account
of the collective and self-consistent aspects of
quantum plasma behavior, which played so impor-
tant a role in the zero-field counterpart of this
problem. The resulting correlation energy in the
quantum strong-field limit h&, & f-E+ is found to
depend on the parameter r = 8&v~~/4t'~', according to

E„,„/V= —
& Br lnr for r & 1,

where V is the volume. We have also taken
~~/&u, & 1. All of these conditions 0/K&u, & 1,
v~/&u, & 1, and r & 1 can be realized in appropriate
semiconductors such as indium antimonide in mag-
netic fields as low as - 200&&10' G with mobile car-
rier densities of —10~7. (The small effective mass
of indium antimonide, m = 0.01m, - 10 ~9 g, is im-
portant in obtaining such favorable numbers for ex-
perimental realization. ) Thus, the conditions and
approximations employed here are valid for indium
antimonide in presently available steady magnetic
fields: Moreover, our results suggest that experi-
rnents involving correlation energy and its deriva-
tives, particularly dc magnetic susceptibility, can
be carried out and should exhibit rather interesting
logarithmic behavior.

II. APPROXIMATION SCHEME AND ITS SIGNIFICANCE

It is well known that the correlation energy may
be expressed in terms of a coupling constant in-
tegral over the spectral weight of the inverse
die lee tric function of the quantum plasma (integrated
also over frequency and wave vector). Within the
framework of the random-phase approximation
("sum-on-ring diagrams" ), the correlation energy
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may be conveniently rewritten as

SV "dp
4v g (2v)'

d&u (in[1+ n(per)] —n(p, &u6,

4mno(p, &u) = —(4ve~/p~) lmI(p, ~+i&) (1')

in our earlier notation. [The notation of Refs. 10-
12 will be maintained here: co is the frequency;
p = (p', p, ), the wave vector; magnetic field H is in
the z direction; v~ is the plasma frequency; v, is
the cyclotron frequency; p~ is the Fermi wave
number; P~ is the Debye —Thomas-Fermi wave
number in quantum strong-field limit; p is the den-
sity; k is the chemical potential; and m is the
electron mass. ] The resulting expression may be
used in all regimes of magnetic field strength
(weak, intermediate, and strong), and we have al-
ready employed it in estimating magnetic field
effects on correlation energy and magnetic sus-
ceptibility. In considering the quantum strong-
field limit (for a degenerate plasma with all elec-
trons in the lowest Landau eigenstate with spins
antiparallel to the magnetic field), it is particularly
convenient to employ another evaluation of Eq. (1'),
which we have used in exploring the plasmon reso-
nance spectrum and self-consistent static screen-
ing'I for h&a, & r„Expre. ssed in terms of n(p, &u),

this quantum strong-field-limit result is given by

~(p~)= — '( ) e "' '""z—
(
~

)
(u + [n(u, + AP,2/2m —(2Pg 0/m)~~3]2
(ra+ [n(u, +Sp,2 2m+ (2pag/m)~~3]~

(2)
where &u~=4ve p/m and p= k~~aar, (2m) ~ /(2&) in
the quantum strong-field limit, "which is character-
ized by S~,& f-E~.

The collecti~. e self -consistent quantum plasma
phenomena embodied in the frequency-dependent
structure of n(p, v), as given by Eq. (2), include'~
two local principal plasmon modes, one undamped
"Bernstein"-type plasmon resonance near each
higher multiple of the cyclotron frequency n~,
(n ~ 2) for propagation nearly perpendicular to the
magnetic field, and one undamped "quantum"-type
plasmon resonance near each higher multiple of
the cyclotron frequency n~, (n & 2) for propagation
off the perpendicular direction. In fact each such
undamped "quantum"-type pla, smon resonance is
accompanied by another damped one near n~„

(1)
where n(p, ~) = 4vno(p, i&u) = free-e'ectron polariza-
bility with tu-i~ . The analysis of magnetic field
effects on E'„devolves upon the evaluation of the
integrals involved in (1), when the correct magnetic-
field-dependent free-electron polarizability is in-
troduced for 4vnD(p, ~): This is readily obtained
from our earlier work by making the identification

which is of somewhat lesser significance because
of its natural damping and thus will be ignored
here, although the comments we shall make about
the undamped quantum resonances are generally
applicable to the damped ones as well. It is useful
to note that "sound"-type plasmon resonances~3'~4

for propagation parallel to the magnetic field are
not active in the case of the quantum strong-field
limit, under consideration here. The static limit
of n(p, &o = 0), furthermore, embodies ~2 the low-
wave-number quantum strong-field limit counter-
part of Debye- Thomas-Fermi shielding, and the
quantum strong-field counterpart of Friedel-Kohn
"wiggle" shielding contributions as well.

All of the collective self-consistent phenomena
indicated above have been investigated in detail in
the references cited, ~5 and we shall draw freely
on the results of these studies to evaluate the rel-
ative impor tance of roles played by these phenomena
in the calculation of the correlation energy. Our
discussion of this is supplemented by further quan-
titative description provided in Appendix A. In
considering plasmon contributions to the correla-
tion energy, we have already noted that the sound-
type plasmon resonances are not active in the
quantum strong-field limit. The active plasmon
resonances include undamped Bernstein-type plas-
mon resonances and undamped quantum-type plas-
mon resonances (also damped ones), as well as the
two local principal plasmon modes. Now, the ex-
citation amplitudes associated with undamped Bern-
stein-type plasmon resonances are small, vanish-
ing like powers of wave number; moreover, Bern-
stein-type plasmon resonances only exist in a rel-
atively small angular interval about the perpendic-
ular propagation direction and thus occupy a cor-
respondingly small region of phase space. For
these reasons the contributions to correlation en-
ergy from Bernstein-type plasmon resonances will
be small in comparison with the contributions of the
local principal plasmon modes, whose excitation
amplitudes are finite in the local limit. Similar
consideration of the undamped quantum-type plas-
mon resonances (also damped ones) reveals that the
associated excitation amplitudes are very weak,
vanishing like e, where gp is the wave-number
parameter, for the strongest one; despite the fact
that quantum-type plasmon resonances occupy a
larger region of phase space than do the Bernstein-
type plasmon resonances, the extreme weakness of
their excitation amplitudes dictates that the con-
tributions to correlation energy associated with
quantum-type plasmon resonances will be small in
comparison with the contributions of the local
principal plasmon modes. Considering finally the
two local principal plasmon modes in an extreme
high magnetic field limit co, & ~~, one is located at- &~ sin8 and the other is located at A - co,. The
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ratio of their excitation amplitudes Z is given by
Z(A')/Z(A)- ID9/ID, & l, and it is therefore evident
that the local plasmon mode at 0- ~~sin~ makes
the dominant contribution to the correlation energy.
The other local plasmon mode at 0'-e, makes a
smaller contribution which is larger in turn than
the other plasmon-resonance contributions dis-
cussed above. Our basic approximation must
therefore incorporate the 0- ~~sin~ plasmon-mode
contribution to the correlation energy. A quan-
titative description of the srn, ,lle correlation-ener-
gy contributions from the 0 - co, plasmon node
and from the other plasmon resonances as well is
developed in Appendix A to firmly establish the
smallness of these contributions; moreover, this
development in Appendix A provides estimates of

. the associated correlation-energy corrections to
our basic approximation scheme.

Focusing attention on the roles of static-shield-
ing phenomena'2 in the calculation of correlation
energy, it should be pointed out that the quantum
strong-field counterpart of Friedel-Kohn "wiggle"
shielding is highly anisotropic, leading to a long-
range wiggle-shielding contribution only for a very
narrow range of angles about the direction parallel
to the magnetic field: Off the parallel direction,
this Friedel-Kohn shielding contribution has an

extremely fast exponential falloff in comparison
with the quantum strong-field counterpart of the
Debye- Thomas-Fermi shielding contribution, so
that the latter is dominant. Thus our basic ap-
proximation must correctly incorporate the quan-
tum strong-field counterpart of Debye- Thomas-
Fermi shielding into the calculation of correlation
energy, while Friedel-Kohn wiggle shielding may
be neglected.

In summary, our basic approximation scheme for
handling the exceedingly complicated structure of

o.(p, ~) as given by (2) must correctly describe the

local principal plasmon mode at 0- ~~ sine and the

quantum strong-field counterpart of Debye-
Thomas-Fermi shielding. The n = 0 term of
o.'(p, &D) does incorporate these features, and we
therefore drop all higher n terms from o(p, ID).

One might argue the reasonableness of this approxi-
mation on the basis of the prelog factor (@p'~/2m', )"
being small in a low-wave-number analysis, but
in fact the n = 1 term, thus identified, actually
yields a contribution of the same order in p~ as the
n=0 term provides in P, : These two terms cor-
respond to the 0'- co, and 0- ~~ sin8 local principal
plasmon modes for n = 1 and 0, respectively. Thus
the distinction cannot be drawn on the basis of the
order in (Rpl/2m&, )" alone, but must in fact in-
clude considerations such as we have discussed
above to eliminate the n = 1 term on the basis of
lower excitation amplitude for its associated mode
(incomparisonwith thatof then = 0 term). Further-

more, the argument for dropping higher n ~ 2 terms
from n(p, &D) on the basis of the smallness of
(@pm/2mID, )" really should be augmented by further
consideration of the behavior of the term as a whole
in the neighborhood of the branch point of the log
factor involved, since violent perturbations take
place in this region. In fact, it is just these vio-
lent perturbations which are responsible for inducing
the additional plasmon resonances into the spectrum,
with the nth log singularity giving rise to the addi-
tional plasmon resonances near n~„and our dis-
cussion above serves to systematically eliminate
these terms on the basis of the smallness of their
associated plasmon contributions to the correlation
energy. Moreover, we have also verified that
their static-shielding contributions, which are pre-
dominantly of a Friedel-Kohn wiggle type, are also
negligible in comparison with the quantum strong-
field counterpart of Debye- Thomas-Fermi shielding
terms incorporated in the structure of the n = 0
term. In accordance with these arguments we
drop from n(p, &u) all terms n ~ l, leaving only the
n= 0 term:

&-h9 /2
2IP' &2PPgi

xin ' ' I . (&)
(D'+ [ap,'/2m —(2P 'l'/m) '/']'
IDg+ [tIP g/2III + (2P 2 g/m)1/2]3

This may be further approximated in the low-wave-
number regime by expanding to the lowest order
lIl

+ (SP,'/m )(2P.' g/m)I/'
(u'+ 2P,' 0/m

with the result [the Debye- Thomas-Fermi wave
number P~ of the quantum strong-field limit is
given by PD = m&D~~/2N; we also introduce the nota-
tion P„=2mtD, /fi=P»'(tf(D, /g)]

(2

One can readily verify that the P -0 limit of this
incorporates the 0 = v~ sin8 local principal plasmon
structure, ~' since

2 2 2 ' 2

( )
ID9 P (09sln ~

p (d

Moreover, the static limit is given by

(~ 0) PD -II~/9» PD
~
l P

P' P'
& P»'

PD p pg
pR p8 p 2

which should be compared with the corresponding
structure of &(p, Id = 0) known to be responsible for
the full quantum analog of the Debye- Thomas-
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Fermi static-shielding law in the quantum strong-
field limit within the framework of the random-
phase approximation. The latter is given by

a(p tr=o)- — ~ ' —
1)

p 2 p2 ~2

p p M 4K

(which would lead to a divergent series). It is for
this reason that we have developed in Sec. 0 a
relatively simple but physically significant form
for &(p, &u), which is analytically tractable in a
closed-form evaluation of the correlation-energy
integral involving the denominator [1+o.(p, &u)]

Introducing a change of the frequency variable
+

pm 12 p 2/
u = (V/(2p, 'k/m)'/I (6)

which agrees mell with our present static limit in
extremely high magnetic fields. Thus Eq. (4) does
indeed incorporate the requisite features of the
quantum strong-field counterpart of Debye-Tbomas-
Fermi shielding, as well as the 0- ~~sine dominant
local principal plasmon mode. We have already
made a preliminary report of this approximation
scheme and its physical significance.

III. CALCULATION OF CORRELATION ENERGY IN(
EXTREME HIGH MAGNETK FIELD LIMIT

The correlation energy [Eq. (1)] may be rewrit-
ten using an integration by parts,

SV dp ' ap vdnp ~ de
47/ J (2m)' „1+o.(p, cu)

(6)
The collective self -consistent aspects of quantum

plasma behavior are embodied in the zeros of the
denominator [1+n(p, (o)] ~ of the integrand, so
special care must be taken to treat this denominator
in closed form in the integration, avoiding any
reference to expansion of it in powers of u (p, o/)

X P+P.')[P +P,'+Pnme-&'/»'X(v)] '

The p integral is elementary yielding

f ao

dp ''" =
2pD'e-'"'e'X(v)&o

xln 1+ e~~~&Xv . 8p
2

The ensuing v integral can be carried out in closed
form [Ref. 16(a)] with the result

we have

o'(p, )=(p '/p')e'"' X( ),
where X(u) = (1+urn) . Then the correlation-energy
integral takes the form

&& dvvX(v)
d dP, P,

dx(v)
~OO dv ~p

&e+P //// f p o
2 )1/2 ( 2 ) 1/2 -1

,dv ~ ~ ~ =- —

o
— ln I+ (1+ oe ~ —~H

I + g+ ]I+ Dm e ~ —on2+-', )I,

and redefining the final p-integration variable ac-
cording to z =p /p„o, we have the correlation
energy given by

8„ /V = B[F(r) —(ln2+ —,')],
where

(10)

pg) N, (d~ ~(d pa
pH 4~ ~c ps @c
—KpH pD 24

i

2e m(d~

4(2v) m i (2w)'

and the final z integral is given by

(12)

m-'
F(r) = dze ' ln 1+ 1+

3o

+ I) + () r rr /r )'~ 'I 'I ~ ()3)'
It should be noted that a series expansion in powers
af the electron-electron Coulomb interaction (or

equivalently, in powers of the polarizability) would
correspond here to the expansion of the correlation-
energy integrand in powers of (re '/e)", which
would induce spurious term-by-term divergencies
at the lower limit of the e integral (pa-0). In
recognition of this fact we seek an alternative eval-
uation procedure, avoiding expansion in powers
of r". Qf course, one may carry out the integration
of E(r) numerically, and such results are presented
in Table I and Fig. 1. Homever, it is desirable to
treat the interesting regime r«1 (high density)
analytically to gain insight into the functional depen-
dence of E«» on x. The over-all convergence of
E(r) at the upper limit is guaranteed by the first
e ' factor in the integrand, and this in turn dictates
that the predominant contributions to F (r) come
from the region 0 & z & 1. Now, the smallness of
r renders F (r) relatively insensitive to the detailed
behavior of the second exponential e ' occurring in
the combination (1+re '/e), and since the pre-



ANAL YSIS OF MAGNETIC FIE LD EF FEC TS ON. . .
3.8

3.6—

3.0

where we have employed Ref. 16(b), and c is the
Euler-Mascheroni constant c = 0. 5VV2. ... Further-
more, we have

1
1+ (1+r/z)" '

2.8

2.4
U

2.2

2.0

1.6

1.4

1.2—
1.0

O. I

I i ~ i i I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9I.O

dze '[z(z+r)]"'- — dze 'z
p „o

=—~"/az1 „r
2 ' 2

where we again employed Ref. 16(b) (p. 138, No.
13). Thus the leading term yields

Eeorr I ). ). r/2
I' 'll

V
=B —.Inr+2c+2e Ko

2
+Xi~2i

———(ln2+ -) . (18)1

y 2

FIG. 1. Plot of the numerical-integration results for
&(~).

dominantly important region is 0(z & 1, we replace
this second exponential by unity, setting

(1+re '/z)'/ - (1+r/z)'

This replacement may be regarded as the leading
term of an expansion of the integrand involving
(1+re "/z) in powers of y, subsequently setting
y = z. The leading term is evaluated in detail here,
and the next term is evaluated in Appendix B. In
accordance with the qualitative argument above, the
leading term is found to dominate the behavior of
E(r) for r « l.

The evaluation of the leading term

r) t/o
~(r)= «e ' » 1+11+—

I

go & z/

In keeping with the commitment of x«-1, here,
we introduce appropriate expansions for Ko(r/2)
and K,(r/2) ""and finally obtain

E„„/V=B[--r))l rn+O(r)+ O(r )lnr] .
The terms of order O(r) and O(ro) lnr are negligible
compared to the principal term ——,'minx for r«1.
The first correction term to this procedure is
evaluated in Appendix 8 and is also negligible for
r«1. The fact that this result is not analytic in the
electron-electron Coulomb-interaction coupling
strength is not surprising in view of corresponding
results in the zero-field case.

IV. CONCLUSIONS

The quantum strong-field-limit analysis of elec-
tron correlation energy undertaken here for ex-

TABLE I. Numerical-integration results for I'(y).
(16)

1+ (1+r/z)" '
can be carried out in closed form. %e have

&)1/s-

Jo «i«e 'I» +I I +

/ ) \/2 / /2/. (/ / /')///8 /)dze 'ln —
1

+ dze 'lnl q/z
go zi ~ o

= —,'In' ' dze '- —,
' dze 'lnz

w P ~ 0

g//3~ (g // )//8

)+ dze 'ln
&0

y'

= —,
' lnr + —'c + ,'e "/oKo(r/2)—

0
0.2
0.4
0.6
0.8
1.0
1.5
2.0
2. 5
3.0
3.5
4.0
5.0
6.0
7.0
8.0

s'(~)

i.1931
1.2635
1.3005
1.3297
1.3543
1.3759
1.4211
l.4583
1.4980
1.5185
1.5438
1.5669
1.608
1.644
l.675
l.704

r
9

10
12
14
16
18
20
25
30
35
40
45
50
60
70
80

l.730
l.755
1.798
1.840
l. 871
1.902
1.931
l. 994
2.047
2. 094
2.136
2. 173
2. 207
2. 268
2.320
2.367

r
90

100
150
200
250
300
350
400
500
600
700
800
900

1000
1200

2.409
2.446
2. 597
2.708
2.796
2.869
2.933
2.988
3.0815
3.159
3.225
3.283
3.335
3.382
3.462
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tremely high magnetic-field strength (in all senses)
yields the result

Z„„/V= —SB& lnr

for y &1, where

Pa @u ~ P~
PH 4~ c Pz @&c

(2o)

(21)

PH PD 2(
4(2,)' m i (2»)'

The nonanalyticity of this result as a function of
the strength of the electron-electron Coulomb in-
teraction can be attributed to essentially the same
considerations which lead to such nonanalyticity in
the zero-field counterpart of this calculation.

The approximation scheme employed here takes
good account of zero-point oscillator energy as-
sociated with the dominant local principal plasmon
mode 0-(g~sin8 as well as statically shielded
electron-electron interaction energy involving the
quantum strong-field counterpart of the Debye-
Thomas -Fermi static-shielding law. The corre-
lation-energy contributions associated with the
other local plasmon mode 0'- ~, and with nonlocal
Bernstein-type and nonlocal quantum-type plasmon
resonances are estimated and shown to be small
in Appendix A, and are neglected in our basic ap-
proximation scheme. Even within this simplified
framework the high-field correlation-energy inte-
gral is formidable, and we have employed an
evaluation procedure appropriate to small x ob-
taining E „-~1n~: Corrections to this procedure
are evaluated in Appendix 8 and are shown to be
small for y &1.

It is of interest to compare the high-field param-
eter ~ with the corresponding zero-field param-
eter r, = ro/ao, where ro= (34p)»'~'-i tenr l eetrcon
spacing, and ao= I /me~- Bohr radius. Introducing
the zero field (H-= 0) expressions for the (degen-
erate) Debye-Thomas-Fermi wave number pl&(H=0)
and for the Fermi wave number p&;(H = 0), we
have"

As indicated in the Introduction the result for
correlation energy in an extremely high magnetic
field obtained here should be valid for semiconduc-
tors such as indium antimonide in magnetic fields
as low as - 200~ 10' G with mobile carrier densities
of -10 . Although correlation energy itself is not
directly observable, it would be of interest to ob-
serve the corresponding correlation contribution to
the dc magnetic susceptibility, which is readily ob-
tained from our result. An evaluation of the dc
magnetic susceptibility in extremely high magnetic
field, including exchange contributions as well as
correlation contributions, is in preparation.

APPENDIX A: ESTIMATES OF CORRELATION-ENERGY
CONTRIBUTIONS FROM PLASMON MODE Q'~ u, AND

FROM OTHER PLASMON RESONANCES IN THE QUANTUM
STRONG-FIELD LIMIT

We shall assess the relative importance of plas-
mon contributions to correlation energy in two
ways. The first measure of the relative impor-
tance of a plasmon mode resonance Q(p) to be con-
sidered is given by the relative excitation ampli-
tude Z(Q(p)) which determines the plasmon's con-
tribution to the loga, rithm of the grand partition
function 5' according to the relation

t —Z(Q(p)). (Al)2 „2&& „K
[Note that K measures Coulomb coupling strength
here with K=1 for full coupling and%=0 for zero
coupling; 8'(0) is the zero-coupling limit of W. ]
The correlation-energy contribution associated with
a given plasmon mode resonance Q(p) may be ob-
tained from this by differentiation with respect to
P, and thus Z(Q(p)) clearly measures the relative
importance of Q(I&) in contributing to correlation
energy. The qualitative discussion in See. II of
this paper is based on this fact, and we shall supply
further details on Z(Q(p)) here drawing freely on
the results of our earlier analysis of the plasmon
spectrum in the quantum strong-field limit' (with
(d &'Q)p):

(a) for the local principal plasmon mode Q- u&~ sin8,

, ig, '~'[p, (H=o)]'
4 ( 4 [p (H=0)]' (&, & I),

Z(Q):— z ur& sin8; (A2a)

(b) for the local principal plasmon mode Q'- ~„
which m"y be compared with our high-field param-
eter x as given by Eq. (21):

(dpZ (Q '):— — cos'8;
2c (A2b)

Pp
2

Pp @+c
(& &1) . (c) for the quantum-type plasmon resonance near

n(o, (n~2),

(2Ap p, r/m (u&)(n(u, +@p, /2m)n! (2m&v, /Ifp )"e"
Q(„„&sinh'([2C„(p)] '[1 —(u,'sin'8/(n~, )'-(o,'cos'8/(n(u, )'-(o,']) '
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(d) for the Bernstein-type plasmon resonance near
n(u, (n&2),

(~2 l)~2 )& p2(( 2

Z(n(„)) = . . . , ' ~ I (u~x„. (A2d)
c pCOc+ +p) )

Here,

1+4&K &,(p, Q(p; K))=0,

and the corresponding excitation amplitude
Z(n(p; K)) is given by

z(n(p; K)) =
I 4,K ""(' ""'"" '.

dn (p; K)

(A6)

(Av)

Differentiating (A6) with respect to K, one has

and

A3

4 ( n( K))+4 K
dn(p K)

dn(p; K)
dK

4 n W2 8 2)))3/2g ) /2 ~2

n ( @8 z (~ )Rn (A4)
and since the first term is just —1/K by (A6), we
obtain

The low-wave-number behavior of these relative
excitation amplitudes is roughly given by (dropping
numerics, etc. )

z(n) (())) q

Z(n')- (v~2/(u, -((u~/(u, ) Z(n) &Z(n);

z(Q, )- ~' =" e '2 2~ 2f3

(n~, ) 2

m cop p3/2 2 2n

Cn(P ) @~1/2f 2n ~2( ~

(A2a')

(A2b')

(A2c')

2 3/2 l/2
z(n )

8 )P) f (()~ P@ 2
(n) (A2d')

These evaluations of the excitation amplitudes pro-
vide detailed support of the qualitative discussion
undertaken in Sec. II. Although this discussion
is well founded, it has the shortcoming that it con-
siders the relative importance of plasmon-energy
contributions on the basis of excitation amplitudes
alone, without additionally considering the impli-
cations of plasmon damping. Wave-vector (mo-
mentum) cutoffs implied by plasmon- mode- reso-
nance natural damping are quantitatively impor-
tant in the final wave-vector integration for corre-
lation energy, so we shall turn now to a better
quantitative description of the plasmon contribu-
tions to correlation energy which incorporates
such plasmon damping wave-vector cutoffs.

We canobtainquantitatively accurate estimates of
plasmon-mode-resonance contributions to corre-
lation energy in the degenerate (zero temperature)
limit, employing (A1) in the form

Eylasmon
norr

1

z(n(p; K)) (As)

and using a well-established yrocedure' for evalu-
ating the coupling-strength (K) integral. The
plasmon-dispersion relation for the mode reso-
nance Q(p; K) at coupling strength K(0 «K» 1) has
the form

z(n(p; K)) = K

The K integrand is thus a total derivative, and this
yields the well-known result

E))1asmon @ /'
", [n(p) —n(p; K=o)], (A6)

where n(p) = Q(p; K=1) is the root of the plasmon-
dispersion relation at full-coupling strength, and

Q(p; K=o) is the zero-coupling limit of this root
which is located at the nearest frequency singulari-
ty of the free-electron polarizability approached
by the root Q(p; K) as K- 0. What we have here
[Eq. (A8)] is clearly the zero-point plasmon
energy less its zero-coupling limit summed over
well-defined plasmon states. The wave-vector
cutoffs p, arise in consequence of natural damping
which blurs the definition of the ylasmon state,
rendering it meaningless as an elementary excita-
tion. Since the frequency singularities of the free-
electron polarizability signal the onset of natural
damping in the degenerate case, as well as deter-
mining the zero-coupling limit of the plasmon root, .

we may determine the wave-vector cutoff p, from
the condition

n(p, ) =n(p„K=0) . (A9)

Q(p) -=~, 1»n~ I,
and inspecting the polarizability [Eq. (4) wjth
~- i&@] for its frequency singularity, we fjnd

(Alo)

We can now estimate the plasmon-mode-resonance
correlation-energy contributions using Eqs. (A8)
and (A9). " We sta, rt with the do)ninant local prin-
cipal plasmon mode 0- ~~ sing as a base reference,
although the correlation-energy contribution of this
mode has been included in the approximation scheme
employed in the main calculation in the body of
this paper. (All results discussed here are for
the low-wave-number regime. '~)

a. Dominant local principal plasmon mode Q. ,

For this mode we have
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p, = (m(u,'/2C)"' = p, (A12)

The correlation-energy contribution of this mode
is therefore given by

Z„e 'D " dPP'dgcosg
V 2, „(2v)'

24(2v)2 pD

or (dropping numerics)

g
V
"-=ax 0(y) . (A13')

b. Local principal plasmon mode 9 . For
this mode we have

n (p) = (~ +~~ cos 8)—:~ + — cos )9

C

!A14)

and inspecting the frequency singularity (branch
point) of the &i = 1 term of the polarizability [Eq.
(2) with &d —i~], we find

n'(I&; K=0) =(g, +posing
~

(2y/m)'~2 . (A15)

The determination of the cutoff p, using (Ag) then
yields

n(p; Jf = 0) = p, (2g/m)" ' = p i sine i (2g/m)" '.
(Al 1)

The determination of the cutoff I&, using (AQ) then
yields

and expanding coth(L) asymptotically we obtain

n, „&(p)-=n;, „+(8p,'g/m)"' e ~ . (A18)

~ pter~) ~ dp p d8 coso
V 2, ,„(2v)2

Here, 0»„ is the nearest frequency singularity
(branch point) of the polarizability [involving the &ith

logarithm of Eq. (2) with ~- iM], so that we clear-
ly have n@„,&(I&; K= 0) = ns~„. The determination
of the cutoff p, using (A9) then yields an equation
of the form [only wave-number dependence is ex-
hibited explicitly here; D(e) &0, F(e)&0]

p exp~ e~«»c -=0 .( -D(e)
c |p

51 3

The low-wave-number solution of this is

(A19)

which implies vanishingly small correlation-en-
ergy contributions from the quantum-type plasmon
resonances. This is to be expected in view of
their exceedingly weak excitation amplitudes (as
discussed above), but the result p, = 0 is some-
what artificial in that this zero result obtained
under low-wave-nuxnber approximations would in
fact be nonzero if the low-wave-number restric-
tion were to be lifted. An alternative choice p,
=p„could be taken (respresenting the upper limit
of validity of a low-wave-number analysis of
quantum resonances), but the resulting contribu-
tion to correlation energy of the form

D . A~6

or (recall )d, &)d~ in our extreme high-field case)

a o(~)& ' =- ao(r) .
V V

(A17')

c. Quantum- type plasmon resonances 0&„„&.
CFor these resonances we have

ni)) &(p) = &&Q3 + +-a @P'z
' ~P. 0

2m m

n~, + ' coth L

where
~p sin e ~p cos 8

2C„(p) (n(o, )2 (n)d, )2 —a)2

with C„(p) given by (A3). Clearly L- ~ as p-O,

Evaluating the correlation-energy contribution of
this mode using the integral [Eq. (A8)] (and drop-
ping numerics), we obtain

~'-=o a" p'=or 'p ~

would be very small indeed because of the strong
vanishing of the exponential factor exp[- D(|&)/
p "2] for low wave number.

d. Bernstein- type plasmon resonances 0„.
For these resonances we have

2 -1
n(, ))) )'=(mw, )'+&'"-','g() —,

in(d, i —(a,

where &)„ is given by (A4) (note that X„ is approxi-
mately independent of &)) for low p). Alternatively,
we have

3
n (p) ~-2n-2 ~P n 1

2&2(0). (s)d~ ) cd~

(A21)
Mathematically, Bernstein-type plasmon reso-
nances have their origin in the fact that the asso-
ciated frequency singularity of the polarizability
[involving the nth logarithm of Eq. (2) with )~- i&u]

changes from a branch cut near neo, of width A~
=2(2p, f/ 2)'~ minto a simple pole at n)d„as prop-
agation approaches the direction perpendicular to
the magnetic field (p, -O). It is thus clear that
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A(„)(p; K=O)=~, . (A22)

The low-wave-number determination of the cutoff

p, using (A9) then yields

p, =0, (A23)

which implies vanishingly small correlation-en-
ergy contributions from the Bernstein-type plas-
mon resonances. Again, this very small result is
correct in substance, but somewhat artificial in
that the result would not be strictly zero if the
low-wave-number restriction in our formulas
were to be lifted. It is easy to obtain an upper
bound on the correlation-energy contributions of
Bernstein modes by taking alternative cutoff
choices for P' and p, as follows: (i) p, =p„repre-
sents the upper limit of validity of a low-wave-
number analysis of Bernstein modes in the quan-
tum stmng-field limit. (ii) p„may be taken from
the condition that the width of the logarithmic
branch cut A~ =2(2p,zt/m)~iz shall be small com-
pared to the shift of the Bernstein mode away
from the simple pole at ~„which is the limiting
form of the singularity of the polarizability as the
branch cut shrinks to zero width for propagation
approaching the perpendicular direction. This is
to say that the Bernstein mode feels the singulari-
ty generating it as a point pole representing a
branch cut of essentially zero width. Thus we
have p, &p, with p determined by the condition

( 2p 2 1/2 2
&*c t' p2n-zI 2nco~ (nag) —41'

following (AS). Further maximizing the upper
bound by putting p- pH in the integrand and dropping
numerics, we obtain

and for an upper bound we put p pH on the right-
hand side obtaining (recall ~~ & co, in the extreme
high-field limit under consideration, and note that
we drop numerics here)

P„=—e'm'ro, /O'Pz' .
In accordance with these cutoffs the upper bound

on the correlation-energy contributions of Bern-
stein modes is given by

&( & Pg PP -2n-2 0~ng'gc PH
—— 2

(2w)' 2n~,

2

X 1 — —

& 2 A24
(n(u, ) —(o,

tion of the dominant local principal plasmon mode
Q. A more careful analysis of the cutoffs and in-
tegrals should further reduce the upper bound of
Bernstein-mode correlation-energy contributions
substantially.

In summary, the results of this Appendix confirm
the validity of neglecting the correlation-energy
contributions from the local plasmon mode A -(d,
and from the other quantum and Bernstein types of
plasmon resonances in the quantum strong-field
limit, thus assuring the accuracy of the approxima-
tion scheme employed in the main calculation in the
body of this paper.

APPENDIX B: EVALUATION OF THE FIRST-CORRECTION
TERM TO F(r)

The first correction to the evaluation of E(r)
carried out in the body of this paper is obtained by
expanding the integrand of E(r) involving (1+re~/
z)~~z to linear order in y and then setting y = z.
(The zeroth-order term in y was evaluated in the
body above, and the first-order term in y is the
first correction under consideration here. ) Follow-
ing this procedure the first-correction term is ob-
tained as

(1~ r -eE (r) = —
2 J dz e [1 (1 / )ggz]g

-. z' r )1/2
dz8 p 2+ 2 1+—

2
~ z)

dze 'z + —
~ dze 'z
0

2 f~"
1/2 '

J
dz e 'z[z(z-+r)]"'

~

1t

4 1 2 . 1/2
0

~+——~ dze 'z[z(z+r)]'~z~

(Bl')
The last integral on the right-hand side may be
evaluated by noting that [Ref. 16(b), p. 138, No. 13]

dze-" ~ .+r ''= —e- 'Z, ~-",
and differentiating with respect to n (and subse-
quently putting o'=1) [Ref. 16(a),p. 970, No. 12]
we obtain

dz e 'z[z(z+r)] ~

0

(tl) Ip 2p 2 ~ gyr+ gy 0(r)
(A24') Thus we have

r/2 r'r r r 2 (r' (2) (I)

so that in the quantum strong-field limit under con-
sideration (h~, & r) this exaggerated upper bound is
still smaller than the correlation-energy contribu-

E' '(r) = —— —z+ —+ —e"'4 1
2 r r r
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x 2-2 &~ 2 -2&0 2

and for x«1 we obtain [Ref. 16(c),p. 9, Nos. 37
and 38]

E' '(r) = —
~~ x inn+0(x )1nr+O(r) .

This result shows that E"'(r) is indeed much
smaller than E(r) as evaluated in the body of this

paper, which supports the validity of our approxi-
mation for r« l. Although we have calculated
E' '(r) accurately to order x lnr, we have ne-
glected such small terms in the evaluation of E(r)
in the body of the paper, so that this result for
E' '(r) really only serves to prove its smallness.
Thus, the final result is as stated in the body of
the paper,

E„„/V= 8 [——,
' x 1nr+ O(r) + O(r ) lnr] .
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