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The density fluctuations in a molecular fluid are studied by treating the fluid as a multicom-
ponent reacting mixture. The ordinary hydrodynamic equations for a reacting mixture form
the starting point of the present derivation. The description is then contracted to that ap-
propriate for the one-component molecular fluid. The resulting translational hydrodynamics
theory contains memory effects due to the internal relaxation process. The results are com-
pared with a recent kinetic model and with two previous theories of Mountain. The dynamic
structure factor Sg, co) and the roots of the dispersion relation are computed for para-
hydrogen gas and studied as a function of density. The results indicate that the treatment of
the thermal-diffusivity mode in the theories by Mountain breaks down in the low-density re-
gion. It is suggested that Rayleigh-Brillouin scattering experiments on dilute parahydrogen
gas at room temperature and densities between 5 and 30 amagats can quantitatively verify
the predictions of translational hydrodynamics.

I. INTRODUCTION

In this article we consider the calculation of den-

sity fluctuations in a single-component molecular
fluid, and the interpretation of light scattering ex-
periments which can be used to probe these fluctua-
tions. For simple liquids, it is natural to attempt
such calculations by using the linearized hydrody-

namic equations. However, it is well known from
ultrasonics and light scatter ing experiments that
for molecular fluids these equations do not correct-
ly describe the frequency dependence of the sound
absorption coefficient or the spectrum of the scat-
tered light. If the molecular fluid is a dilute gas,
the appropriate kinetic equations are well known
and have been used to interpret the Brillouin spec-
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tra. For dense gases or liquids the hydrodynamic
equations can be generalized to take into account the
internal relaxation processes which occur in molec-
ular fluids. The modifications of the hydrodynamic
equations have usually been carried out in two ways.

One method introduces memory into the normal
hydrodynamic equations via a frequency-dependent
bulk viscosity. The justification for the introduction
of a relaxing bulk viscosity is based on an explicit
calculation of the frequency dependence of the trans-
port coefficients by Zwanzig. ' When weak coupling
between the translational and interna1 motions is
assumed, the bulk viscosity is found to consist of a
translational part plus a frequency-dependent in-
ternal part. In the same weak-coupling appr'oxima-
tion the shear viscosity is not affected by the in-
ternal relaxation process and the thermal conduc-
tivity is the sum of a translational part and a fre-
quency-independent Eucken correction due to the
diffusion of energy in the internal modes. The ap-
plication of this approach to the calculation of the
spectrum of the light scattered from molecular
fluids has been made by Mountain. We denote this
theory as the M„ theory.

The second approach is similar in spirit to the
first but attempts to describe explicitly the origin
of the frequency dependence in the hydrodynamic
equations. The normal hydrodynamic equations are
supplemented with an equation which describes the
relaxation of another variable coupled to the den-
sity, temperature, and momentum fluctuations.
The light scattering spectrum which results from
this description of the fluid has been calculated by
Mountain (denoted as M, theory) and compared
with the results obtained using a frequency-depen-
dent bulk viscosity. The two theories are not
equivalent.

Both of these theories have been used to interpret
light scattering experiments on molecular fluids.
The spectra predicted by these theories are in good
agreement with experiment for the liquids investi-
gated in Refs. 3(a) and 3(b). The agreement with

experiment is not quite so satisfying for molecular
gases especially in the low-density regions [see
Ref. 3(c)]. The region of applicability of the pres-
ent calculations is in general greater than either
of the above theories. The motivation behind the
approach pursued in this article can be seen, in a
qualitative way, through the following considera-
tions.

The introduction of a relaxing bulk viscosity is
quite general and does not require an explicit speci-
fication of the internal relaxation process. In com-
plicated molecular fluids it is not always possible
to identify the internal motions which are responsi-
ble for the deviations from classical behavior. In
such circumstances the justification for the intro-
duction of a relaxing variable in the second approach

is not an easy matter. In this work, we exclude
these complicated situations from consideration.
Rather, we focus on the description of fluids com-
posed of small molecules where the choice of re-
laxing variables is easily made. For diatomic and
small polyatomic molecules only the relaxation
within a well-defined set of internal states need to
be taken into account in order to describe the
Brillouin spectra. The fluids investigated in Ref. 3
provide examples. In the CC14 and CS~ liquids only
a few vibrational states participate, while in com-
pressed hydrogen gas only a few rotational states
need to be considered. In these situations it is
clear that the appropriate variables to couple to the
normal hydrodynamic variables are the variables
which characterize the populations of the individual
internal states. This is the approach we pursue in
this paper.

We take the point of view that a single-component
molecular fluid can be considered as a multicom-
ponent chemically reacting fluid. The various in-
ternal states are treated as distinct chemical
species. This type of description has been used
earlier by other authors. We restrict ourselves
to those molecular fluids in which the polarized
light scattering intensity only involves the total
density fluctuations. This implies two approxima-
tions: One is the neglect of the temperature fluc-
tuations as contributing to the dielectric tensor
fluctuations and another requires that the molecules
in different internal states have the same effective
polarizability. Starting from the multicomponent
description, we eliminate the individual internal
state densities in favor of the total density to con-
struct equations which describe the relaxation of
the total density fluctuation. In this contracted de-
scription, which we label "translational hydrody-
namics" (TH), the relaxation matrix has a well-
defined frequency and wave-vector dependence.

Other derivations have also been carried out in
terms of Mori's generalized Langevin equation. In
these derivations the total density, momentum, and
temperature fluctuations of normal hydrodynamics
have been supplemented with either the fluxes as-
sociated with the above variables or an internal
energy-density variable. ' The relation of both of
these approaches to the work of Mountain has been
described in these papers. We also mention a cal-
culation of the effect of an internal relaxation pro-
cess on the concentration Quctuations in a chemi-
cally reacting fluid where a similar set of density
variables has been used to obtain the results. "

In Sec. II we present explicit results for the re-
laxation matrix for a two-state molecular fluid. In
the numerical calculations presented in the remain-
ing sections of this paper we have assumed that the
thermal diffusion (Dr) and l„, coefficients can be
neglected. In spite of the simplicity of the two-
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state model, there are a number of real systems
to which this model can be applied (see Ref. 3).

In Sec. III these results are used to calculate the
dynamic structure factor S(k, a&) for parahydrogen
gas at room temperature. A two-state model is a
very good approximation for this system. A de-
tailed numerical comparison of the present results
with the theories of Mountain is made. In general,
the three theories are not equivalent. Except for
the well- justified approximation involving the ne-
glect of the D~ and l„, coefficients, our results for
S(k, &u) involve no additional assumptions for the
thermal relaxation of a two-state system. At high
densities, greater than approximately 60 amagats,
the three theories are in close agreement. In the
lower-density regions the results differ by signifi-
cant amounts, which are accessible to experimental
verification. Experiments are currently in pro-
gress which will be able to test several aspects of
the theory presented here. ' For two values of the
density (0. 92 and 5. 57 amagats) the results are also
compared with the results of a modeled kinetic
theory calculation.

A detailed analysis of the roots of the dispersion
equation is made in Sec. IV. In par'. of this analy-
sis, the coupling between bulk viscosity and chemi-
cal reaction is retained and an examination of the
sound attenuation coefficient is made in order to
justify the neglect of l„, for the parahydrogen calcu-
lation considered in this paper. The dispersion
equation is fourth order in the frequency even if
this coupling is retained. The roots of the disper-
sion relation, when l„, is set equal to zero, have
been studied numerically as a function of density
and compared with the corresponding roots in the
theories of Mountain.

The detailed comparison made in Sec. III with an
accurate kinetic model ' ' gives us confidence in the
correctness of translational hydrodynamics ap-
proach, since the kinetic model has been found to
have excellent agreement with experiments where
the M„and M~ theories have failed. From the dis-
persion analysis made in Sec. IV we conclude that
the treatment of the thermal-diffusivity mode in
M„and M~ theories is qualitatively different from
that in the TH theory. It is our belief that this is
where the M„and M& theories fail.

II. TRANSLATIONAL HYDRODYNAMICS

We consider a single-component molecular fluid
and suppose that each molecule can exist in any of
the different internal states. For dilute molecular
gases, the appropriate kinetic equation for the
description of the various scalar relaxation pro-
cesses is the Wang Chang-Uhlenbeck equation (or
the Waldmann-Snider equation for more general
tensorial processes). For liquids or dense gases,
there is no single kinetic equation which is as

widely used; instead, one uses hydrodynamic-type
approaches suitably generalized to describe a given
aspect of the fluid relaxation. In this article, each
interna1. state is treated as a distinct "chemical"
species, and the resulting relaxation equations
have the same structure as the linearized hydro-
dynamic equations for a reacting mixture where all
the species have the same mass. For a two-state
nonreacting fluid (i. e. , a binary mixture), the ap-
propriate hydrodynamic equations have been de-
rived using the generalized Langevin approach. "
In the Appendix, we indicate how the "reaction"
terms, i. e. , the effect of inelastic collisions,
would alter the equations. The generalization to
the n-state problem is straightforward. Instead of
giving this lengthy derivation, we give here the
motivation behind the use of such a description,
and also give the explicit results for a two-state
molecular fluid.

The analysis is based on a consideration of dif-
ferent time scales characteristic of the system.
These are (i) the translation relaxation time v,
which describes the relaxation of dynamic variables
which depend on the center-of-mass motion of the
molecule, (ii) various internal relaxation times r,
which characterize such processes as translational
to internal energy transfer (isomerization) and in-
ternal to internal energy transfer, and (iii) the hy-
drodynamic relaxation time v„associated with the
removal of macroscopic spatial gradients in the
system. In order for our kinetic description to be
valid, we require that v, be well separated from 7',

and 7„, i. e. , v, «7'„~„. This inequality ensures
that the starting equations of our analysis need only
depend on the internal-state variables (i. e. , molec-
ular velocities do not appear explicitly in the de-
scription) and contain frequency independent t-rans-

port coefficients. This inequality also demands a
special treatment for the fluctuation in the trans-
lational energy variable, which can be connected
with a translational temperatur e fluctuation.

Although the form of the kinetic equations is
identical to that of the macroscopic (hydrodynamic)
equations for a reacting fluid mixture, the equa-
tions are not macroscopic for the description of
the one- component molecular fluid. Typically, in
order for a macroscopic description of a reacting
fluid mixture to be applicable, it is usually as-
sumed that the molecular interconversion process
is sufficiently slow that the chemical species can
easily be distinguished in macroscopic experi-
ments. In the present situation we do not impose
such a stringent condition on the magnitude of the
internal relaxation time. On the contrary, we
consider a situation where the internal relaxation
process is sufficiently rapid that the most con-
venient description is in terms of the total density
rather than the densities of the individual internal
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states, but not so rapid that normal hydrodynamics
with frequency-independent transport coefficients
is applicable for the interpretation of certain
radiation scattering experiments.

The set of equations which describes the two-level
molecular fluid as a reacting mixture can be
written as

)=-m(k)n(k, f), (2. 1)

where 01t (k) is a matrix containing the transport
coefficients and thermodynamic derivatives [the
elements of this matrix are given in the Appendix;
see Eqs. (A22)-(A40)j, and k is the wave vector.
The vector g (k) contains a collection of variables

pg(k)

, Pz(k)
8(k) 9(k)

Z(k)

(2. 2)

where p, (k) and pz(k) are the Fourier transforms
of the mass densities of the molecules in the in-
dividual internal states, Z(k) is the Fourier trans-
form of the total longitudinal momentum density,
and 9(k) is equal to that part of the Fourier trans-
form of the energy density which is orthogonal to
p, (k) and p, (k). 9(k) does not contain the internal
energy of the molecules, since this is merely a
certain linear combination of the internal-state
mass densities. Moreover, since the total density
fluctuation p(k) is the sum of p, (k) and pz(k), 9(k)
is also orthogonal to p(k). Thus 9(k) is, apart
from a constant, the customary translational tem-
peratur e fluctuation

9(k) = poc„,T(k), (2. 3)
where c„t is the translational specific heat per
unit mass and p0 is the equilibrium mass density.
For the two-state fluid under consideration, only
the translational to internal energy-transfer pro-
cesses are included here. These processes cor-
respond to a bimolecular isomerization reaction

(1, V, )+(n, Vq)w(2, V,')+(n, V') (n=l, 2).
The velocity of molecule i is V, before collision
and 7", after collision. Since velocity does not
appear in our description, it has been implicitly
assumed that the translational energy relaxation
occurs rapidly and is well separated from the
above inelastic process as discussed earlier. The
processes which we have ignored are of the type

(1, V()+ (2, Vg)~(2, V,')+ (1, V)).
These resonance processes do not change either
the individual level mass density, the total internal
energy density, or the total translational energy
density of the fluid.

p(k)
(s(k) = 9(k)

Z(k)
(2. 4)

If we use Eq. (2. 1), assume that at f =0 fluctua-
tions exist only in the variables p(k), 9(k), and
J(k)—i. e. , initial correlations in p, (k) and P2(k)
are not independent but p, (k) = (p„/po) p(k), with an
analogous equation for pz(k) —and eliminate p, (k)
and pz(k) in favor of p(k), we obtain an equation for
(s(k),

se(k, f) = —N(k)(B(k, f)+~~ dsK(k, s)(B (k, f —s).
~0 (2 6)

The N(k) matrix has the following elements:

N, z(k) = Ngz(k) = 0, (2. 6)

N„(k) = —ik,

21(k) (k +POD film +By)z(1z/Po(( z

N, (k)=Iks A."~ o 0 4 Fs
22

(2. 7)

(2. 6)

+l&&02 ~sv p0c t &
2

zk(l„, mlI(, „—Tonr/g)
0

—ik(l» mz(, z/1'0+ 1)
31

(2. 10)

(2. 11)

ik(l„, mb, ,„/To —nz/g),
32( ]

~0 Cvt

2 4

( )
k (Tzi,*+z)~)

33
p

(2. 12)

(2. 13)

In Eqs. (2. 6)-(2. 13), z is the isothermal compres-
sibility, o.~ the thermal expansion coefficient, m
the molecular mass, and p. the chemical potential
difference p, , —p.2 per unit mass. It is the thermo-
dynamic derivative of p, with respect to the relative
concentration c = p,/p that appears in Eq. (2. 9).
Also we denote the partial specific volume differ-
ence v, —e2 by v» and the partial specific entropy
difference s, —s2 by s». The transport coefficients
that enter the N matrix are the diffusion coefficient
D, pressure diffusion coefficient D~, thermal dif-
fusion coefficient D&, bare thermal conductivity
X*, bare shear viscosity g,*, bare bulk viscosity
g„*, as well as the coefficients l&z and l„& which are

The variables 8(k) are used to provide a proper
description of the coupling of an internal relaxation
process with normal hydrodynamics. However,
many (but not all) radiation scattering experiments
are not sensitive to the fluctuations in the individual
level densities. For analyzing such experiments,
we contract the above description to the set of
variables
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related to the "reaction" or the energetically in-
elastic collisions. The coefficient l» is the reac-
tion-rate phenomenological coefficient and l„1 is
the phenomenological coefficient expressing the
coupling between bulk viscosity and the chemical
reaction. Moreover, we use the symbols X, F,
arid b,,„, which are defined as

(2. 14)

and

nz DI
K

V12@2v= S12
K

(2. 1s)

(2. 16)

q(k) =k'(D+ pov„u, /~)+ i„'.
The elements of the K(k) matrix are

If„(k)=ac„(k)=z„(k)= o,

(2. 18)

(2. 19)

(k DP+vlof11m ITOP0)(k YpoTo lygm h»)X
21'P j

(a. ao)

A superscript asterisk has been used to distinguish
the transport coefficients A.*, g,*, and g„* which ap-
pear in the hydrodynamic matrix for a two-com-
ponent reacting fluid, with the translational tem-
perature as one of the variables, from the corre-
sponding coefficients in a single-component molec-
ular fluid. Hence X*, g,*, and g„* are the transport
coefficients at infinite frequency and can thus be
called "bare" transport coefficients. These bare
coefficients are renormalized after the contraction
to the smaller set of variables is made.

For this two-level problem the memory matrix
K(k, s) takes the form

K(k, s) =8 " "K(k), (2. 1'7)

with y(k) given by

/ki (k YPOTO f11 m +ay) X
22( j

~OCvt ~0
(2. 21)

( )
—ikl„,m(k YpoTo —l,~m h, „)X (2. 22)

—k 1„,m (l„,mX/T, + v „/z)
33'~ j

~o&o
(a. as)

The relaxation time 7~ is related to the phenom-
enological coefficient $11 by

7s lgfm X/T, . (a. 26)

In the interpretation of polarized light scattering
experiments one needs the density-density corre-
lation function (p(k, s)p(k)*), where the angular
brackets refer to the average over an appropriate
equilibrium ensemble. These correlation func-
tions can easily be obtained from the Laplace
transform of Eq. (2. 5). We obtain

(P(k, &)P(k)*)&p(k)p(k)*) '=f(s™(k,e)1 'h
(2. 2V)

where

M(k, s)=N(k)- K(k, e). (2. 28)

In the subsequent sections we will only be con-
cerned with the special case of a thermal relaxation
process. For this type of relaxation process the
specific volume difference v» is approximately
zero. If, in addition, we assume that the thermal
diffusion coefficient D~ and the l„, coefficient can
be neglected, the M(k, s) matrix takes the simple
form

—ik(k D~+ v,o lum / Topo)(& imXI To+ v,o/z)
31K j

(2. 28)

Ik ik(k YPOTo f11m ~so)(fyl mXITo+ ~12/~)
324 j

pOCvt To
(a. 24)

M(k, e)=

—ik/pox

k i*/poc„, + (c~/r„c„,)(1-(r„le+ y(k)]) ') —fk Tour/poe

—zk Q r/pocy g K

(a. 29)

fn writing Eq. (2. 29) we have used the relation

(a. so)

which expresses the internal specific heat per
unit mass in terms of other thermodynamic quan-
tities which appear in the above equations. The
M(k, e) matrix in Eq. (2. 29) differs from that of a
single-component structureless fluid only in the
presence of an added term in the M» element.

This provides an example of the renormalization
of transport coefficients often discussed in the re-
cent literatur e. '

Equation (2. 29) will form the basis for many of
the calculations which follow. Hence it is impor-
tant to justify the approximations which led to this
equation. The neglect of the thermal diffusion
coefficient is certainly justified, since there is
ample evidence for dilute gases that this coeffi-
cient is much smaller than the diffusion coeffi-
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cient. It is more difficult to justify the neglect of
the other cross coefficient E„,. This aspect of the
problem is discussed more fully in Sec. IV.

It is perhaps appropriate to point out here how
the present relaxation equations differ from those
used earlier by Mountain. One important differ-
ence, mentioned earlier, is that the translational
temperature fluctuation is the quantity which
naturally enters into the present formulation,
while the total temperature fluctuation enters into
Mountain's theories. Hence, Eq. (2. 29) should
not be compared with the results of Mountain's
theories. If comparisons are to be made at this
level, a linear transformation of the starting
variables must be performed in order to convert
the translational temperature fluctuation to the
total temperature fluctuation. This linear trans-
formation does not affect the calculation of S(k, (d).
We have carried out such a transformation for the
special case we consider in detail (i. e. , a thermal

relaxation of a two-level system with neglect of
Dr and l„,). Microscopically, the total tempera-
ture fluctuation can be written in terms of a vari-
able 8'(k),

8'(&)= p,c„r...(k), (2.31)

where c„ is the full specific heat per unit mass,
Cv C t + CI& an

8'(k) = E(k) —&z(k)p(k)~) &p(k)p(k)+) 'p(k) .
(2. 32)

Under the above conditions this variable i.s related
to 8(k) by (see the Appendix)

8'(k) = e(k) + &E(k)t g(k)*&&$g(k)( & (k) *) 'hg(k) .
(2. 33)

When this transformation is made and the contrac-
tion to the set (p(k), 8'(k), J(k)) is performed, the
resulting relaxation matrix, which we denote by
M'(k, s), takes the form

M'(k, e)=

I/ O

k X+ci/c„o —p() c~ D
CpC TE(E+o Ef 'T C /C„) )
ik ~+ c

Opc„ II T c„(E -O EP T c /c„))

~. Tp&r—SJV

ppK

u',
(s n.*+—nv)

(2. 34)

,
( )

Xk (1 yean„)
poco(1 + gtscot/co)

(2. 35)

'
Equation (2. 34) can now be compared with the cor-
responding equations of Mountain. Both the fre-
quency and wave™vector dependence are different.
The two important distinctions to notice are the
following: (i) The bare thermal conductivity X*
and diffusion coefficient D enter on a separate
footing and (ii) Eq. (2. 34) contains terms to all
orders in the wave vector,

In Mountain's theories only the frequency depen-
dence of normal hydrodynamics is generalized;
the equations only contain terms up to order k . In
addition, the diffusion coefficient enters only via
the Eucken correction in the thermal conductivity.
In the M„ theory only the M,'3 element is generalized
through the introduction of a relaxing bulk viscosity
with one relaxation time. The remaining elements
of this matrix are identical to those of the normal
hydrodynamic matrix. In the M, theory the equa-
tion of motion for the relaxation variable $ intro-
duces frequency dependence only in the M ~& and
M,'3 elements of the M' matrix. The explicit ex-
pressions are

~,', (k, e)=-f
pol(' 1 + (oTsc„g/c„

where X is the full thermal conductivity.
From Eq. (2. 34) we note that

lim M,'z(k, g) A.*+poclD
06 0 PP pc p

(2. 36)

(2. 37)

The numerator has the form of the thermal con-
ductivity for a molecular fluid in which translation
and internal motion are weakly coupled; X* is the
translational contribution, while pocID is the Eucken
correction due to diffusion of internal energy.

It is worthwhile to point out that the assumption
of the time-scale separation 7', «7;, v„which yields
Eq. (2. 34) is quite different from the weak coupling
assumption of Zwanzig' which results in the M„
theory for S(k, (d). In Zwanzig's calculation all
collisions which result in energy transfer between
the translational and internal degrees of freedom
are assumed to be weak through an explicit as-
sumption in the form of the Hamiltonian. In con-
trast, the translational hydrodynamics requires
that such energetically inelastic collisions be in-
frequent compared to the elastic collisions; there
is no restriction on the strength of the inelastic
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collisions. For molecules with low mass and low
moment of inertia, e.g. , H~, HD, and D~, the en-
ergy difference between the ground state and the
next excited state is of the order of a few hundred
degrees. For these systems, the part of the in-
teraction potential which governs the translational
to internal energy transfer is strong, making
Zwanzig's weak-coupling assumption invalid; how-
ever, the large energy-level spacings make in-
elastic collisions infrequent compared to the elastic
collisions making the translational hydrodynamics
appr opriate.

In the followi. ng sections we apply the above re-
sults to parahydrogen gas at room temperature,
for which the two-level approximation is quite
adequate. For hydrogen, the numerator of Eq.
(2.37) has been found to provide a fairly accurate
description of the thermal conductivity. ' This
observation provides further justification for the
neglect of D~ for hydrogen.

III. CALCULATION OF S(k, u)

In this section, we apply the results of Sec. II
to predict the Rayleigh-Brillouin spectrum for a
two-level system. We present numerical calcula-
tions appropriate to parahydrogen gas at room
temperature and over a density range up to about

S(k, (d) = 2Re&p(k, e =+its)p(k)*) . (3.1)

Using Eq. (2. 27), we can compute S(k, (d) if we
have a well-defined M(k, s). For the two-state
fluid, we use the approximations which neglect
all the cross-coupling transport coefficients, viz. ,
D~, D» and l„„and thus we use M(k, e) as given
in Eq. (2. 29). From Eqs. (2. 27) and (2. 29) we
find that

(3.2)

where

100 amagats (-0.009 g/cm). Even though such a
gas is quite dilute and binary collisions should be
sufficient to describe its dynamics, the validity of
the dilute-gas Boltzmann equation is limited up to
about 30 amagats. This is due to the incorrect
way in which the static correlations are treated by
the Boltzmann equation. Our use of translational
hydrodynamics restricts the theory of Sec. II to
small k and &, but it is valid over the entire densi-
ty range.

The intensity of the light scattering spectrum is
proportional to the dynamic structure factor
S(k, &u), which is

+ Dk' 5)." " ' '+ " ' —+ 'a(o(,'+ '
) (32R)

b k4 2kp) 7'J4 (Dbok + cook /y, )c~ ac„k
l~

[a7's'+D(ak + 7's'c /c„, )]c„k
~ ~

&vt 'Yt ) yt

In Eqs. (3. 2a) and (3.2b), Aa*/p „„b (03 )7,*
+)7„*)/po, and y, =c~,/c„, . Also c is the transla-
tional (infinite frequency) sound speed given by
c„=y,/poz. The corresponding F(e) and G(e) in
the M„and M4 theories are given in Eqs. (17) and

(18) of Ref. 6 and Eqs. (22) and (23) of Ref. 7, re-
spectively. As mentioned earlier, previous com-
parisons between the two theories by Mountain and
the light scattering experiments on certain liq-
uids "'" ' have shown the theories to be satis-
factory; however, a similar comparison with ex-
periments on dilute gases"" shows some area of
disagreem ent.

At low densities, where the Boltzmann equation
for molecular gases would be applicable, we also
compare the present theory with a recent kinetic

model calculation '"' which has been found to give
excellent agreement with the experiments '" on
normal hydrogen (nH~), normal deuterium (nD~),
and hydrogen deuteride (HD). Such a comparison
helps us in finding the region of validity of the hy-
drodynamic theories.

In order to calculate S(k, v) using Eq. (3.2) or
the two theories of Mountain, we need the following
parameters: D, X*, g,*, g„*, c~, c„t, cI, 7'~, and
c„. We assume D and 7'„ to be proportional to
po and we take the bare (or the structural part of
the) bulk viscosity )74' to be zero. This is appro-
priate for dilute gases. For parahydrogen gas at
24 'C, we choose the value of D at 1 amagat to be
1.34 cm /sec, which is deduced from the experi-
mentalvalue' of 1.285 cm /sec at0 'C and 1 amagat.
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The value of 7'~ at 1 amagat, Tgp is chosen to be
1.19 &&10 sec. This value is calculated from the
relaxing part of bulk viscosity, p„, which is found
to be 2100 p P in the kinetic calculation of Moraal
and McCourt. ' The relaxing bulk viscosity can
also be deduced from excess sound absorption
measur ements on parahydrogen. However, the
appropriate measurements show large variations
of up to 20%%uq. The value of 2100 p. P lies within the
experimental range, but the true value could be
somewhat larger; a selective experimental average
is 2500 pP, which would correspond to 7„p=1.42
x10 sec. Various specific heats as well as the
transport coefficients X and q,* are assumed to be
the same as those for normal hydrogen and are
taken from Hara et al. ,

'" with appropriate inter-
polation for intermediate densities. The bare
thermal conductivity X~ is then obtained using Eq.
(2. 37). The sound speed is obtained using the ex-
perimental equation of state p and the appropriate
specific heats.

The relaxation time appearing in the two-level
system is identical to that in the M& theory and is
related to the relaxation time v„ in the M„ theory by
v„=c„,7+c„. Thus if we choose vs, =1.19x10 '
sec, then 7„p = 0. 714 && 10 sec.

It is knownz' that for dilute gases S(k, ~) satisfies
a certain scaling property; for a molecular gas, '"'

S(k, ~) depends on k, ~, po, T, and the transport
coefficients through the following dimensionless
combinations: cz/ks, x= &a/kvo, y = povp/2k17+,
z =3q„/2y, g„and f= X/g, c„. y, is cz/c„

Since 2q,/povo is a typical translational mean
free path, y is the ratio of the probe wavelength
to the mean free path; similarly, x/y is the ratio
of the probe frequency to the typical elastic colli-
sion frequency. The dimensionless quantity z,
usually referred to as internal relaxation number,
is the ratio of the elastic collision frequency +,
= noksTO/g, to the internal relaxation frequency
ar„=2y, nokzTo/3'„= r„o; f is the Eucken ratio re-
lating the thermal conductivity and shear viscosity.
In monatomic gases, the hydrodynamic region is
determined by the conditions y» 1 and x «y. In
molecular gases, we expect the same conditions to
determine the validity of the present translational
hydrodynamics theory. For ordinary hydrodynamics
to be valid in molecular gases, we need not only
y» 1 and x «y but also x «y/z; i. e. , the probe
frequency has to be small compared to both the
typical elastic frequency w, as mell as the internal
relaxation frequency ~„. For parahydrogen with

y&=0. 4, p„=2100 p, P, and g, =88 p, P, we get z =90.
Thus the condition x «y/z is much more restrictive
than x«y. Ordinary hydrodynamics is thus valid
for a very small frequency range compared to
translational hydrodynamics.

For y & 30 (densities greater than about 50 ama-

gats at room temperature and for typical 90 light
scattering experiments '"), we find that S(k, &o)

calculated using the three generalized hydrody-
namic theories —M„, M&, and TH-agree with one
another almost in their entirety. It is only for
these high y values that we find S(k, ~) to be sensi-
tive to the choice of relaxation time. Sample cal-
culations using translational hydrodynamics at
y -180 show that the effect of changing 7'gp from
1.19 to 1.42x10 ' sec is to (i) shift the sound peak
by about —,'%%uo, (ii) increase the width of the sound
peak by about 11'%%uo, and (iii) decrease the intensity
of the sound peak by about 10/0. Thus light scatter-
ing experiments for large y should be able to deter-
mine the relaxation time considerably more ac-
curately than the ultrasonics measurements. ' In
the interpretation of the experiments at lower y
values (y~ 60), however, an error of about 10/o in
7'& should make no quantitative difference.

In Figs. 1 and 2 we show S(k, ~) at two rather
low y values of 0. 52 and 3.11, respectively. Fig-
ure 1 shows that for y & 1 the kinetic model calcula-
tion differs considerably from the generalized hy-
drodynamic theories as expected. For such y
values, there is no substitute for a kinetic calcula-
tion, since even the translational motion is truly
kinetic. It is interesting to note that the kinetic
calculation predicts a very shallow minimum cen-
tered around zero frequency; the line shape dips
by about 4% when compared to the maximum, which
is located at &o/kc„=0. 5. We do not understand the
origin of this behavior; in all likelihood it is de-
pendent on the fine features of the model used
rather than the kinetic equation. It is also interest-
ing to note that, in Fig. 1, the M„ theory resembles
ordinary hydrodynamics, whereas the M& theory
agrees with the present TH theory almost every-
where.

Figure 2 shows the remarkable agreement be-
tween the kinetic model and translational hydrody-
namics, this is expected, since the y value is sig-
nificantly greater than 1. On the other hand,
neither the M„ theory nor the M& theory agree mith
the kinetic model calculation. Comparison of the
details of the line shape at higher y values are
made in Sec. IV through the dispersion analysis of
the four contributing modes. At y = 3.11, the in-
dividual contributions to S(k, &u) from the two
propagating sound modes, the thermal-diffusivity
mode, and the internal relaxation mode are shown
in Fig. 3. It is clear that the latter two nonpropa-
gating modes (both centered at u&= 0) contribute
nearly equally', this is in contrast to the situation
in liquids, where the relaxation mode is very broad
and much less intense. As a consequence the real
test of the M„and M~ theories is in dilute gases;
here both experimentally " as well as when com-
pared to the kinetic model calculations (see Fig. 2)
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FIG. 1. Spectrum of density fluc-
tuations from parahydrogen at 24 'C:
comparison of various theories in the
kinetic regime, p0=0. 92 amagats,
y = 0. 52: Translation hydrodynamics
(TH), solid line; kinetic model (BDT),—o —o —;Mountain's thermal relaxation
theory (M~), dashed line; Mountain's
relaxing bulk viscosity theory (M~),———;ordinary hydrodynamics,
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we find both the theories to be deficient. We there-
fore suggest the use of translational hydrodynam-
ics in analyzing those light scattering experi-
ments from molecular fluids which fall in the region
y &1 and x/y «1. We discuss the sound mode con-
tributions in Fig. 3 in more detail in the latter
part of Sec. IV.

IV. DISPERSION ANALYSIS

Various collective modes contribute to the spec-
trum of the density fluctuations S(k, v) in a fluid.
The standard way to analyze these modes is to
study the behavior of the poles of S(k, &o) in com-
plex co plane. In all the three theories, M„, M„
and TH, S(k, &u) has four poles. Two of these are

complex and correspond to the propagating sound
modes, whereas the other two correspond to the
purely dissipative modes of internal relaxation
and thermal diffusivity. For the initial value
problem at hand, the dispersion analysis involves
tracing the behavior of these roots as functions of
(real) wave number k. For small k, this can be
done analytically using a k expansion; for arbitrary
k, we study the dispersion numerically by evaluating
the zeros of the denominator G(s) in Eq. (3. 2). In
the numerical work, we have set the coupling trans-
port coefficients D~, D~, and l„, equal to zero.
The neglect of D~ and D& was justified in Sec. II.
Here we give some plausible arguments for the
neglect of l„,. Partly to that end, and partly for
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FIG. 2. Spectrum of density fluc-
tuations from parahydrogen at 24'C:
comparison of various theories in the
translationally hydrodynamic regime,
po=5. 57 amagats, y =3.11. Symbols
same as Fig. 1.
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FIG. 3. Contributions from
various collective modes to
the spectrum of density fluc-
tuations in the translational
hyd rodynamics theory: para-
hydrogen at 24'C, p0=5. 57
amagats, and y=3. 11
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e Tn = —k (X*+poclD)/pocp s
2

internal relaxation:

eR (TRC t/c

where

(4. 1)

(4. 2)

S/2 -2
Ci/ Po Cvt + DCv t Cvt i 2 2iJ = —7g (C~ —Co f

cv Cv

(4. 2a)
and

sound:

ml„, (sp, l'~o

poTo Esc )r,I
(4. 2b)

&s = +icok —I k

where

(4. 3)

I (~*+poc,D)(I- I/r) —.
'

n.*+n.*-2
pocv Po

1/2 ~2
(co —ca) —q (4. 3a)

and co = (y/poz)' o is the adiabatic sound speed. In
the k correction to the relaxation root and in the
sound attenuation coefficient I", exactly the same
combination of v~ and l„, appears. Thus by de-
termining the two quantities f and I' we cannot de-

its own sake, we have considered a form for G(s)
more general than that in Eq. (3. 2b); in this form,
we do not neglect l„,. By making an expansion in
powers of k, we arrive at the following four roots
of G(e) valid to order k:
thermal dif fusivity:

termine the two unknowns 7'g and l„, but only the
combination which appears in Eqs. (4. 2a) and
(4. 3a). When q(l„,) is set equal to zero in Eq.
(4. 3a), the sound attenuation coefficient is exactly
the same as that given by the M„and M& theories.
The resulting expression is the one which is usual-
ly used to extract the relaxation time from ultra-
sonic experiments. Hence, if the experimental
relaxation time is used in the calculation of S(k, ~),
consistency demands that q should be set equal to
zero. It should be stressed again that this argu-
ment in no way implies that q is actually zero; it
simply means that there is insufficient experimen-
tal information to determine the value of q. How-
ever, I„, reflects the coupling between chemical
reaction and bulk viscosity„The corresponding
diagonal coefficients are l» and g „. Since it is
known that g„* is zero to a very good approximation
for dilute gases, and it seems highly unlikely that
the cross coefficient would be larger than the dia-
gonal coefficient, the neglect of /„, is not unrea-
sonable.

When q is set equal to zero, the roots to order
k are the same as in the M„and M& theories ex-
cept for the k correction to the relaxation root.
To order k', v„does not appear in the thermal-
diffusivity mode. To order k, A.* and D do not
appear in the relaxation mode, but they do when
the k correction is made. If we set v~ and cr
equal to zero, i. e. , in absence of the "reaction"
in the sense of Sec. II, the four modes reduce to
(i) a pair of sound modes arising solely due to
translational motion with c„as sound speed and
sound absorption due to bare transport coefficients
X", g~, and g„*, (ii) the thermal-diffusivity mode
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behavior. This difference can be traced to the
frequency and wave-number dependence of the M~~
element given in Etl. (2. 34). In particular, the k
dependence arising from the diffusion term is
crucial. For dense fluids where D is of the order
of 10 ' cm /sec, Dk' is about 10' sec '. When
compared to the typical frequency of 10 sec ' in
the light scattering experiments and to the term
with inverse relaxation time vs c„,/c„, which is
about 10' sec, Dk is negligible. It is here that
the M„and M& theories have been moderately
successful. In dilute gases, however, a typical
value for Dk is about 10 sec and is thus quite
crucial in Eq. (2.37). As y increases (which is
etluivalent to increasing k), the Dks term in the
denominator becomes dominant and large, so that
Mat approaches the constant value of X*/c„,po for
large y '. For very small values of y ', however,
Msa approaches (X*+ pcs~ D) /p ca„ if we put e = 0.
The slope in Fig. 5(b) for large y

' agrees with the
value X*/c„,po as expected. (For parahydrogen gas
at room temperature, X/A. * is about 1.36. ) This

0.6

(a)
00 O.l 0.2 0.3 0.4

FIG. 4. Behavior of collective modes in parahydrogen
at 24'C: (a) dispersion of sound speed (uote that co/c
=0.918) and (b) dispersion of sound attenuation. Symbols
same as Fig. 1. The arrow along the y

~ axis shows the
usual range of light scattering experiments on liquids.
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—A*k /pocJ, , and (iii) the diffusion mode —Dk as
in anonreacting binary mixture without the effects
of the coupling transport coefficients D~ and D~.

For not so small k, we have supplemented the
above analysis by studying the dispersion numeri-
cally for the three generalized hydrodynamic theo-
ries for y &3. When y & 3, we prefer the results
of the recent kinetic model. '"' The dispersion of
the four modes is shown in Figs. 4 and 5. For
the sound roots and the relaxation roots all three
theories show qualitatively similar and expected
behavior, with TH results mostly lying between
the M„and M, theories. Also for very small
values of y ', all three theories become identical.
For the thermal-diffusivity root, even though the
three theories start in the same fashion for small
y ', the results are qualitatively different for
values of y

' & 0. 07 [see Fig. 5(b)]. The M„and
M& theories show that the thermal-diffusivity mode
reaches a maximum and then goes to zero for
large values of y '. However, the TH theory shows
an almost linear increase in the corresponding
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FIG. 5. Behavior of collective modes in parahydrogen
at 24'C: (a) dispersion of the internal relaxation mode
and (b) dispersion of the thermal-diffusivity mode. Sym-
bols same as Fig. 1. The arrow along the y

~ axis shows
the usual range of light scattering experiments on liquids.
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also explains why the M„and M& theories have
been found to be in disagreement with the dilute-
gas experiments. '"' Experiments by Stoicheff and
co-workers on liquids""""' have probed the re-
gion of very large y due to the larger liquid densi-
ties; the value of y

' is always less than 0. 02. In
this region, all the theories are qualitatively iden-
tical.

The last remark concerns the sound speed and
its dispersion. In Fig. 4(a), the imaginary part
of complex pair of zeros of the denominator G(s)
in Eq. (3.2b) is shown; in Fig. 3, the contribution
from these modes to S(k, ~) is shown. The peak
position of the sound (Stokes) peak in Fig. 3 is in
general different than the corresponding zero
shown in Fig. 4(a); and both of these are different
from the maximum of S(k, m) shown in Fig, 2.
The latter difference arises from the overlap of
the other modes with the (Stokes) sound mode and
is discussed in literature very often. For para-
hydrogen with y = 3. 11, this overlap is not very
significant: The peak position in the TH curve in
Fig. 2 is at &o/c„k =0. 935 and that of the Stokes/
sound curve in Fig. 3 is at a&/c„k =0. 937. The
imaginary part of the zero of the denominator,
however, occurs at &v/c„k =0. 976, which is quite
different. The difference arises from the asym-
metry in the resonancelike line shape of the
sound mode. " In using Eqs. (3. 1) and (3.2) to
compute S(k, &u), we can (numerically) rationalize
the polynomial ratio in Eq. (3. 2) as

and

(k) =E(k) —&E(k)$ (k)*&&h (k)k (k)*& 'h (k)

—&B(k)5(k)*&&$(k)$(k)*& '((k). (A3)
The mass, energy, and momentum density fluctua-
tions are given by

p (k) = Z m(e'"'~O,"—&e'"'"~O,'&), (A4)
5~1

N

E(k)= Z (e,e'"'~ —&e,e' '&&) (A5)

with

(A6)

and

and closely parallels other microscopic derivations
for a nonreactive binary mixture. ' Consequently,
we will only present the microscopic definitions
of the fluctuation variables and their corresponding
fluxes along with some of the results for the reac-
tive terms. For the orthogonal set of variables
in the GLE, we choose the same set as in Ref.
13(a) but with microscopic definitions modified to
take into account chemical reaction.

Let Z(k) denote the column vector whose ele-
ments are ($,(k), $(k), e(k), J(k)]., where

hy(k) P»py(k) PgoP2(k) i (Al)

f (k) = v,p, (k) + v, p, (k), (A2)

S(k, (d)
( ) g Bgyy + By(yi-& )

S(k) '",
=( (~'-y~)'+(yg )' (4. 4) k ~ pg elf 'Fg

$~1
(A7)

where u' = +/c„k; gj/c„k =y& —=
y& + iy &

gives the
four zeros sz of the denominator G(s); and
B& = B~~+iB~i —are the corresponding residues E(e&)/
[G(e)/(s —g&)], , Since the coefficients of the6=6' '

polynomials I' and G are real if && is a real root,
the corresponding residue B& is real as well.
But if && is a complex root, corresponding B& has
a nonzero imaginary part J3&. The term —I3&&' in
the numerator of Eq. (4. 4) causes the maximum
for the jth term to be located at a value different
from y&. This maximum occurs at

I B(BB
l
B
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APPENDIX

In this Appendix, we give further details regard-
ing the derivation of the hydrodynamic equations
for a binary reacting mixture. This derivation
uses the generalized-Langevin-equation (GLE) ap-
proach. ' The derivation itself is straightforward

p(k, s)=& f(k, s) f(k)'&&Z(k)Z(k)'& '.
The elements of the random force vector f (k) are

f,,(k) = (p,/p„p„)[ikJ,(k) —mR(k)], (A9)

(AS)

fz(k) = v»[ik J~(k) —mR(k)],

T
fe(k) = ik To — + v, a J~(k) + ikq(k)

(A10)

There are N particl. es in the system, p& is the
momentum of the ith particle, and V(ir, —r&i) is
the potential energy of interaction between particles
i and j. The angular brackets signify an equilib-
rium average in the canonical ensemble. The
important modification of the corresponding equa-
tions in Ref. 13(a) is the introduction of the op-
erators 0& in Eq. (A4) which determine whether
the ith molecule is of type n.

The frequency matrix in the GLE is not modified
by the presence of reaction and is given in Eqs.
(2. 11)of Ref. 13(a). The damping matrix in
Mori's formalism is easily constructed from the
random forces corresponding to the above vari-
ables and can be written
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and

Po (@k)&1(k)*& „— (E(k)4 (k)*)
P o P o &h (k)h (k)*& " ($(k)g(k)*&

(A11)

f,(k) =iko, (k) . (A12)

In these equations the diffusion flux J3(k) is defined
by

~.(k)=[p 'J (k)- P o'~ (k)ip oP o/Po,

with

N

J (k)= Z ' e' '«0, («3. =1, 2).
)=1 k

The reaction flux R(k) is defined by

R(k) = —5 e' '«0,'

(A13)

(A14)

N

= P e"'"«0' (A15)
)~1

The quantities q(k) and o3(k) are the nonconserved
parts of the heat flux and the longitudinal pressure
tensor, respectively, and explicit expressions for
these quantities are given in Eqs. (2. 15a) and

(2. 15b) of Ref. 13(a). In writing the above expres-
sions for the fluxes, variables describing the cen-
ter-of- mas s motion have been treated classically.
The linear phenomenological laws for (Z„(k, t)&„,
and (q(k, t))„, remain unchanged in presence of
reaction and are given in Eqs. (2. 19a) and (2. 19b)
of Ref. 13(a). However, the longitudinal pressure
tensor can couple to the chemical potential differ-
ence (p, (k, t'))„, due to the reaction; thus Eq.
(2. 19c) of Ref. 13(a) changes to

C(k)=Ty(k)T ',
and the transformed frequency matrix is

n(k) = T(u(k)T '.

(A20)

(A21)

The nonzero elements of these transformed ma-
trices are given below. The OR(k) matrix in Eq.
(2. 1) is the combination C (k)- iA (k):

C (k) k oD+ o" D +»
p

P +

where

(A22)

20 ~ V12V1

, ~0 ec Z ~ /C

(A23)

@ (A) Ao(
Plo oo Po o ~ ol (A/4)
P0 K T0

where

is available concerning the coefficient /„, . We
know of no approximate calculations of the corre-
lation function in Eq. (A19), even for model sys-
tems; we can only speculate that it is probably
small since it is a cross effect.

Using the expressions for the random forces
and the linear laws, we can write down, in a man-
ner similar to that of Ref. 13(a), the hydrodynamic
limit of the damping matrix (t)(k, e); it is frequency
independent and contains terms up to order k . Al-
though the derivation outlined in this Appendix is
most readily carried out using the orthogonal set
of variables Z(k), the calculations described in
Sec. II can be performed most conveniently using
the variables 8 (k). If T is the matrix which trans-
forms the Q„$, 8, Jrbasis to the fp„p2, e, JJ
basis, the transformed damping matrix is

&o3(t)&., = ik po'(3).*+3 n,*)(~( t) &.,+ (I.1/To)m&t«(t)&. ,
(A16)

Similarly, the phenomenological law for the reac-
tion flux (R(k, t)&„, is

P10 j&P V12V2
2

I

' +
P0 l(eC

k 2

() kY l„mh, „
Cv t ~OCv t ~0

(A25)

(A26)

J(t)& T m(t«(t
Po&0 0

(AIS) e (k)=- (A2V)

l» --lim (R (k, e)R(k)*&/m2ke V,
I «020«0

l,„= lim (R(k, e)g3(k)*&/k««V.

(A18)

(A19)

The correlation-function expressions for the non-
reactive transport coefficients are well known.
Analogous expressions for the reaction-rate coef-
ficient l» and the coupling coefficient l„1 are

C,.(k)='-C,.(k) (n=l, 2, 3, 4),
431(k ) = (k'YppTp l11m &,„),
C32(k) —(k YpoTp l11m k ) 2

k T 8
433(k)

"
&3'+ o o Y

p c„, D Bc

(A28)

(A29)

(A30)

6-0 k»0

It should be noted that coupling coefficients l„,
and l1„which couple the reaction and bulk viscosity
have odd symmetry, i. e. , l„,= —/, „. Expressions
similar to Eq. (A18) have been obtained by several
authors earlier and l» is easily related to the
experimentally measured relaxation time [3see

Eq. (2. 26)]. On the other hand, little information

C,4(k) = ikl„, m(P, „/po,

C'41(k) = —3kl„«m 1/Tp,

C 42(k) = —ikl„, m=2/Tp,

4 43 (k ) = ikl„, m &,„/po Tpc„«

2 2
l11 m +3() (A3 1 )

~0Cv t

(A32)

(A33)

(A34)

(A35)
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O4. (k) = k'(-,' n.'+ n.")/p„
in, (k) =ikp, /p, (a= 1, 2),

in, (k) = ikv /a (n = 1, 2),

(A36)

(A3V)

(A38)

in34(k) = ik TpQr/PpK,

«43(k) =»c r/po«. ~

(A39)

(A40)
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