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in Eq. (5. 3), while in the time integration over the
velocity correlation function we have to include the

C

diffusion relaxation factor e &"»( for the concen-
tration fluctuation of wave number k . This brings
in the ratio y=k'/k, in the notation of Eq. (3. 1).
The resulting integral is

2T 1

g(O, k, O) q(O, k, O)'

'g O, k, — —g Q, k, O

k'

2T
a'q(o, a, t '/t )

and appears in the integrand of Eg. (5. 3)

*Research supported in part by the Office of Naval
Research. This work constitutes a portion of a thesis
submitted by Robert Perl to the faculty of the University
of Maryland in partial fulfillment of the requirements for
the Ph. D. degree.

J. V. Sengers, Ber. Bunsenges. Physik, Chem. (to
be published).

A. Stein, J. C, Allegra, and G. F. Allen, J. Chem.
Phys. 55, 4265 (1971).

3B. C. Tsai, Master's thesis (University of Akron,
1970) (unpublished).

4R. F. Chang, P. H. Keyes, J. V. Sengers, and C. O.
Alley, Phys. Rev. Letters 27, 1706 (1971).

K. Kawasaki, in Enrico I'e~mi I ectuxes on Cxitica/
Phenomena, edited by M. S. Green (Academic, New York,
to be published). While preparing the present report we
received a preprint of a paper by K. Kawasaki and S. M.
Lo which extends the theory of critical viscosity to the
diffusion problem and obtains results similar to ours. %'e

wish to express our appreciation to the authors for com-
municating the results of their investigation in advance of
publication.

J. M. Deutch and B. Zwanzig, J. Chem. Phys. 46,
1612 (1967).

'M. S. Green, J. Chem. Ihys. 22, 398 (1954).
R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 (1965).
K. Kawasaki, Phys. Letters 30A, 325 (1969); Ann.

Phys. (N. Y. ) 61, 1 (1970). See also J. Swift and L. P.
Xadanoff, ibid. 50, 312 {1968}.

~ B. A. Ferrell, Phys. Rev. Letters 24, 1169 (1970);
in Dynamica/ Aspects of C~itica/ Phenomena, edited by
J. I. Budnick and M. P. Kawatra, (Gordon and Breach,
New York, 1972), pp. 1-18.

~~R. A. Ferrell, N. Menyhard, H. Schmidt, F.
Schwabl, and P. Szepfalusy, Phys. Rev. Letters 18,
891 (1967); Phys. Letters 24A, 493 (1967); and Ann.
Phys. (N. Y. ) 47, 565 (1968).

~ B. I. Halperin and P. C. Hohenberg, Phys. Bev.
Letters 19, 700 (1967); and Phys. B v. 177, 952 (1969).

~3This corresponds essentially to a constant scaling
function. , in the terminology of Ref. 10, and is a better
fit to the data than the one shown there in Fig. l.

~4R. Perl and R. Ferrell, Bull. Am. Phys. Soc. 17,
54 (1972).

~5This is smaller by a factor of 2 than the values pre-
sented in Bef. 5 and by K. Kawasaki [in C~tica/ Phe-
nomena in A//oys, Magnets, and Supexconductoxs,
edited by B. E. Mills, E. Ascher, and B. I. Jaffe-,
(McGraw-Hill, New York, 1971), pp. 489—502].
Professor Kawasaki {private communication) is now in
agreement with the present value.

~6It l.s interesting to note that Eq. (12) confzrms the
general rule of thumb [R. A. Ferrell, J. Phys. 32, 85
(1971)].that when the factorization brings in the correla-
tion length twice (via the equal-time Green's function),

a
aeff 2 ~

We plan to deal with this application of the theory in
a later paper.

PHYSICA L RE VIE W A VOLUME 6, NU M BER 6 DE CEMBER 1972

Electron Gas at Metallic Densities~

Gerd Keiser and F. Y. Wu
Department of Physics, NotNeastexn U'nivexsity, Boston, Massachusetts 02115

(Received 17 July 1972)

The ground-state properties of an electron gas at metallic densities are investigated using
the Wu —Feenberg theory of Fermi liquids. The correlation energy, the low-temperature spe-
cific heat, and the spin susceptibility are computed, and the ground state is found to be para-
magnetic. The perturbative correction to the correlation energy owing to the particle-hole ex-
citations in a correlated-basis-function formulation is found to be insignificant.

I. INTRODUCTION

The problem of a quantum electron gas in its
ground and low excited states has been a subject of
interest for many years. The study was initiated

by Wigner' in a calculation of the correlation en-
ergy which he defined to be the difference between
the true ground-state energy and that given by the
Hartree-Fock approximation. The correlation en-
ergy is a function of the electron density which is
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measurable in terms of the dimensionless param-
eter r„the average interparticle distance in unit
of Bohr radius. At high densities (r, «1), the cor-
relation energy is expressed in a series expansion
in x, . The leading coefficients of this expansion
were first obtained by Macke, and the calculation
was later extended by Gell-Mann and Brueckner
and others. In the low-density limit (r, » 1), the
electrons tend to form a stable lattice. The cor-
relation energy at low densities is expressible in
a series expansion in r, '.

It is considerably more difficult to carry out
studies on the electron gas in the physically more
interesting metallic density range 1& z, & 6. This
corresponds to the densities of electron. - in metals.
The main difficulty lies in the lack of a useful ex-
pansion parameter v hich necessitates careful con-
siderations. Many approximate treatments have
been applied to the electron gas in this density
range. They include, among others, the random
phase approximation (HPA), a, dielectric formula-
tion, ' a method of Green's function, ' and varia-
tional approaches.

One approach that has not been fully tried in its
application to an electron gas is the method of cor-
related basis functions (CBP). The CBF method
has been successful in dealing with strongly inter-
acting many-particle systems such as liquid and
solid helium and certain nuclear systems. It has
also been proven to be successful for the charged
Bose gas whose interaction is long ranged. It is
therefore natural to extend the region of its appli-
cation to an electron gas, especially in the inter-
mediate density range for which the CBF method is
best fitted for numerical calculations. We wish to
emphasize at this point that the CBF method is a
self-contained perturbative treatment, as opposed
to the variational calculations that have previously
been carried out using the same type of wave func-
tions. 8

In this paper we report on the results of a pre-
liminary application of the CBF method to an elec-
tron gas in the intermediate density range. Here
we are primarily interested in extending the Wu-
Feenberg theory of fermion systems, which has
proven to be successful for liquid He', to the
problem of an electron gas. As in the case of liq-
uid He', perturbative calculations will be carried
out by considering particle-hole excitations. The
correction to the correlation energy is found to be
very small. The low-temperature specific heat
and the ground-state spin susceptibility are also
computed.

II. BASIC THEORY

Consider a system of N electrons of mass m con-
fined in a uniform neutralizing background of vol-
ume A. The Hamiltonian takes the form

where the potential energy V(r~, . . . , r„)includes
the Coulomb energy between the particles and that
between the particles and the background. We shall
consider the limit of N- ~, 0- ~, while holding
the electron density p = N/0 constant. We are in-
terested in the ground-state solution of the Schro-
dinger equation

PD 0 (rl r ~ ~ ~ s rs)~

&Po =&oko .8 8 B

(4)

(6)

Furthermore, the model function is taken to be a
determinant of plane-wave orbitals:

y, = det
~

e'" '"s (a„)
~

. (6)

In (6), the wave vectors k„aredetermined by the
usual periodic boundary conditions and s„(a„)is
the spin wave function. The basis set is therefore
characterized by the quantum numbers (k„,s„}.
The zeroth-order approximation to the ground-
state wave function is written as, according to (3),

4o = 4o yo~

in which the wave vectors in yo are confined within
a Fermi sphere for each component of the spin.
The wave function (V) forms the basis of the theory
of Fermi liquids formulated by %u and Feenberg. '
Other basis functions can be generated by extend-
ing the range of the wave vectors in the model

for a given density p and antisymmetric wave func-
tions.

A conventional, although in principle not neces-
sary, starting point of the CBF method is an edu-
cated guess on the ground-state wave function. The
expectation value of the Hamiltonian in this state is
then taken to be the zeroth-order approximation to
the ground-state energy. Higher-order correc-
tions to this approximation can be obtained in a
perturbative treatment using a set of properly cho-
sen basis functions. For fermion systems a con-
venient choice of the basis is the set

0';=toy; (3)

In (3), go= go(r~, . . . , r„)is a correlation factor
which accounts for the correlation between the par-
ticles, andy, =y&(r,a». . . , r„as),themodelfunc-
tion which is antisymmetric in the N spatial and
spin coordinates (r~, o~), accounts for the required
statistics. Note that these basis functions differ
only in the choice of the model functions.

Following the Ji.ead of Wu and Feenberg, o we take
the correlation factor to be the ground-state solu-
tion of (2) among the boson-type (symmetric) wave
functions:
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functions. Examples are states with two or more
electrons excited outside the Fermi sea. A per-
turbative calculation using these "particle-hole-
excitation" wave functions has been formulated by

oo 11

We begin our study by stating some basic rela-
tions occurring in the theory. The boson pair-
distribution function is defined by

N(N —1)
12) 2 J 4o dra. . .dr„,

P
(8)

Z,'= E k'.„u(k )~„„,
mn

where po is taken to be normalized. The boson
liquid-structure factor is defined in terms of the
Fourier transform of g~ —1 as

S(k)=—1+u(k) = 1+p f e'"'[gB(r) —1] dr .
The expectation value of the Hamiltonian 3C in the
state goB takes the following expression

&"'(kao1 kBoB)= f 4o 304o /f to 4o

=EO+E1 +E2+E3 + ~ ~ ~,
(10)

where the integrations extend over all the N con-
figurational and spin coordinates. Also,

- 2
Z"= Z k'

1 2 f1t
n

&&f gB(3'23)f (3'31) h(k&323) h(kB3») dr, +. . . ].
(i3)In (13),

f (r) g,=-(r) —1,

h(k, ~)= (2/N)-Z e'"'
0&k

= 3(sinkaa —kzr coskzr)/(kBr)3,

(14)

and the Fermi momentum is given by kB = (311 p)
The Wu-Feenberg theory also permits the cal-
culation of the low-temperature specific heat C and
the spin susceptibility y. The results for the pa-
ramagnetic state turn out to be best interpreted in
terms of the Landau parameter defined by

2 2

f (k1, ka) = k1au(k1a)4m 32m7T p

[k12S(k12)u(k13) u(kaa) + kaa S(kaa) u(ka, ) u(k1, )
2

functions with a pair of electrons excited outside
the Fermi sea is included in Appendix B."

As we shall see in Sec. IV, the ground state of
an electron gas is paramagnetic. For this state,
the pair-distribution function defined by Po can be
expressed in terms of g~ as'

gE(ala) gB(+12) ri 3 h (kF 312)

p-f gB(~23)f(~31)h (k, ~„)dr3+ 3 ph(kg~12)

k, S(k,„)u(k „)u(k„,) 5,„„,4m'
where

5 „=1for s =s„,
5 „=0 for s &s„,

mn or s1 sm sn

5, „=0 otherwise,

and the summations extend over all momenta con-
tained in yo.

Identifying E' ' as the unperturbed ground-state
energy, one can next perform the Rayleigh-Schro-
dinger perturbation using the set of nonorthogonal
basis (3) (with |jioB in place of (o). A formal formu-
lation of this procedure can be found in Ref. 11.
The exact ground-state energy is thus given by

EQE= E(0)+ ~E(2)+ ~E(3)+ (12)

where 4E' ', 6E' ', etc., are the contributions
from successive perturbative expansions. In prac-
tice, it is feasible to compute only the leading one
or two terms in the perturbative expansion. The
usefulness of the theory will then depend on the
convergence of the series, which in turn depends
on how well go approximates the exact ground-
state wave function 40. An explicit expression
of 4E' ' generated by considering the set of basis

Letting

+klaS(kL'l)u(k23)u(k12)] dk3 +' ' ' ' (15)

fo (kp, COS(k1 ~ k2)) f (k1 i ka)&1 &2 2F==
one has'

(i8)

Co/C = 1 —(3/4ez) f fo(kB, y)y dy, (I&)

1
Xo/X= I+(3/4e~) f fo(kp, y)(i-y)dy

where eB=hakaB/2m, and Co, xo refer to, respec-
tively, the low-temperature specific heat and the
Pauli spin susceptibility for an ideal Fermi gas.
Perturbative corrections are not included in (13)-
(18)

III. GROUND STATE OF THE CHARGED BOSE GAS

Since our results for the fermion system are
expressed in terms of S(k) and gB(r) defined by the
exact boson-type wave function toto, our first con-
cern is to solve the problem of a charged Bose
gas. For this problem we use a variational ap-
proach based on the Bijl-Dingle —Jastrow (BDJ)
-type wave function of the form'

qoB = exp(-,' Z u (r,,) ) /
j&g

[f dr1. . .dr„exp(Z u(r, &) )]
'

j&J
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TABLE I. Optimum values of ~ and the boson ground-
state energy.

s

1~ 0
2 ~ 0
3 ~ 0
4 ~ 0
5 ~ 0
6 ~ 0

10 ~ 0
20 ~ 0

0 ~ 4421
0 ~ 6655
0 .8078
0 ~ 8981
0 ~ 9530
0 ~ 9835
1 ~ 000
1.000

E3 /N (Ry}

—0 ~ 7691
—0 .4478
—0 ~ 3237- 0 ~ 2557
—0 ~ 2120
—0.1813
—0 ~ 1148
—0 ~ 0597

and follow closely the procedures of Ref . 12. In-
stead of varying u(r) directly, Lee introduced the
variational pair -distribution function

ga (r) = 1 —n exp[- w(np)'~ 3 r'] (2o)

with cv to be varied. The corresponding boson liq-
uid -stru ctu r e factor is

proximation for the three -particle distribution
function. Numerical results obtained by Lee in
the intermediate density range show very little
difference between these two approac hes when the
variational pair -distribution function (20) is used.
In fact, in the density range 0.01 & r, & 30, the first
two terms alone in the series expansion are suff i-
cient to yield the r esu lting energy values to within
0. 1%. These two terms are known as the hyper-
netted-chain (HNC) approximation

,.;.; [1-S(k)]'
r) = lng (r

(22)
Therefore we shall simply use (22) in extending the
ground -state calculation to other values of elec-
tron density not considered by Lee .

The expectation value of the Hamiltoni an oper-
ator (1) in the BDJ wave function (19),

E (n) =—f g() R P() d r& ~ dr„
S(k) = 1 —exp[- k /47((np) ~3] (21)

The function u (r) can be expressed in terms of
g3(r) either as a series expansion in the parame-
te r' n or through the solution of the Bogo liubov-
Born-Green-Kirkwood-Yvon (BBGKY) equation in

conjunction with the Kirkwood superposition ap-

vu(r) .age(r) d rp
8m

+-2Npe — @~x —1 dr

becomes, after introducing (22),

E (n) = N [&ge(r)] dr +
k p 1 3 - Nk [1 —S(k)] 3, 3 1

k dk + ,' Npe —[g—3(r) —1] d r
am g, r 4w mp S k

N —
p

— 2 5 ( p + 5 g p
—2N — —,n ~ i .

The last expression in (23) is obtained by substitut-
ing (20) and (21) for g~(r) and S(k), and is ex-
pressed in rydberg units (me /2h ). It is then a
simple matter to minimize E (n) by varying n.
Results in the density range 1 & r, & 20 are given in
Table I. For z, = 1, 3, and 10 our result agrees
with that of Lee .

IV. NUMERICAL RESULTS FOR ELECTRON GAS

Having considered the ground -state problem for
the charged Bose gas, me are nom ready to carry
out numerical computations for the electron gas .
The first question of interest is the nature of the
ground state: Is the ground state of an electron
gas ferromagnetic or paramagnetic ? That is, are
the spins paral 1.el or antiparal le l ? We can answer
this question by comparing the energies in the two
states . Let the number of electrons in the spin +
and —states be N, and N, re spe ctive ly, and write
N, = —,

' N(1 +x). In the ground state (7), the mo-
menta of the electrons mil 1 fill tmo Fe rmi spheres
of radii k~3' = k~(1 + x)'~ . The ground-state energy

(12) now becomes

E(p, x) = E() (p) + E()f (p, x) + E()3(p, x)

+ E()3(p, x) + ~ ~ ~ + &E "'(p, x) + ~ ~ ~, (24)

mhe re

E (p, x) = ~Ne [(1+x)'~ + (1 —x) ~ ],
E,', (p, x)

»Ne, [(I + x)"' f '
(y' '. y

' + ,' y ') u (2—k-'„y) dy—
0

1
+ (1 —x)"' J (y' —-', y'+ -,

' y') u(2k3 y) dy], (25)

3

ED3(p, x)= ——,'&eF(~ [((+x) f&~ysss(k'ysg),

u (kp y33) u (kp y 33) dy, dy3 d y3.(1 -x)""f „y',.S(k,y,.)
x u(kpy33) u(k3 y33) dy~ dy3 dy ] .
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FIG. 3. Pair-distribution function gz(y) at three dif-
ferent densities. The distance ~ is in units of Bohr ra-
dius ~

culation on the correlation energy of an electron
gas based also on the Wu-Feenberg formulation and a
variational calculation of Eo. While his numbers
on the electron correlation energy are about 0.015
Ry lower than those of ours (see Fig. 2), his values
on Eo are approximately 0.03 Ry below the best
existing results, including those tabulated in Table
I, in the density range under consideration. Ac-
cepting his values as an upper bound, ' this would
indicate the possibility of further improvement in
the evaluation of Eo, although we have found it ex-
tremely difficult to achieve this based on the vari-
ational form of Es given by (23). On the other
hand, we have used correlation factors suggested
by Becker et a/. in a variational calculation for
the electron gas, but have been unable to repro-
duce their values for the correlation energy. It
therefore seems that the values given by Becker
et a/. may actually be on the lower side. Based
on these considerations, it is reasonable to con-
clude that the Wu-Feenberg theory is adequate for
an electron-gas system provided that the problem
of the corresponding charged Bose gas can be
solved mith sufficient accuracy. Now our result
shows that the correction to the correlation en-

ergy due to the particle-hole excitation is negligi-
ble in the density range considered. As a pre-
liminary application of the Wu-Feenberg theory
we shall not further consider these perturbative
corrections in this paper. It must be emphasized,
however, that these corrections may very well
play an important role in the computation of the
transport properties, which mould be a topic for
further investigation.

The pair-distribution function gz(r) can be com-
puted using (13). We show in Fig. 3 the result for
three different densities. For large and interme-
diate r the behavi'or of our g~(r) is close to that
obtained by Singmi ef al. We have also computed
the low-temperature specific heat and the spin sus-
ceptibility using (1V) and (18). First from (16)
and (21), we have

fo(/~~&) =e~(X -1)em[(9v/«')"'(I -y)]

+(higher-order terms) . (2'I)

Stopping at the three-particle term given explicitly
in (15), we find

C/Co = (1+a2+ as)

(28)
X/Xo = (1 + &s+ ~3) ',

with
a, = (3/16p ) [1 —1/p+ (4p+ 3+ 1/p) e 4~],

b2= —(3/16p ) [1 —(1+4p+8p ) e /'],

whel e

p
I (9v/~2)2/8

The numbers a3 and b3 are given in terms of multi-
dimensional integrals obtained by substituting the
second term in (15) and (16) into (1V) and (18).
These integrals have been evaluated numerically
using the Monte Carlo method. Results are pre-
sented in Tables III and DT where they are also
compared with those obtained by others. The spe-
cific heat is compared in Table III with the values
obtained by Hedin, ' Rice, and by Silverstein. '
These results do not differ much and all lead to,.

effective masses close to 1. For ~, & 1, our re-

TABLE IV. Spin susceptibility X/Xo= /+52+53)" .

+s

TABLE IIL Specific heat C/Co= (1+a2+aq}

a2 a~ C/Co Hedin Rice Siiverstein~

0.031 0.008 0.962 0.961 0.96
0.028 D. 007 0.967 0.969 0.99 1.02
0.022 0.007 0.973. 0.979 1.02 1.05
0.017 0.006 0.976 0.987 1.06 1.10
0.014 0.005 0.980 0.993
0.013 0.002 0.985 0.998

~Reference 7. "Reference 16. 'Reference 17.

r~ b2

1 —0.069
—D. 142

3 -0.188
4 —0.218
5 —G. 235
6 -0.244

~Reference

1.31
1.48
1.65
1.83
2.05

Dupree
and

5 3 X /X 0 Rice Silvers tein Geldart'

—0.045 1.14 1.15
—0.087 1.30 1.26 1.26
-0.114 1.44 1.40 1.28
—0.132 1.54 1.48 1.29
—0.142 1.61
-0.152 1.65

"Reference 17. 'Reference 19.
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suits coincide with those of Hedin. The situation
is somewhat different in the calculation of the
spin susceptibility. It is well known that the
many-body interaction leads to an enhancement of
the paramagnetic susceptibility of an electron gas.
As shown in Table IV, our calculation shows a
greater enhancement than the values obtained by
Rice and Silverstein. " However, the recent cal-
culations by Dupree and Geldart and by Pizzi-
menti et al. lead to values that are further en-
hanced in the high-z, region. The results of
Dupree and Geldart" are also included in Table IV.
The main difference lies in the fact that our val-
ues, like those of Rice and Silverstein, tend to
saturate for high r„while those of Refs. 19 and 20
lead to curves that bend upward for larger x, . It
is of interest to note that the experimental points,
as reported in Refs. 19 and 20, also show the ten-
dency of flattening out at high z, .

V. CONCLUSIONS

We have carried out calculations on the ground
state of an electron gas in the intermediate den-
sity range 1 & r,& 6. The calculations are based
on the Feenberg-Wu-Woo theory of Fermi liquids
and a variational approach to the charged Bose
gas. While it appears that the variational cal-
culation of the Bose system may be inadequate, a
number of other possibilities exist to improve upon
this calculation. The first possibility is to treat
the correlation factor variationally; it is hopeful
that the correlation energy can be lowered if a
variational calculation is carried out for the Fermi
system. One possible approach is then to treat
the momentum distribution in y0 variationally,
since it is known ' that in an interacting Fermi
system the momentum distribution does not vanish
outside the Fermi level. Another possibility is to
improve upon the perturbative calculations. Whil
it is in principle possible to obtain the ground-
state energy by computing the perturbative cor-
rections to all orders using the basis set (8) and
(6), it is in practice impractical to go beyond two
or three terms in the series. This then precludes
the possibility of describing the collective exci-
tations, known to exist in an electron system, by
the basis set (3) and (6). To properly take these
collective excitations into consideration, it is
necessary to introduce a basis set containing the
collective coordinates explicitly. Progress is
being made in formulating the perturbative theory
using these wave functions.

After the completion of this work we received a
preprint from Ree and Lee2' in which they reported
a similar calculation on the correlation energy of
an electron gas. While their results on the cor-
relation energy are comparable to ours, we have
gone further in this paper to include the second-

order perturbative corrections and compute other
ground-state properties.
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APPENDIX A: EVALUATION OF Ep2 (p, x) AND EpF3(p, x)

The integrals in Eaa(p, x), given in (25), can be
evaluated straightforwardly upon using (21) for
S(k):

f (y' —-', y'+-,'y')u(2k„'y) dy= (8/2D'. ) [1-D,—e
0

1/ 2 D3/ 2 erf (Dl/ 2) ] (P1)

where D, = (91//o. a)'/ (1+x) /3. We then find

Eaa(p, x) = —18Nez(c/ /Qv) (2 —D, —D —e ' —e

1»[D / erf(D1/2)yD3/ ezf(D1/2)]& (A2)

where erf(x) = (2/v'/ ) fa*e ' df is the error function.
The ninefold integration in Eaa(p, x) can be re-

duced to a sixfold integration as follows:

f 3 12@k''y1a) u(ka'y23) u(ka'y31) dy1 dya dy3

= 81/' f, dy, J,'dy, f,'dy, f', d( f', dp. f dy

[3 132y33 12S(kt3 12) u(k/ty23) u(kt'y31)] (A8)

with

2=2 2 2 — 2 2»2=»+~2 — »»4 ~ Xsi=X~+33 —2$i$31 ~

(A4)

3'aa=ya+ya —2yaya[(1 —
&u ) (1 —u ) cosV+&uu] ~

and &u -=cos(y1, ya) and p
-=cos(y1, y, ). This then

gives us

Eaa(p, x) = — Ne/, (8/8 —)'v8 Jvdy1 f dy,

f' dyaf,'d~f', dl f"dryly'ay'ayla

x [(1+x) S(k J, 3'12) u(k p 3 23) u (k„y„)
+ (1 x) S(kty12) u(k1 3 23) u(ka'y31)l (»)

We have evaluated the integral (A5) using the Monte
Carlo method. As an independent check on the ac-
curacy of our evaluation, we have also evaluated
Eaa(p, 0) at r, = 1 with a six-dimensional Simpson's
rule. The two results agr'ee to within 8%.

APPENDIX 8: EVALUATION OF ~~~~

The second-order perturbative correction to
the ground-state energy, AE' '„from the consid-
eration of the pair -excited states has been derived
in Ref. 11. With some minor change of notations,
the expression is
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«"' = f»'eF(8/811)' f dx, d xpd x,.dx2i 5(x, + X2 —x, i —x2.)
X)&12~,2&1

X [fl(xl& X2
& Xle& X2e) +f2(X1& X2& Xlp& Xp ~ ) f2(X1& Xp& Xlt& X21)] &

( )

where
2 1 2fl(xi( X2, Xl ~ ) Xpp) —= (xll ~ e Al ~ 2';12 x11'/ ~1'2'; 12) M (4 11') I

4 2/
f21xl~ X2y Xl ~

y XVI 1X1'2 7. 1'2', lp 1'2~ 1'2';12& 1)2F 1'2) ~

2 2 /Afslxl)X2&zl tz2 ~ 121X11'+X1~ 21 «~l'2'i12 Xll' Xl ~ 2~~1 ~ 2 ~;12) 101'2FX11')(~FX1~ 2)

+1'2';12 (1/eF) [+ (kl' &I k2' s 2 )I ' ' &I kN) + (kl t k2 s k3 &
' ' &I kN)] &I

(B2)

and x, -=k, /kF .
We first consider an integral of the form

I= f d —1 d 2 5( 1+ 2
—

1
—X2 ) f(x. , x2, xl. , x2 ) = f». )1 dxl f(xll x2, xl, ~xl+x2 zl )

& c&1

lx1+x2-x1 l&1

2g 1 2xll dxln f (xl I X2, xll I xl+ X2 —xl1 ),0 -1 1

l x1 x2-x1. l»
(BS)

where we have introduced the spherical coordinates
with the vector x= x1+x, pointing in the z direction
and g =—cos(x, x, ). The integral (BS) has been
evaluated by Woo' using a rather complicated
geometrical construction. A simpler procedure
is as follows. The restriction lx1+x2 —X1. I

& 1 may
be written as

where x—= IX1+x2!. Now, for 0&x&2 and x1. &1,
the ranges of I' are

for X1p & g+ 1,

—3. &E& 1 for 1&@1 &@+1 .

P. & I' = (X + Xlpi —1)/2X Xl (B4)
The range of p. is therefore restricted to {-I, F]
for xl & x+ 1. The integral (B3) now reduces to

2g x+1 OQ 1I f d~(fl dx fl dW+ f dx f dll) f(z, X2~x~z+X2 z ) (B6)

The expression (B6) is considerably simpler than the one derived by Woo. 8ubstituting (B6) into (B].) and
making use of the relation

f dx, dx =8m g xl dxl) x2 dx f, d(cos(xl, X2))=811 f x, dx f x 'dx f"'"2 xdx/x x
0 0 I x1-g2 I

(BV)

we obtain

«' '=& e(F/8«)'«'f xldxl f x2dx2f ' ' xdx f dy(f"'dx, . f dppf" dx, , f'd„)(f f f )0 0 I x1-x2 I 0 1 -1 @+1 -1 (B8)

Here,

fl ~f1(xl ~ X2, Xll, XP —Xl —X2),

1.2' 12 = [El (kl. , k2, k2, . . . , kN)

—F-1 (kl, k, ~,k„)](1/e )

X= X1+X2 ) ll = cos (x, zip),
2 2 2 2

X1P + X22 Xf X2 (BO}

and cp is the azimuthal angle of x1. in a plane per-
pendicular to X.

In our evaluation of (B8), the expression of
A1 2 ~ 12 is approximated by

The key formulas which give x11. and x,.2 in terms
of the integration variables can be found in Ref.
11. The remaining six-dimensional integral in
(B8) is then carried out using the Monte Carlo
method.
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The density fluctuations in a molecular fluid are studied by treating the fluid as a multicom-
ponent reacting mixture. The ordinary hydrodynamic equations for a reacting mixture form
the starting point of the present derivation. The description is then contracted to that ap-
propriate for the one-component molecular fluid. The resulting translational hydrodynamics
theory contains memory effects due to the internal relaxation process. The results are com-
pared with a recent kinetic model and with two previous theories of Mountain. The dynamic
structure factor Sg, co) and the roots of the dispersion relation are computed for para-
hydrogen gas and studied as a function of density. The results indicate that the treatment of
the thermal-diffusivity mode in the theories by Mountain breaks down in the low-density re-
gion. It is suggested that Rayleigh-Brillouin scattering experiments on dilute parahydrogen
gas at room temperature and densities between 5 and 30 amagats can quantitatively verify
the predictions of translational hydrodynamics.

I. INTRODUCTION

In this article we consider the calculation of den-

sity fluctuations in a single-component molecular
fluid, and the interpretation of light scattering ex-
periments which can be used to probe these fluctua-
tions. For simple liquids, it is natural to attempt
such calculations by using the linearized hydrody-

namic equations. However, it is well known from
ultrasonics and light scatter ing experiments that
for molecular fluids these equations do not correct-
ly describe the frequency dependence of the sound
absorption coefficient or the spectrum of the scat-
tered light. If the molecular fluid is a dilute gas,
the appropriate kinetic equations are well known
and have been used to interpret the Brillouin spec-


