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particle (R= 1500 A) case. We would emphasize,
however, that we were never able to prepare large-
particle colloids that were stable enough to avoid
particle settling and possible ambiguities in inter-
pretation for these cases. Bonchev et gl. ap-
parently encountered similar difficulties.

In conclusion we find that, for the highly stable
sol of cobaltous hydroxy stannate in glycerol, glyc-

erol-ethanol, and glycerol-water, the Singwi-
Sj51ander theory gives a very satisfactory de-
scription of the diffusive broadening of the Moss-
bauer line. Rapid falloff in the recoil-free frac-
tion in the temperature interval where diffusive
effects are observed has not been satisfactorily
explained, and more theoretical investigation of
this point seems necessary.
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The fluctuation-dissipation formula for the viscosity in term@ of the stress-tensor fluc-
tuations reproduces the experimental logarithmic temperature dependence of the hydrodynam-
ic viscosity. Using the theoretical wave-number- and frequency-dependent viscosity in the
problem of critical diffusion, we find that the effec.s of nonlocality and retardation practically
cancel, resulting in satisfactory agreement with a recent light scattering determination of
the effective viscosity.

I. INTRODUCTION

It is well known that the binary liquid exhibits
interesting critical behavior as the critical point
is approached, just before it begins to separate
into two distinct liquid phases. The most striking
example is the critical opalescence or the scat-
tering of light by the concentration fluctuations. A
less-evident critical phenomenon which has been
recently firmly established experimentally ie the
diverging behavior of the viscosity as the critical
point is approached. It is customary' to separate
the viscosity into a so-called "ideal" background
component g«and a critical component &g. The

fraction by which the critical component accounts
for the total viscosity is established experimen-
tally~'3 to follow the temperature dependence as
the temperature T approaches T„

+1~&=+Exxr lntah ~

where the correlation length is g = 2. 56 A (T/
T, —1) ' ", qn is a Debye cutoff, and AE»r = 0.051.
This relationship which gives a good fit to the ex-
perimental data is shown in Fig. 1 by the line labeled
"HYD. " (In this case the abscissa represents the
inverse correlation length. ) The purpose of the
present paper is to give a theory of the viscosity
not only in a hydrodynamic context, but also in its
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FIG. 1. Fractional critical
viscosity vs wave number. The
solid line labeled "HpD" repre-
sents the experimental logarithmic
dependence of the hydrodynamic
viscosity upon the inverse cor-
relation length (Refs. 2 and 3).
The dashed line labeled "N.L."
shows the static nonlocal cor-
rection for the theoretically com-
puted value of aN L. = 0.496. This
would be the result for a crude
theory which did not include re-
tardation. In the complete theory
the correction for redardation
cancels the effect of static non-
locality and brings the theory
back down to the solid line. Thus
the solid line represents both
the hydrodynamic viscosity and
the theoretically expected ef-
fective viscosity. This line is in
satisfactory agreement with the
circles, which show the light
scattering linewidths measured
by Chang, Keyes, Sengers, and
Alley (Ref. 4).

q= (1/2T) fd 21(T„„(2)T„,(1)) . (1.2)

The integration is over the entire range of the rel. -
ative space-time coordinate (x», ta, ). The tem-
perature T is measured in natural units so that
Boltzmann's constant is unity. Computation car-
ried out using Eq. (1.2) will be presented in the
subsequent sections. For the moment we want to
describe the connection between the viscosity and

the linewidth measurements. The measured line-
width in a light scattering experiment is given by

r, = D(q)q', (1.3)

where D(q) is in general a nonlocal diffusion co-
efficient depending on the wave number q of the
concentration fluctuation. It is given by the ratio
of A(q), the conductivity (for material to flow in
response to a gradient in a chemical potential), to
the generalized susceptibility y(q):

more indirect form in which it determines the re-
laxation of concentration fluctuations. This "effec-
tive" viscosity has been measured recently4 and

is shown by the circles and error bars in Fig. 1.
A theory of the critical viscosity has been pre-
sented by Kawasaki' and by Deutch and Zwanzig. 6

Following the latter approach, which is based on

the fluctuation-dissipation theorem, ' we have to
integrate over the correlation function of the off-
diagonal component of the stress tensor T„„where
x and y are Cartesian coordinates and angular
brackets indicate the thermal average:

&(q) = ~(q)/x(q) . (1.4)

The conductivity is also expressed as an integral
over the correlation function of the fluctuations

' in current T. The wave-number-dependent gener-
. alization of the relevant fluctuation-dissipation
theorem is

A(q) = (1/2T) fd421(Jj(2)Z~(l))e '4'*».

The subscript indicates the component of J in the
direction of the unit vector q = q/q.

The current density which appears in the inte-
grand in Eq. (1.5) is the product

X=sv (1.6)

p4 ——1/6 vga (1.6)

is Stokes's formula for the mobility of a sphere of
radius $ moving through a medium of viscosity q.
Substitution of Eqs. (1.8), (1,7), and (1.4) into
Eq. (1.3) yields

r, = (Tq'/6vgg') ~

provided that tc = g-' » q. But as the critical point
is approached, T-T„g-~, and this condition is

where s is the concentration fluctuation and v is
the velocity fluctuation. It is not necessary to re-
peat here the derivation ' of the critical variation
in the diffusion coefficient which leads to

&(o) = TV&,

where
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violated. It is then necessary according to dynam-
ical-scaling theory"' to replace all factors of z
by q, according to

jeff ~effq ' (1.10)

(1.11)

which then substituted into Eq. (1.9) gives for the
linewidth at the critical point

I",= Tq'/16'„, (q) . (1.12)

Here we have explicitly taken cognizance of the fact
that the viscosity which appears in the denominator
of Eq. (1.9) has critical variation and consequently
has to be regarded as a function of y. Thus ac-
cording to Eq. (1.10) we must introduce an effec-
tive-wave-number dependence and have therefore
labeled the viscosity which appears in Eq. (12) as
an "effective" viscosity function. It is the task
of the rest of this paper to calculate the theoret-
ically expected effective viscosity and to compare
it with the data' shown as the circles and error
ba.rs in Fig. 1.

II. CRITICAL VISCOSITY

As explained above, the calculation of the crit-
ical viscosity depends upon studying the fluctua. —

tions in the off-diagonal components of the stress
tensor:

Txy= sx = Z sxsy
ep
8Sy

This canonical expression for the stress tensor in
terms of the Landau-Qinzburg expression for the
free-energy density F is derived in Appendix A.
It depends only opon the partial derivatives of the
concentration s„,through the gradient term
(Vs)~/2Z. Equation (2. 1) shows that for studying
the fluctuations in the stress tensor we will need
the time-dependent correlation function for the
concentration fluctuations themselves,

(2. 1)

G(21) = (s(2)s(I)) = (2p)- fd q e~~' 3t - 2& g(q) .
(2. 2)

The qualitative theory of dynamical scaling does
not attempt to calculate the numerical value of

a,«and consequently yields only proportionalities.
The decoupled-mode dynamical scaling theory'
or theories' equivalent to it attempt to calculate
this numerical factor and therefore constitute a
more complete theory of dynamical critical be-
havior. In Eq. (l. 9) we have made a distinction
between the appearances of the correlation length
in the denominator and in the numerator. In the
denominator, according to static scaling, $

' simply
becomes replaced by q, with no further numerical
factor required. The numerator, on the other
hand, involves the dynamics and we have to use
Eq. (1.10). Explicit calculation~'o of the numer-
ical factor yields

The Fourier transform of the equal-time correla-
tion function is assumed to have the usual Ornstein-
Zernike form for arbitrary values of wave number

q and inverse correlation length ic,

g(q) = Zr/(q'+ ~') . (2. 3)

(2. 6)

In order to proceed further we require an ex-
pression for I', . In principle, T', could be deter-
mined entirely theoretically from a self-consistent
treatment of both the viscosity and the linewidth.
As we have already mentioned above„. and will see
in more detail below, the linewidth is given by an
integral over the wave-number- and frequency-
dependent viscosity. Bather than attack this set
of coupled integral equations for g and I", in a
purely abstract theoretical fashion, abstaining
from the use of any empirical information, we have
found it more convenient to use the experimental
data as an "ansatz" for I', . The self-consistency
condition will then be shown in Sec. V to be satis-
fied. The I', which we obtain there agrees with
the input ansatz, so that further iteration is un-
necessary.

As an ansatz for I', we choose the following ex-
pression, which gives a good fit to the experimental
data:

Tq'(q'+ ~')'"
' 16'((q'+ ~')'") ' (2. 6)

Here g is the empirical hydrodynamical viscosity
of Eq. (1.1) with the argument $

' = z replaced by
(q +z )'~ . This fit' is illustrated in Fig. 2, which
shows the experimental linewidth values divided
by the wave-number-dependent factors of the nu-
merator of Eq. (2. 7). The data exhibited in this
way have a flat behavior, as is seen by the loca-
tion of the points in Fig. 2. This is compatible
with the slow logarithmic variation of the denom-
inator of Eq. (2. 6). The normalization is effected

The time-dependent correlation function of the
stress tensor can be expressed in terms of G by
the decoupling, or factoring approximation,

(T„,(2)T„,(l)):—Z (s„(2)s„(1))(s,(2)s,(1))

+ Z '(s„(2)s, (1))(s,(2)s„(1))

IFG(21) IPG(21) o t (21))sg~2
3 +

87py ~&as eras
(2. 4)

The validity of this approximation is discussed
below in Sec. VI. Substituting this factored form
into Eq. (1.2) and carrying out the time integra-
tion, we obtain the critical hydrodynamic viscosity
in the form of an integral over wave number,
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FIG. 2. Rate 1"~ for relaxation of
a concentration fluctuation of wave
number k vs k $. $ is the correlation
length, Dividing by the factor k2 (k2

+ $ ~}~~2 has removed the main wave
number and temperature dependence.
The remaining dependence, shown by
the data points of Chang et al. (Ref.
4), is consistent with the weakly
varying viscosity factor in Eq. (2.6}.
Equation (2. 6} thus can be regarded
as a good empirical fit to the data,
and serves as a starting point for
the theory of critical viscosity.
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'Ii(e) (q'+ ~')"' q'

8 qq "'" vdv
77 0 „0 (1+v)

where the angular average appearing in the inte-
grand is

(e e /e &ANo k (2. 8)

The radial integration is cut off at q„a free pa-
rameter in the theory, and yields

c v 6fp 2gc 4
(1+v~)"' ~ 3

' (2. 9)

Substituting Eqs. (2.8) and (2. 9) into Eq. (2. '7)

gives"

'""=~(i." 4 (2. Io)

This is of the form of Eq. (1.1), which fits the ex-
perimental data. The theoretical value for the co-
eff icient' is

X = 8/I 82 = O. 064, (2. 11)

and is in good agreement with the experimental
value AExp T = 0.051. This confirms the validity of

in the q/v» 1 limit and corresponds to representing
the circles in Fig. 1 by the solid line. Because of
the slow variation of g, when Eq. (2. 6) is sub-
stituted into Eq. (2. 5), g can be taken outside the
integral and approximated by setting the argument
equal to v. Dividing by p, we obtain the fractional
critical viscosity,

the decoupled-mode approximation as applied to
the critical viscosity and encourages us to proceed
to employ it below in its more complicated wave-
number - and frequency-dependent form. %'e note
finally that we can fix q, by matching the logarithms
of Eqs. (2. 10) and (1.1):

lnq, = lnq~ + +3 —ln2.

III. NONLGCAL VISCOSITY

(2. 12)

The critical viscosity found in Eq. (2. 10) is a
function of only one variable, the reciprocal cor-
relation length v, and is appl. icable only in the hy-
drodynamic limit. This viscosity cannot be used
for studying the relaxation of concentration fluc-
tuations in a fluid because these take place at fi-
nite frequency. It is therefore necessary to cal-
culate a generalized viscosity by introducing two
more variables into the viscosity function. The
straightforward generalization of Eq. (l. 1) in-
volves taking the Fourier transf orm of the corre-
lation function for the stress-tensor fluctuations
in both space and time. It will be more convenient
for our purposes, however, to treat the time de-
pendence by the Laplace transform, in which we
write the "fr equency" as the relaxation rate F,
times the dimensionless variable y. In this no-
tation the hydrodynamic viscosity is the limiting
case g(a) ='g(a, q, y), „o=q(z, o, o). The general
case is given by the generalized fluctuation-dis-
sipation theorem,

n(~, e, y) = (I/») fd'21e"'~ -""'~'»

"&' (2) &.,(I)) . (8. 1)

The wave number q is taken in the direction of the
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0, +k'~=q . (3.3)

From Eq. (3.2) it follows that we can eliminate one
of the x components and obtain for the angle-
dependent factor in the integrand the expression

=~k„'(k,'- k,)'+Pk„'(k,"-k,') . (3.4)

In the final line we have substituted for 0„ in terms
of the sum and difference of the y wave-number
components. This introduces in the last term of
Eq. (3.4) a factor which is odd under interchange
between k and k . As the remaining factors in the
integrand are even under this interchange, the re-
sulting contribution to the integrand vanishes,
Therefore only the first term in the last line of
Eq. (3.4) need be retained. This gives us the
critical wave-number- and frequency-dependent
viscosity as the integral

r-'Z-' d, g(k)g(k')k„~(k, ' —k„)'

(3. 5)
We now proceed with the task of evaluating this

integral. Because of the symmetry about the y
axis we obtain a factor of 2g in rotating about this
axis. The remaining integration can in principle
be carried out by using polar coordinates con-
sisting of the magnitude of 4 and the angle de-
scribing its direction relative to q. But it is more
convenient to eliminate the angle variable in terms
of the magnitude of the other vector k . The re-
sulting bipol. ar coordinate system converts the
element of volume into the symmetrical form

ESP 2~q- Pk dkdk (3 5)

In terms of these bipolar coordinates the remaining
angle-dependent factors assume the form

and

k, —k, =q '(k —k ) (3.7)

k„'= (4q'}-'[2(k'+ k")q'- q'- (k'-k")'] . (3.3)

y Cartesian axis. We use the same factorization
as in Eq. (2.4) and in converting the integration
in Eq. (3. 1) to wave-number space we denote the
Fourier components of the two different factors
by k and%', respectively. Because these two
vectors must add up to the given wave number q,

. and because q is entirely in the y direction, we
have the following equations:

(3 2)

Factoring out the critical relaxation rate for the
wave number q from the denominator of the inte-
grand of Eq. (3. 5} leaves the ratio

x[2(u +u ) —1 —(u —u ) ] . (3 11)

The restrictions on the integration variables are
illustrated in Fig. 4. The condition l u- I I & 1
limits the integration for large values of u and u
to the narrow strip running along the line n = u.
The dashed lines in Fig. 4 represent a change from
u, u to new Cartesian variables x, x, with the
new variable

Ix=Q +Q (3. 12a)

running in the direction of the strip and having the
range 1 & x& ~. The other coordinate

I Ix =Q —Q (3. 12b)

measures the distance across the strip and has
the range —1 & x &+1. This change of coordinates
puts the quantity appearing in square brackets in
Eq. (3. 11) into the simple factored form

2(u~+ u'~) —1 —(u~ —u'~)~ = (1 —x' ) (x —1).
(3. iS)

With the Jacobian of the transformation equaling
one-half, Eq. (3. 11) becomes

&g(0, q, y) 1

g(q) TP 4
dx' d(x')

x (1 —x~)(x —1)
(x —x")[x'+3x"+ (4/x) y'] '

(3.14)
Let us now consider the limiting case of static

nonlocality, y= O. This simplifies the integration
sufficiently that it can be carried out by elemen-
tary means, giving the nonlocal static result

(3. 10)

and similarly u s = (k'/q)' for the ratio 1"„',/1'; .
Here we have neglected the slow logarithmic vari-
ation in the ratio of the hydrodynamic viscosity
at two different values of its argument and we have
introduced the dimensionless variables u and g to
denote k and k measured in units of q. Dividing
now by the hydrodynamic viscosity function we
obtain the fractional critical nonlocal viscosity,

&'q(0, q, y) 1
~

du du' (u' —u' )'
q(q) 4P „', „,„.)q uu'

& Og/0

In the rest of this paper we will concentrate on
the nonlocal limit z 0, where rl((q'+ ~')' ')- U(q)
= q(q, 0, 0). Equation (2. 6} then assumes the sim-
pler critical relaxation form

r,'= rq'/15@(q) . (3. O)

6'q(0, q, 0) 8
1 ~q 13 4v

IV(q) 15m' q 15 9~3'
qg) 11 4m»—+——ln2 ——

15ma q 5 9~3 (3. iS)
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or

—lna", L ' =—"—ln2 —4 p/9v 3 = 0.701 (S.17)

[Here we have substituted Eg. (2. 12)]. This re-
sult is plotted as the dashed line in Fig. 1 labeled
"N. L. " One might be tempted to assume that this
nonlocal result could be used as the effective q-de-
pendent viscosity for the critical diffusion problem.
As is apparent in Fig. 1, the comparison between
the theory and the experimental data shown by the
circles and error bars would then not be very
satisfactory. As we will see in Sec. V, such a,n
identification is not justified, because of the time
dependenc of the critical concentration fluctua-
tions. For this reason it is necessary to include
the effect of time dependence or "retardation"
in studying the critical diffusion of the concentra-
tion fluctuations. But before proceeding to the
study of retardation in the following sections, we
would like first to characterize the resul. t of Eq.
(3.15) in the language of Eq. (1.10). There we,
saw that the passage from the hydrodynamic limit
to the completely nonlocal limit can generally be
expressed by means of a numerical factor, which
in this case we denote by a.,"&; '.

. This means that
we should be able to write Eq. (S. 15) in the form

&7i(0, q, 0) hq(x„,) 8 q~
q(q) q(~„,) 15m'

, in~ —l.na ' '~.8 q N. z. . 't

15m q elf ]
This result'4 follows from substituting Eq. (1.10)
into Eq. (l. 1). Identification of Eq. (3. 16) with
Eq. (3. 15) fixes the numerical factor'8 by

X
xa(l —x ~) (x~ —1)

(x'- x")(x'+ Sx")[x'+Sx"+ (4/x)y'] ' 4. 2

For low frequencies, y«1, we can approximate
the integral by setting y= 0 in the denominator of
the integrand. Evaluating the resulting double in-
tegral yields the low-frequency expression

a(r) = —O. 318y'. (4. 3)

In the opposite range of y»1 we can neglect x
compared to x in the denominator of the integrand.
The remaining dependence upon x factors out and
we readily obtain

--4
'

x(x'+ 4r')

,

"dx—= —lny
x (4.4)

The last line is an asymptotic expression which is
valid only to logarithmic accuracy. In this extreme
nonstatic limit the wave-number dependence disap-
pears and g(0, q, y) depends only on the frequency
through (qy)s. (We recall that y is defined as pro-
portional to the cube root of the frequency divided
by q. ) With more careful treatment of the integral
we obtain the improved high-frequency expression

2)/3
o(y) = ln — .',' (2"'r)-'-I+ ~ '.

a"' '=2 4~/9&-11/5 0 49Cet'f 8
= 0. 171-lny- 0.480y~ . (4. 5)

p(0, q, r) —n(0, q, 0) 8

g(q, 0, 0) 15m~
(4. 1)

where we have substituted q(q, 0, 0) for q(q) in the
denominator. In taking the difference within the
integral sign, - we obtain an integral which con-
verges at the upper limit; consequentl. y the upper
limit can be set equal to infinity, q, -~, In other
words, the cutoff parameter disappears at this
point and will no longer occur in the subsequent
work. The resulting expression for the dynamical
scaling function is the double integral

IV. FREQUENCY-DEPENDENT VISCOSITY

In this section we study the frequency dependence
of the generalized viscosity function. It is con-
venient to separate out the frequency dependence
by subtracting from Eg. (3.14) its static limit
y= 0. The resulting function is independent of q
and permits us to define a normalized dynamical
scaling function o(r) by

The intermediate region y —1 can be calculated by
first carrying out the integration with respect to
x . The resulting one-dimensional integral over
x has been computed numerically. We have noted
that the above low-frequency and high-frequency
expressions, Eqs. (4. 3) and (4. 5), are in fact
quite accur. ate in the ranges y&0. 5 and y&1. 5, re-
spectively. Interpolation between these two ranges
is provided by the numerical computations and re-
sults'4 in the curve for o(y) vs y shown in Fig. S.
W'e now proceed in Sec.V to make use of this
scaling function in the computation of the critical
diffusion.

V. NONLOCAL DIFFUSION

The rate at which a concentration fluctuation of
wave number q relaxes is connected by Eqs. (1.3)
and (1.4) to X(q), the q-dependent conductivity' of
Eg. (1.5). To calculate &(q) we substitute for the
current from Eg. (1.6) in terms of concentration
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and velocity fluctuations. Applying the decoupling
approximation to the time correlation function for
the current gives

ZT
~

d k sin~8

(2v)' .~
k'k" q(O, k, k'/k)

(J'";(2)J(l(1))= (S(2)S(l))(v)(2)vg(1)) . (5. 1)
n.«(q) (2~)'. ' k'k"

(e;(n)eq(i)) =— -e
' q neie q exp e)exx —"—n ~ee|~)2)T

(5. 2)
Substituting from Eqs. (5. 2), (5. 1), and (2. 2) into
Eq. (1.5) and carrying out the integration gives
the convolution integral

1 d'k sin'8 g(k')'«) -
(2.) k g(0, k, k /k)

(5 3)

where k=q -k. In Appendix B we show in detail
how the finite relaxation rate I„.of the concentra-
tion fluctuations results in the viscosity-retarda-
tion correction appearing via k /k in Eq. (5. 3).

The remainder of this section consists of the
computation of the effective average viscosity de-
fined by

Denoting the mass density of the fluid by p, we
can normalize the Fourier components of the
eoual-time velocity correlation function by their
equipartition value T/p. For tz, n-"0 the k Fourier
component contains the relaxation factor
exp(- )ip 'k

I tz, I). Because of the frequency depen-
dence of g, the time dependence is not a simple
exponential function and has to be understood in
an operator sense, i.e. , in terms of the Fourier
transform. This point is discussed more corn-
pletely in Appendix B. Denoting now the angle be-
tween q and Q by 8 and keeping in mind that only
the shear modes contribute to the critical behavior
of Eq. (5. 1), we have the velocity time correlation
function

q, «(q) 4)[ „0 0 u +1 —2ucos8 '

(5.4)
Here, and throughout the rest of this paper, we
are concentrating on the critical limit ~-0, which
is indicated by the subscript e on the conductivity
and other related functions. As in the preceding
sections, u and u denote k/q and k /q, respec-
tively. The radial and angular integrations are
readily carried out,

p co

du J[- 8

u~+1 —2ucos8 sin8 ' (5. 5)

,"0
d8 (w —8) sin~8 =i4-)[2 (5. 5)

resulting in

J['(q) = [ZT/15)i.„(q)]q-' . (5. 7)

Substituting Eqs. (5.7) and (1.4) into Eq. (1.3)
yields for the critical l.inewidth

I",= q'L), (q) = q
' = z 'q'J[, (q) =A,(q), , T

J[,(q) ' 16)i„,(q)
'

(5. 8)
Although Eq. (5. 8) is of familiar form, it is of

no use without an explicit expression for 7l,«(q).
This we now proceed to obtain by carrying out the
necessary averaging process. Because of the
small value of the coefficient 2=8/157[2, we are
permitted to expand g

' to first order in the non-
local and retardation corrections. Thus we ob-
tain

=i-n(q) '
[I(noq, )o- (n, q,o)oJ(e[ (n, o,n)o- (noqo)J)„e n o, n,, -n( on) o„,}, . ,

(5.9)

The first term in brackets is the nonlocal correc-
tion to the hydrodynamic viscosity, —inc,",', ',
while the second term determines the effective
value of k which should be used in the nonlocal
static viscosity. The latter requires averaging
over

)l(q)-'[)1(0, k, o) —q(0, q, o)] = —
15

ln—
15 q

8
~- lnu . (5. 10)

15m

Now we note that the integral in Eq. (5. 5) is in-
variant with respect to the substitution u -u ',
while lnu changes sign under this substitution.
Therefore

(lnu)~vE = 0 (5. 11)

This leaves the third term in the braces in Eq.
(5. 9), which according to Eq. (4. 1) can be written

a'
n(q)-' n I o, k,——q(o, k, o)

AVE
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0.0

-0.5—

-I .0—

FIG. 3. V1scos1ty
dynamical scaling
function o.(y) vs (fre-
quency) . p 1s
the frequency in units
of I' „ the critical
diffusive linewidth
at wave number q.
0AvE = 0 ~ 60 ls
the weighted mean
of 0(y) which ex-
presses the retard-
ation correction in
the critical diffusion.

We now turn to the evaluation of o„». As v(y)
depends only upon the ratio y= k'/k =u /u, it is
convenient to introduce into the ylane of the bi-
polar coordinates u, u' of Fig. 4 the polar co-
ordinates

where we ignore the higher-order effect of the dif-
ference between k and q inside the angular brackets.
Substituting Eq. (5. 12) into Eg. (5.9) and then in-
serting Eq. (3. 16) gives

8n(e)
n.fg(q) = n(0, e, o)+15P

= 7/(4' 0 0)+ p ( in' jg + O'Ave )
8g(C) N L

(5. 13)
In the same way as we wrote aeff =aef'f in Eq.
(3. 16) for the effect of nonlocality alone, we can
here introduce a new numerical coefficient a"„"f'
to describe the total effect of the critical viscosity
on the diffusion. This coefficient combines both
of the effects of nonlocality and retardation. The
effective viscosity can be written in terms of it as

and

P = tan y= tan 'u'/u

I

0

(5. 1Va)

&eff(Q) &( ef& C) 1+ ( in&vise)
n(4) n(e)

fdentifying Eq. (5. 14) with (5. 13) yields

vise N. L.—lna, ff ——lna f'f + OAvE

or

+vise +NoL+ e eAeff eff (5. 16)

Since &(y) is a negative definite function, as is
evident from Fig. 3, a'„'&' is necessarily greater
than gN'L'

FIG. 4. Plane of the bipolar coordinates u =k/q and
g' =k'/q. k and k' are the wave numbers in the con-
volution integrals of Eqs. (3.5) and (5. 3) and add vec-
torially to q. The rotation of coordinates to the new
Cartesian variables x=u'+u and x' =u' -u, whose axes
are shown by the dashed lines, facilitates the integration.
The physical region is contained within the semi-infinite
strip g&1, I x' I C1. In calculating the effect of retarda-
tion, it is useful to make the further change to polar
coordinates, shown by the line at angle ft) = tan ~p=tan ~

u'/u. The radial integration can then be carried out
analytically, leaving numerical integration of the dynam-
ical scaling function only over the angle variable, as
described in Eq. (5.21).
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v = (u"+u')'" . (5. IVb)

&&(2v —1 —v cos 2$),

In this coordinate system we can immediately in-
tegrate out the radial variable v along a line of
constant Q (see Fig. 4) to obtain for the integral
of Eq. (5.4),

(1(48& [sec(g/44 y) ) Id
S(P) = cscQ sec'P~ 3

(1/&~)sec(~/4 4)

so that the required average is to be obtained sim-
ply by multiplying by &x(tan P) and integrating over
the quadrant. The numerical work is facilitated,
however, by using Eq. (5. 19) to subtract from o(y)
its value at y= 1, a(1) = —0. 19. This serves to sup-
press the logarithmic singularity of S(Q) at P

The remaining singularity in the vicinity of
Q = 2v originates from the logarithmic divergence
of Eq. (4. 4), and can be represented asymptotical-
ly by

4 z In[tan(4m+ P) I

Sp =+sec .
2~

—1 (5. 18) S(—,'m) [o (tan Q) —a (1)]=—(16/3v ) ln tan&]&

(5. 19)

This angle-weighting function has the limiting
value S(am') = 16/3~ and behaves as S(p) = 16$'/3v
for Q « l. It is normalized to unity,

pv/g

d0 S(4),
40

= (16/3m' )ln(2 —4Q/v) . (5. 20)

In addition to having the correct asymptotic be-
havior, this expression also vanishes at p = ~&.
The integration thus splits up into several por-
tions:

o„vs —f dP S(P)o (tang) = a (1)+ f dP S(g)[ o. (tang) —o(l) ] = o(1)+ f dP (16/3v ) ln(2 —4P/n )

+ J
'

dg (S(P) [o(tang)- a(1)]—(16/3m ) ln(2 —4P/n))+ f d&S(P)[o(tang) —o(l) ] . (5, 21)

The second term in Eq. (5. 21) is readily found

to be

(16/32)f
' ~in(2-4y/~)=-4/3~=-0. 42 .

(5. 22)
The remaining two integrals are devoid of diver-
gences and are relatively small. Simpson's rule
gives+ 0. 01 for their total contribution, so we find

vgvE ———0. 19—0. 42 + 0. 01 = —0. 60 . (5. 23)

Substitution into Eq. (5. 16) yields

avisc aN. L. ~ e&vEeff ef f

=0.496e ' = 0. 90 (5. 24)

in satisfactory agreement with the experimental
value of

&,"fg'(EXPT) = 2 + l. (5. 25)

The fact that the theoretical value for this coef-
ficient comes out so close to unity is a conse-
quence of two competing physical effects, the non-
locality and the retardation, which tend to cancel
one another. Equation (5. 24) is so close to unity
that we can summarize the outcome of the calcula-
tion by g„,(q) = q(q) . For this reason it is not
worthwhile to draw another line on Fig. 1. The
straight line labeled HYD. " is a sufficiently ac-
curate representation of the theoretical result.
Since it corresponds to the ansatz of Eq. (2. 6),

with which we began the calculation, we can regard
our treatment as being self-consistent.

VI. SUMMARY

We began this calculation with the empirical fit
Eq. (2. 6) to the linewidth data of Chang et al. 4

shown in Fig. 2. Simple application of the fluc-
tuation-dissipation theor em along the lines indicated
by Deutch and Zwanzig yields a logarithmically
diverging hydrodynamic viscosity. The coefficient
of the logarithm is 2 =8/157t = 0. 054, in good
agreement with experimental data.

Generalizing the theory to include space and time
dependence, we calculate the special case of static
nonlocality in Sec. III. Here we find that the de-
pendence on wave number q is to be obtained from
the dependence of the hydrodynamic viscosity on
the inverse correlation length $

~
by replacing ( '

by q and adding -lnaef'f ' = 0. 70 to the logarithm.
The static q-dependent viscosity cannot, how-

ever, be used in the critical diffusion problem.
This is because the critical viscosity is attribut-
able, by virtue of the fluctuation-dissipation the-
orem, to concentration fluctuations. The charac-
teristic frequency for the viscosity is consequently
of the same order of magnitude as the concentra-
tion relaxation rates. The frequency dependence
of the viscosity is thus unavoidable and is deter-
mined in Sec. IV in terms of the dynamical scal-
ing function shown in Fig. 3.

In Sec. V we study in detail the critical diffu-
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sion process and find that the effective viscosity
is affected by both nonlocal and retardation cor-
rections. Our result is that to the logarithm has
to be added -0. 60 from retardation, as well as
0. 70 from nonlocality. Thus the two corrections
practically cancel one another. Physical reasons
for this cancellation are cited following Ecl. (5. 16)
and in Ref. 16. The net correction of 0. 10 is
only 2%%uo of the value of the logarithm in the range
of the light scattering measurements. ' To this
accuracy we can claim that our calculation is self-
consistent and can be summarized by the following

simple rule: To obtain the effective viscosity
from the hydrodynamic viscosity, rePlace $

'
by

q—no further numerical adjustment is required.
This rule is in satisfactory agreement with the

linewidth data as is evident in Fig. 1 from a com-
parison of the solid line with the circles and error
bars. A more quantitative comparison is provided
by citing the values of the net addition to the loga-
rithm -lna'„",'. We find a"„",'=0. 90, whereas the
experimental value is a'„",'(EXPT) =2+1 .

A further outcome of the theory, which we men-
tion only in passing, is that the retardation pro-
duces some non-Lorentzian distortion' in the dif-
fusion line shapes.
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E(s, s„V)= E(s, s„0)+ s V. (Al)

8E ~ 8E
K = —VE= ——Vs —~ — Vs& —s VV.

8s ] 8s~
(A2)

Note that the gradient operator acts on the free-
energy density only via its dependence on s, s&,
and V. We now proceed to simplify Eg. (A2) by
applying the strict Ginzburg-Landau mean-field
theory, completely neglecting fluctuations. This
requires that we minimize the total free energy
of the system in the presence of the given function
V(x), according to

6fd'x E(s,s„V)=0. (A3)

The resulting optimal configuration is determined
by the Euler-Lagrange equation

sE + s sE
8s

~ 8x~ 8s~
(A4)

Selecting the jth component of Eq. (A2) and sub-
stituting Eq. (A4) yields

8 9E
&g= —Z sy

~

—SVy-——Z To —st,) ~ 8x~

(A6)

Because of the assumed spatial variation in the in-
put potential V(x), and because of the resulting
spatial dependence of s(x), E will have an implicit
dependence on x. Each element of the fluid has a
tendency to move so as to reduce its free energy.
The corresponding body-force density is the gradi-
ent

APPENDIX A: CANONICAL STRESS TENSOR IN
GINZBURG-LANDAU THEORY

Sg8s]
(A6)

In this Appendix we establish Eq. (2. 1), the con-
nection between the familiar Ginzburg-Landau free-
energy density E and the less familiar expression
for the stress tensor. This connection is essen-
tial for all of our work, where we calculate the
critical viscosity from fluctuations in the off-diag-
onal component of the stress tensor T,&. (Here
we denote the Cartesian components by the indices
i, j =1, 2, 3, rather thanby the letters x, y, etc. ).
For the specific purpose, however, of finding the
general formula for T&& in terms of the spatial
derivatives of the concentration s, we do not have
to deal with fluctuations. Instead, we consider
that the liquid is well away from the critical point,
so that the fluctuations are weak and can be ignor ed.
In order to set up an arbitrary spatial variation in
s(x), we imagine that we apply an external poten-
tial V(x) to the system so that the energy density
of interaction is s(x)V(x). V(x) is imagined to have
a suitable spatial dependence so as to set up the
desired configuration in the field s(x). Thus the
total free-energy density has an explicit linear de-
pendence on V(x) in the form

is the desired canonical expression for the stress
tensor which is used in Eg. (2. 1).

The second term in the right-hand member of
Ecl. (A6) is the body force coming directly from
the external potential. The first term is the body
force resulting from the net sum of the intermo-
lecular forces to the extent that this depends upon
the gross distribution of the molecules through the
derivatives of the macroscopic field variable s(x).
Although we have derived this result in the mean-
field region, its validity is obviously not restricted
to this case. The intermolecular forces described
by Eq. (A6) are the same for a given configura-
tion s(x), regardless of how this configuration
happens to occur. Therefore Eq. (A6) should be
expected to be true even if the values of s, refer
to a fluctuation rather than to a steady mean-field
situation.

APPENDIX 8: ROLE OF VISCOSITY FREQUENCY
DEPENDENCE IN DIFFUSION PROCESS

The critical diffusion process has been studied
in Sec. V. We supply here more of the details
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relevant to the velocity correlation function of
Eq. (5. 2). We are particularly interested in the
effect of the frequency dependence of the viscosity,
which is evident in the denominator of the inte-
grand of Eq. (5. 3). I et us denote the Fourier
component of the transverse velocity field asso-
ciated with wave number k by v„"„(f), The sub-
script p, denumerates the two independent shear
modes belonging to each value of k. Aside from
the trivial trigonometric factor sin 6), the time-
correlation function of v"„„(f)is simply the Fourier
transform of Eq. (5. 2):

(~;,(fa)~;, (&i)) =—e '"' "'"»~

+

d(u f(k (u)e '"'».
2r (Bl)

Taking the Fourier transform also with respect
to time, we have

2T/p
f(k, (u ) = Re

( / ~p
(B2)

ko= lsg/pT . (B4)

It is convenient to evaluate Eq. (B4) by observing
in Fig. 2 that I'a/k'= T/16'= 5&&10 ' cm'sec '.
With p

-—1 g cm 3 and T = 4 x 10 '4 erg, we find

ko= (16ri/T) (T/lsp) = 10' cm ' .

This is, of course, only a dimensional parameter
of the fluid. There are no actual fluctuation modes
corresponding to a wavelength of such small sub-
atomic dimensions. Because of the different pow-
er-law dependence on wave number, the diffusion
rate will be smaller than the shear relaxation
rate, for physically realizable values of k, by the
ratio k/ko. Thus in the range of optical wave-
lengths,

10 cm
(g/p)k' k, ~10 ' cm ' (as)

It is therefore apparent that & is completely negli-

This is written in the general form which follows
from the fluctuation-dissipation theorem. g is ana-

lytic in the upper half of the complex frequency
plane, corresponding to a causal response func-
tion.

But before taking up the frequency dependence
of g let us simplify Eq. (B2) by noting that the
frequency e will be of the order of magnitude of
the relaxation rate I",'. It is useful to introduce a
characteristic wave number ko at which the shear
relaxation rate equals the longitudinal diffusion
rate. This requires, from Eq. (3.9),

(g/p) k', = I';, = (T/16') k,'

or

gible in the denominator of Eq. (B2), and to a very
high degree of accuracy we have

f (k, (u) = (2T/k') Re (I/g) .

We now need to examine the frequency depen-
dence of g. In order to distinguish this function
clearly from the Laplace transform defined in
Eq. (3. 1), we denote it by 7/(k I &a). The fluctua-
tion-dissipation theorem expresses the real part
of,this function as the Fourier integral

Req(k I(u) =—
J dt„(T (2) T„,(1))„-e'"'»

(as)
where the spatial Fourier transform is

(T~(2) T~(l))-„=—f d'x„(T„,(2) T„,(l)) e'a "ai'
(B9)

It is awkward to deal with the frequency dependence
in the denominator of Eq. (BV). Fortunately, this
is a relatively small portion of g(k]e), and we
are therefore permitted to expand it in powers of
the difference q(k i ur) —r)(k ) 0), and to work only to
first order. This gives us

=n(klo) '-n(klo)-'[n(kl~)-n(klo)]. (Blo)

Substituting Eqs. (810) and (BS) into Eq. (B7)
yieMs

y{k,~)=, a —k '&(k Io) '2T

&& dfa, (T„,(2) T„,(1))„(e'"'a~—1) .
aOO

(Bl1)
Substituting this result into Eq. (Bl) and carrying
out the integration over the frequency, we note
that the terms in Eq. (Bll) which are not explicitly
frequency independent yield Dirac 5 functions in
the relative time variable t». Thus we find

2T
(&a. (fa) &a. (fi)) = ka;k (; ~(4g)

—k 'g(k lo) [(T„,, (2) T„,(1))„-5(t„)

«ag(T.,(2') T.,(1')),].
w OQ

Equation (B12) is the required more precise form
of Eq. (5. 2). As explained in Sec. V, Eq. (5. 2)
as written there has only a formal symbolic mean-
ing. At this point we can identify the two nonlocal
static functions q(k ( 0) = g(0, k, 0). With Eq. (B12),
we can substitute Eq. (5. 1) into Eq. (1.5) and
carry out the required space and time integrations.
The former leads to the convolution integral shown
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in Eq. (5. 3), while in the time integration over the
velocity correlation function we have to include the

C

diffusion relaxation factor e &"»( for the concen-
tration fluctuation of wave number k . This brings
in the ratio y=k'/k, in the notation of Eq. (3. 1).
The resulting integral is

2T 1

g(O, k, O) q(O, k, O)'

'g O, k, — —g Q, k, O

k'

2T
a'q(o, a, t '/t )

and appears in the integrand of Eg. (5. 3)
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The ground-state properties of an electron gas at metallic densities are investigated using
the Wu —Feenberg theory of Fermi liquids. The correlation energy, the low-temperature spe-
cific heat, and the spin susceptibility are computed, and the ground state is found to be para-
magnetic. The perturbative correction to the correlation energy owing to the particle-hole ex-
citations in a correlated-basis-function formulation is found to be insignificant.

I. INTRODUCTION

The problem of a quantum electron gas in its
ground and low excited states has been a subject of
interest for many years. The study was initiated

by Wigner' in a calculation of the correlation en-
ergy which he defined to be the difference between
the true ground-state energy and that given by the
Hartree-Fock approximation. The correlation en-
ergy is a function of the electron density which is


