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timized while taken alone. Will this result remain
valid to all orders? While a formal analysis
proves to be rather difficult, a numerical test is
possible for both liquid He and the charged Bose
gas. One could first carry out a paired-phonon
analysis using the Jastrow function alone, and then
study the effect of including three-particle factors

such as that in Eq. (79). The energy thus obtained
is expected to be logvsr than that obtained in (ii).
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The velocity-distribution function of ions in a neutral gas is studied. A uniform electric
field of arbitrary strength is assumed and only binary-ion-neutral-particle collisions are con-
sidered. Under these conditions part of the Boltzmann-equation collision operator is replaced
by a kinetic model which enables the ion velocity distribution to be found in compact ana1ytical
form if the mean free time between ions and neutrals is independent of velocity. This veloc-
ity distribution exhibits the expected properties of drift, elevated ion temperature (as com-
pared to the neutral gas), and skewness in the field direction. In addition, the velocity dis-
tribution obtained agrees with the known distributions in the extreme cases of (a) low fields and
arbitrary masses and (b) arbitrary fields but extremely disparate ion and gas masses. Other
tests are made for this distribution with satisfactory agreement.

I. INTRODUCTION

Previous research on the effect of an applied
electric field on the motion of charged particles
colliding elastically with a neutral gas has pro-
ceeded along severaI. lines, none of which estab-
lishes analytically the ion velocity distribution for
arbitrary fields and ion-neutral mass ratios. The

analytical results thus far obtained for elastic col-
lisions are only applicable for extreme ion-neutral
mass ratios. Most experiments studying
weakly ionized gaseous systems in uniform elec-
tric fields are done when the extreme conditions
previously mentioned are not applicable.

We shall use the BGK or kinetic-model method
which has not apparently been exploited for this
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problem. We shall in part remedy this situation
by first considering this formulation for any elastic
ion-neutral potential and next specialize to the
case of a velocity-independent mean free time.
In this connection a judicious kinetic model will be
chosen such that the resulting ion velocity distri-
bution is both accurate and in simple analytic
form. The accuracy of this distribution will be
tested in two independent ways.

Fortuitously, a velocity-independent mean free
time corresponds to an induced-dipole interaction
which is the expected dominant long-range inter-
action for ion-neutral collisions, "at least for
simple molecules at low relative speeds. In addi-
tion, for most drift-tube experiments the ion-neu-
tral density ratio is less than 10 and the ion den-
sity is less than 10 /cm' so that it is weakly ion-
ized. Thus only binary-ion-neutral-particle col-
lisions may be considered and ion-ion collisions
as well as space-charge effects may be ignored.

II. BOLTZMANN EQUATION AND KINETIC-MODEL
SOLUTION

Since we are dealing with the binary-collision
limit, the use of the Boltzmann equation is appro-
priate:

reasonably approximated by

a —= X [f(v')M, (V ') -f(v)~, (V)]

x o(y)yd~-„. dV,

where e, is the field component of the velocity.
This simplification occurs because for most ex-
periments in weakly ionized gaseous systems the
number of ion-neutral collisions is believed to be
sufficiently large to assume the existence of a
steady-state ion velocity distribution. The ion ve-
locity distribution is therefore a,ssumed time inde-
pendent and so the first term of the left-hand side
of the above equation may be deleted. Uniformity
of the electric field and small ion-density gradients
on the scale of a mean free path give the basis for
the assumption of a spatially independent ion-ve-
locity-distribution function. Therefore the second
term and two Cartesian components of the third
term of the left-hand side of Eq. (4) may also be
deleted.

We may now replace Eq. (4) without further ap-
proximation by the following:

sf(v) f(v) f'(v)
sv, ~(v) ~(v)

where r, v, and a are, respectively, the ion-posi-
tion, velocity, and electric-field-acceleration vec-.
tors. I,. and E are the distribution functions of
the ions and gas, respectively, and J is the colli-
sion operator expressing the rate of change of den-
sity in an element of phase space due to collisions
both inside and outside that element.

The collision operator in the Boltzmann equation
is generally a nonlinear operator on I, However,
in this case, it is linea, r since we are neglecting
any effect the motion of the ions has on the nuetral
gas since the gas is weakly ionized. Dropping the
subscript i, we have

J(E, E,) = j f [E'(r, .v„, t)F,(r, V, t)

—E(r, v, t)E, (r,v, t) ]o(y)yÃd(u;. , (2)

where 7 is the gas velocity, y is their relative
speed, and Iv —V I, v, and f are the ion and gas
velocities for scattering from the element of phase
space. d(d;. is the solid-angle range about y, and
o is the differential-scattering cross section (y=- y
for elastic collisions).

The ga,s density

lV(r, t) ==1 E,(r, 0, t) d 0 (3)

is assumed to be constant and in equilibrium, hav-
ing a Maxwellian velocity distribution Af, (T).

From the above the Boltzmann equation can be

1/&(v) = N J J Mg(V)yo (y, s)) d V d(u .
The use of such a representation is called the BGK
or kinetic-model method. The second term of the
collision integra. l on the right-hand side of Eq. (4),
which represents the rate of decrease of density in
an element of velocity space, has been equated to
the ion-velocity-distribution function evaluated at
the element considered, multiplied by the collision
frequency between iona and neutrals, 1jv{v). The
remaining collision integral, in Eq. (4), repre-
senting the rate of increase of density in the ele-
ment of velocity space, is equated to the velocity-
distribution function of ions entering the element
of phase space, again multiplied by the rate of
ion-neutral collisions. But the ions entering the
element of phase space considered just had a col-
lision and so are not representative of the typical
distribution of velocities of the ions because of
the applied electric field. The steady-state veloc-
ity distribution of these ions just having had a
collision is designated as f" . These arguments
use the standard ansatz in the development of the
Boltzmann equation that whenever a collision oc-
curs the particle is discontinuously displaced in
phase space to a new velocity and that the ele-
ment of phase space considered is so small that
all collisions will result in «.he ion leaving the
element. The reason for such elaboration is to
empha. size that Eq. (5) is not approximative but is
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PREVIOUS ANALYTIC VELOCITY DISTRIBUTIONS tion, we first treat the case where the mean free
time between collisions is independent of the ion
velocity, which corresponds to an induced-dipole
interaction between ion and neutral particle. An
expression for f0 is chosen which is easy to handle
mathematically and which as we will see later,
yields a good approximation to the exact f. By
noting that the field-independent form of f and f
is a Maxwellian, and based on the suspicion that
a displaced Maxwellian with temperature param-
eters is an accurate description off at low fields,
we choose
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FIG. 1. Space spanned by the known analytical velocity

distribution for elastic scattering is shown in the plane
of rn/M and field strength E/N, This is contrasted with
the region where most drift-tube experiments are done.
The work of Kihara for large ion-neutral mass ratio is
limited to low and medium fields by the assumption that
the ion's drift velocity is much smaller than the neutral
thermal speed. Wannier's high-mass-ratio study is
directly limited to high fields but the convolution theorem
may be used to extrapolate to arbitrary fields.

an equivalent way of writing Eq. (4), because of
its linearity. The result of writing the collision
integral in this form is to convert an integrodif-
ferential equation to a differential equation with
another unknown variable f, whose physical
meaning can be used to permit a relatively easy
evaluation of the ion velocity distribution. The
resulting velocity distribution is accurate if the
correct f is known. If this is unknown, velocity
moment and asymptotic limit matching can be done
to secure a reasonably accurate f0 in order to
obtain a satisfactory f.

The solution to Eq. (5) can be obtained by stan-
dard methods. It is

mOO

(&)
ln order to obtain f, 7(v) must be known as well as
an explicit expression for f (v).

III. VELOCITY DISTRIBUTION FOR CONSTANT
MEAN FREE TIME

As an example of how the kinetic-model ap-
proach can be used to find the velocity distribu-

where

e = 4P„(a~)2,

Vz —Vpx erfc &'" —— ' ', (9)2gy

(10)

and where erfc is a complementary error function.
When the first and second moments in the field di-
rection and the second transverse moment of f are
equated to those evaluated by Wannier, the param-
eters in Eq. (8) are found. They are, for the
isotropic scattering case,

v0 = (vs) —aT ~

I/2P, =
& v„'),

I/2P, =
& v', ) —(, v.)' —( )',

(11)

(»)

where the brackets are averages over the velocity
distribution f.

The velocity distribution as obtained in Eq. (9)
is the first analytical ion velocity distribution
found for elastic collisions covering the range of
E/N and the ion-neutral mass ratio m/M, where
most swarm experiments are done (see Fig. 1),
and it approaches all the analytic velocity distri-
butions already obtained for constant mean free
time in the extreme cases mentioned previously.

Examination of Eq. (11) shows that the field-
component average velocity of f0, v0, is less than
that of f, (v,), by the quantity a7' corresponding to
the "average" velocity gained in the field direction
between collisions. ' Equation (12) states that the
random kinetic energy in the transverse direction
of f0, (m/4p, ), is equalto that off where m is the

f '(v) = (Pjw) (P„/0)'" exp[- P,v,' —P„(v, —v0)'],
(8)

where v0, p„, and p, are parameters to be de-
termined when the moments of the resulting f are
matched to the theoretical moments obtained by
Wannier3; v, = (v„+v, )

~ is the component of the
velocity perpendicular to the field. The f obtained
from Eq. ('I) using the f0 in Eq. (8), with constant
7q 1s

Pi vz vp 1
f(v) = exp —p&v, — ' +-

27TQT QT
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FIG. 2. Skewness parameter & plotted vs m/M for
various values of E/N. The neutral-gas temperature and

polarizability are held fixed and isotropic scattering is
assumed.

Q = —' dVM (7)y sinXdXdg
N
a „ 4

1-cos'
x o(y, X)(1 —cos'X) = -"

~ (17)
aT

where M is the mass of the neutral gas, 0 is
Boltzmann's constant, T is the neutral-gas tem-
perature, X and Q are the polar and azimuthal

angles, and 0,'s are scattering collision integrals.
The scattering integrals 0& and 0& have been

evaluated for a polarization interaction by Hasse'
and Wannier and are found to be

Qt= l. 1052/aw, ,

Q, = 0. 772/a7, ,

where 7, is the mean free time between spiraling
collision and is equal to

1

2weN (m+ M)P
(20)

where e is the charge of the ion and P its po].ariz-
ability.

ion mass. Equation (13) states that the random en-
ergy of fn in the longitudinal direction is less than
that of f by —,'m(av) . This is reasonable since f
is the steady-state velocity distribution of ions just
having had a collision.

Wannier' evaluated 7 and the velocity averages
in Eq. (11)-(13). They a,re

(~,) = (m+ M)/Q, M,

(m+M)3(MQ, +4mQ, )
m mM'Qt(3MQs+4mQt)

(m+ M)'Q,
mMQ, (3MQs+4mQt) '

IV. ASYMMETRY OF CONSTANT-MEAN-FREE-TIME
VELOCITY DISTRIBUTION

The e in Eq. (10) is a measure of the asymmetry
about the mean or skewness of the velocity dis-
tribution. The larger the parameter q is, the
greater the skewness of the ion velocity distribu-
tion. The dependence of c on m /M is shown in
Fig. 2, which indicates that & is a maximum when
m/M is near unity. From the defining equations
of q it can be shown that the functional dependences
of e on P, kT, and E/N enter only through the ratio
of (E/N)'/PkT. Therefore an increase of E/N by
a factor of x is equivalent to a decrease of P or T
by a factor of x .

The velocity distribution is considerably affected
by e as previously stated. This effect is seen in
Fig. 3, which is a velocity contour diagram con-
structed on the plane of the reduced velocities
zg„and ge„while M), is kept zero. The reduced
velocity is defined as w= v/a7. Because of the
cylindrical symmetry of f(v) the label of the ver-
tical axis may be either m„or u, . Each contour
in the figure is a locus of equal values of
f(u„, 0, w,), whose normalized value is indicated
alongside each contour. Four distributions cor-
responding to four values of E/N are shown.
Other relevant parameters used in these figures
are T = 300 'K and P = 10 ' cm . The figure for
E/N = 1000 Td (1 Td = 10 ' V cm ) corresponds to a
high-field case, which is defined as a situation where
the neutral-gas temperature is negligible in com-
parison with the ion mean random energy. When
this condition is met, the shape of the ion velocity
distribution in the reduced velocity space is inde-
pendent of E/N. Indeed, this is why reduced ve-
locities are introduced. For example, in the case
considered here a value of E/N of 50 Td yields the
same shaped velocity distribution as E/N= 1000 Td
to within plotting accuracy. The figure for E/N
= 2 Td represents a low-field case. The figure for
E/N= 5 and 10 Td represents transition regions
of E/N between the high-field and low-field cases.
The value of e for isotropic scattering correspond-
ing to E/N= 1000, 10, 5, and 2 Td is approximately
3, 1, —';, and 3, respectively.

V, COMPARISON WITH RELATED WORK OF WANNIER

For constant mean free time, Wannier' has
found the moments of the velocity distribution for
arbitrary field strength in terms of scattering in-
tegrals (of which the first two have been evalu-
ateds'I). He has also done a Monte Carlo calcula-
tion of the velocity distribution for the special case
of high field, unity ion-neutral mass ratio, and
isotropic ion scattering in the center-of-mass
frame (along with constant mean free time). We
will make use of this work to check on the quality
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FIG. 3. Velocity-dis-
tribution contour diagrams
are plotted for various val-
ues of E/N for the case of
equal ion and gas mass.
~e neutral-gas temperature
and polarizability are kept
fixed and polarization angu-
lar scattering is considered.
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of the kinetic-model solution for the velocity-dis-
tribution function. ls

The (vs) established by Wannier for high fields

and

( v,
"

&
= (v/4 p„p,")'"I'(I+ —,'n) (a7)" (21)

(v",) = (- 1)"exp + — lim „, (22)
v 1 . d "Q(b)
av c q g

db"

where 1" is a I' function and Q(b) is a generating
function defined by

A. Comparison of &v'3
&

One may of evaluating the accuracy of the veloc-
ity distribution f is to compare its moments with
those calculated by Wannier. It is known that two
velocity distributions are equal if all their mo-
ments are equal. " We have forcibly matched the
first two velocity moments. The assumption of
cylindrical symmetry about the field has guar-
anteed that the value of (v„"'s v", v~& and (v"„v,"'v~)
mill be zero and equal to those of Wannier. n, m,
p are non-negative integers. The high-g, mo-
ments are also equal, as will be discussed in the
Sec. VI. Therefore we will compare the lowest
unmatched moment (v', ) to get an idea of the ac-
curacy of the intermediate moments in the field
direction.

The moments of the kinetic model f are

s ar 9(v, ) —3(v ) 4(e, )+5(U )
)& 1 -Iss & & 1 —lsi)
(25)

where

and

(M +Sm M)Qs+2mM Qs
ss (m+ M)' (25)

(
(6m M —SM )Qs+ QmM Qs+ 5M Qs

ss 2(m+ M)'
(27)

Since the polarization scattering integral 03 has
not yet been calculated, the isotropic scattering
integral Q~, whose value is unity, is used.

A comparison of (vs) of Eq. (24) with that of
Wannier is made. The comparison is shown in
Fig. 4. In this figure (v, ) /(av) is plotted against
m/M. There is also a mass-ratio dependence hid-
den in the scaling factor a7, so that the shape of
the curves should not be used to dram other in-
ferences. The ordinate in Fig. 4 is chosen so that
in this high-field case the curves are independent
of E/N. The kinetic model f has a third field mo-
ment within 10% of that of Wannier.

B. Comparison of General Features of Distributions in Velocity
Contour Diagram

1 b go 2
Q(b) = —exp —b +-

ax

Therefore,

&v'. &
=

& v.)'+ S &v.&+5 &v.&/~+ 2

(2S)

(24)

The Monte Carlo study of Wannier was done for
the special case of high fields, unity mass ratio,
isotropic center-of-mass scattering, as well as
constant mean free time, etc. Hence the analogous
case is taken for the kinetic model. The contour
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THIRD MOMENT COMPARISION

(v', )
~00

IOO:

IO

O. l

I I I I. I I III
0.3 1.0

m/M

I I I

5.0

diagrams shown in Fig. 5 are of the same nature as
those exhibited in Fig. 3. As before, the values
of f(w) of the contours are spaced logarithmically.
Therefore, if neighboring contours are separated
by the same distance, f(tc) is undergoing an e"
dropoff going from the point of the higher value of
f. If such contours get closer together, then f(w)
falls off faster than e

I IG. 4. Third moment (v28) of the kinetic model is
compared with that found by %Pannier. Reduced third mo-
ments (v~)/(av)3 are plotted vs mlM. High fields and
isotropic scattering are considered.

Major similarities and differences of these two
distributions are as follows: Since the first two
velocity moments are forcibly matched, there
exists an over-all resemblance between the two
distributions, that is, most of the particles are
situated at about the same velocity space. Beyond
that, one should note that the population density
and the skewness of the contours at high MI, are
very similar. In fact, at values of zo, greater than
3. 5, the contours of the two distributions almost
coincide with each other. This implies that the
e ~ dependence of f at large M„as is predicted
by Eil. (II) calculated from the kinetic model, is
essentially correct. This also implies that all
high moments of the two distributions are substan-
tially equal. These additional similarities are not
unexpected, for so long as f does not overpre-
scribe the population density at high zo„ the den-
sity of f at high w, is primarily controlled by the
field effect between collisions and the rough cor-
rectness of fc at low so, . The prescription by f
for population density at low M), is always fairly
good, on account of the moment matching at the
low moments, and, as was stated earlier, the ef-
fect of the electric field between collisions is cor-
rectly taken care of by the field term in E|I. (5).
One major difference between the two distributions
occurs at negative so„where the Monte Carlo dis-
tribution has a much sharper falloff in population
density in the —se, direction. At m, = -0. 5, the
population density is already as low as 0. 001 while
the corresponding value for the kinetic model is

-4

I I i I I. I
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FIG. 5. Velocity contour dia-
grams are shown for four differ-
ent velocity distributions: the
kinetic model, the Monte Carlo

1 calculations, and. one- and two-
temperature displaced Max-
wellians. High fields, unity
ion-neutral mass ratios, and
isotropic scattering are assumed.
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still 0.01. This relative overabundance of popula-
tion in the negative ~, region for the kinetic model
is made up by the relative depletion of population
around its innermost contour. It is estimated that
approximately 20% of the total population is in-
cluded within the 0. 01 contour of the Monte Carlo
calculation, while only 15% resides within the
corresponding contour calculated from the kinetic
model. Another difference exists in the locus of
relative maximum of population density along the
so, direction in planes of constant Ml„. They are
indicated by dotted lines. The Monte Carlo cal-
culation shows that there is a coupling between
zg„and M), such that the location of the relative
maximum is dependent on the value of m„of the
plane. The corresponding locus for the kinetic
model is a straight line perpendicular to the zg,
axis. This difference arises from the assumption
of the product separation f(w„, w, ) =gt(w, )gp(w, ) in
the kinetic -model calculation.

For comparison purposes, both the one- and the
two-temperature displaced Maxw ellians of appro-
priate moments are also shown in Fig. 5.

VI. SUMMARY

The velocity distribution obtained in Sec. III for
constant mean free time has the following charac-
teristics: It agrees with the known analytic veloc-
ity distributions in the asymptotic cases of ex-
treme ion-neutral mass ratios at arbitrary fields
and arbitrary ion-neutral mass ratios at low
fields. It has the correct M), dependence at large
u, since the electric field is correctly accounted
for. It is in substantial agreement with a pre-

vious Monte Carlo study, particularly at large zv, .
Further, many moments of two distributions

are equal, as was discussed in Sec. V. In
light of this agreement, we feel that the kinetic-
model approach is highly satisfactory for study-
ing the ion velocity distribution of a weakly ionized
gaseous system under a uniform electric field of
arbitrary strength.

The method used herein has reduced the prob-
lem of finding an analytical velocity distribution
to that of solving a simple integral, shown in Eq.
(7). This advantage is intrinsic from the use of
the BGK approach. From the example of finding
a velocity distribution for the constant-mean-free-
time interaction, we are led to conclude that one
can find a velocity distribution of reasonable ac-
curacy with relatively simple fP constructed with
straightforward physical intuition. At low fields,
f is strongly dependent on fP, and deviates only
slightly from it. But for such situations, physical
intuition suggests the description off by a dis-
placed asymmetric Maxwellian is fairly reason-
able. At high fields, intuition starts to fail. But
for these cases, a significant portion of the veloc-
ity distribution becomes strongly dependent upon
the field term which is, as we said before, correct-
ly accounted for. Consequently, the velocity dis-
tribution, particularly at large I)„ is still reason-
ably accurate. The weakness of the method is
that unless the f' has w„, w, , and w, coupled, the
field does not act on the velocity distribution in the
zg„and gg direction at all. Therefore, the distri-
bution in such directions is always only as ac-
curate as one assumed for f
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