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A new variational wave function is proposed for the ground state of Bose liquids. It consists
of a Jastrow function multiplied by exponentials of three-particle functions. The form of the wave
function is deduced from a formal analysis carried out for the weakly interacting Bose gas
characterized by a strength parameter &. By using the wave function proposed here, the energy
obtained is exact to 0@4). Several useful and straightforward applications of the new method
to liquid helium and Coulomb gases are suggested.

I. JASTROW THEORY FOR BOSE LIQUIDS

Systems of strongly correlated bosons are known
as Bose liquids. These strong correlations may
be in the form of short-ranged repulsive cores,
as in the case of liquid He, or in the form of
long-ranged interactions, as in the case of the
charged Bose gas. One of the most powerful tools
for studying the ground state and the low-lying ex-
cited states of Bose liquids has been the Jastrow
theory. Over the last decade, the application of
Jastrow's theory has led to certain quantitative as
well as qualitative success' for both liquid He4 and
the charged Bose gas.

I assume a pairwise central potential and consider
a Bose liquid made up of N particles in a normal-
izing volume 0 and characterized by the Hamilto-
nian
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ge} 2~ }«i&/ «N

The wave functions must be symmetrical with re-
spect to exchange. For a noninteracting system,
appropriate wave functions ean be formed by sym-
metrizing products of plane waves. In the more
realistic case, where the potential v(x) is not iden-
tically zero, it is convenient to consider one par-
ticle at a time, moving in an effective single-par-
ticle field provided collectively by its peers. A
self-consistent scheme may then be set up, re-
sulting in the Hartree products

N

$„,„....~ „„(1,2, . . . , N) = S II y„(r,),i=}

$„(1,2, . . . , N) = II y (r, ) .

This is the first step toward describing a many-
particle system. It forms what is known as the
independent-particle picture.

The ordinary perturbation theory based on an
independent-particle model fails in the case of
strongly correlated systems. For liquid helium,
v(r) contains a. strong repulsive core and leads to
divergent matrix elements. For Coulomb sys-
tems, while the matrix elements converge, cer-
tain classes of important terms in the perturba-
tive expansion diverge in the limit of small mo-
mentum transfers. These difficulties stem from
the inability of single-particle products to account
for strong interparticle correlations. While the
more sophisticated and widely accepted approach
toward repairing the damage relies on the employ-
ment of summation techniques borrowed from
quantum field theory, a more direct and practical
method is definitely that due to Bijl, Dingle, and
Jastrow, who sought to circumvent the difficulties
by laboriously avoiding divergences. In what shall
be referred to as the Jastrow model, interpartiele
correlations are taken into account in the least
costly manner: by incorporating two-particle func-
tions from the outset into the basis,

(1, 2, . . . , N)

=~II y„,(r;) II f(r, r ) .
i=} 1 «)&& «N

For the ground state,

where S stands for the symmetrization operator
and (n,.) denote complete sets of guant»m numbers.
For translationally invariant systems, (n; j are
the 3N wave vectors k}, k2, . . . , k„, and the sin-
gle-particle orbitals remain plane waves. The
ground-state wave function then reduces to unity.
More generally, I let ni = 0 represent the lowest
orbital, and express the Hartree ground-state
wave function as

=y„(1, 2, . . . , N) II f(r„r,) .
1 «)&P «N

(5)
In the case of translationally invariant systems
such as liquids,

f(r, , r)) =f(r„),

2312



THREE PARTICLE VARIATIONAL WAVE FUNCTION FOR. . . 2313

and O'0 reduces to 1, giving rise to the well-known
Jastrow function

», (1, 2, .",~) =». II f(~„)= IIf(~„) .
j&j1 ~jQ ~N

Writing

lnf (r) =u(r),
the more convenient form of the function is ob-
tained,

p ((, 2, . . . , N]=n exp(-', u(e, ,)]=exp -' Eu(uu])

which by now appears regularly in the literature'
on variational calculations for Bose liquids.

In a. recent analysis, ' we carried out energy cal-
culations for a weakly interacting Bose gas in an
effort to unearth the ingredients for the success
of Jastrow's theory. Using a Fourier transform-
able but otherwise general pairwise potential Xv(r),

Xv(k) = f dr Av(r) e "', (1o)

where A measures the strength of the interaction,
we first calculated the exact ground-state energy&
using a prescription due to Hugenholtz and Pines,
and expressed it as a power series in A. Replac-
ing @ and nz by 1 and defining the number density
n by

n= N/Q,

We found that

-rP ~ v (k)v(f)v$ l.)

k f (k+T.)

3 Q v (k) v(l) v(k+ 1),g v (k) v (&)
$4$2

4J /0 = —,
' n f g'(r) u '(4 ) d r + 2 n f g (r) v(r) d r,

(20)
where g(r&z) or g(12), the radial distribution func-
tion, equals the two-particle distribution function
P(12) apart from a constant factor n, with the
latter defined by the general formula

N! dr

(21)
for the v-particle distribution function P(12. . . v).
Introducing Fourier transforms

g„(k) = f dr g„(r) e '"', (22)

2 3 v'(k) v(~) v(l) v(l) v(k+1)
k[k+l (k+1)] k l

(19)
In the above equations, a new set of energy nota-
tions 0 have been defined for convenience of later
identification.

Next the ground-state energy was calculated by
means of the Jastrow theory. The expectation
value &z of the Hamiltonian defined by Eqs. (1) and
(10) taken with respect to the Jastrow function of
Eq. (9) yielded

with

(12) u„(k) = f dr (4„(4.) e '"'",

while expanding g and u in power series of g,

(23)

so=0= eo (13)

E, = —,
' n' v (0) = 4, , (14)

, ~ v'(k)
E2= —2n m ~2

—&2 p

E4 = &4+ +64,

etc., where

{k) 3 ~ (k) (f) (k+
'4 2 -„k' 2» k' P(R+7)'

, —v'(k) v(f) v(1 +T)

k1
u4l2

n' g v(l) v(P) v(k+I) v(k+P) (13)
2 k l p

4 &~ vs(k), p ~ v(k) v(l) v(&+I)+3=n ~ 4 +@n
k' lk kl

(16)
(17)

g(rq, ) -=g(12)=Z ), g (12),

u(r, z)
—= u(12) =Q ]( M„(12),

m

the Fourier coefficients u and g were related
through the Bogoliubov- Born-Green-Kirkwood-
Yvon (BBGKY) equation'

(24)

(25)

g~g(12) =g(l.2) ]up((1 )+2n f g(123) &,u(13) drs,
(26)

where

g(123) = g(12)g(23) g(31)e"""" (2'7)

A(1, 2, 3) = n f [g(14) —1][g(24) —1]

xI g(34) —1]dr, + . . ~ (28)

This enabled the expression of e~/0 as a functional
of g„(k). A minimization procedure invented by
Jackson, Feenberg, and Campbell~ known as the
paired-phonon analysis then led to an optimized
set of g (k):

g(](k) = 1, (29)
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gq(k) = —2n(k)/k',

6n~'(k) ~ ~(i) ~(k+1) ~ ~(i) n(k+1)
go(k) =

4 +2 L kzlz +~ z,- -,z
I (k+lj

(30)

(31)
etc. , along with the corresponding energy upper
bound

I
0) = (l'o ~

lK) =P-4o

lK, L) =P-, p-„to

K, L, P) = p„pz Pp ko,

(39)

(40)

(41)

(42)
(32)

where j have already been given in E(ls. (13)-
(16) and (16) for m= 1-4. Note that ez is exact
through O(A'). In higher orders of X, Jastrow's
theory fails to take into account all contributions.
However, term-by-term comparison of e~ with
the energy series E obtained by means of the
Hugenholtz-Pines perturbation procedure sug-
gests that Jastrow's model effectively sums one-
ring and ladder diagrams. This single fact is
probably sufficient to account for the success of
the Jastrow theory.

For the sake of completeness as well as for later
use, I quote from Ref. 5 the optimum Jastrow func-
tion:

o, 2, . . . , N(=exp(-', E A((j)]), (33)

with u(ij) defined through its Fourier coefficients,

a, (k) =0,

a, (k) = g, (k),

(34)

u, (k) = g, (k) ——,'Z g, (l) g, (k+7) —ng,'(k), (36)

u, (k) = g, (k) -E gg(l) g, (k+1)

+ o Z gy(l) gs(p) gr(k+I+ p)
7y

—2', (k) g, (k)+n'g', (k), (»)

etc. Also, it should be remarked that up to order
)„, g(k) agrees with the exact g(k) —denoted by
g'(k) —obtained via the Hugenholtz-Pines proce-
dure. '

II. BEYOND THE JASTRGVf THEORY

To go beyond the Jastrow theory, there is the
perturbation procedure developed by Feenberg a.nd
co-workers, ' known as the method of correlated
basis functions (CBF). In this method, one be-
gins with an approximate ground-state wave func-
tion (l(o, such as the optimum Zastrow function (l(z

of E(I. (33), and applies on it density-fluctuation
or free-phonon operators p-„.

etc. , using which one can compute the matrix ele-
ments of 1 and H. Thereafter, the 1 matrix and
the Hamiltonian matrix may be simultaneously
diagonalized via standard perturbation techniques.
The matrix element connecting 10) and I K) vanishes
for nonzero K on account of momentum conserva-
tion. Thus contributions to the ground-state en-
ergy correction arise from diagrams whose initial
and final vertices are matrix elements connecting

I K, L), I K, L, P), . . . , etc. , to 10). In second or-
der, the terms contributing toward energy cor-
rection are represented by the diagrams in Fig. 1.

In the special case where ()(o is chosen to be of
the Jastrow form, it is noted that the set of cor-
related basis functions generated by this method
becomes precisely the two-particle basis of E(I. (4).
As pointed out in a recent letter, since other
forms of the (l(o are readily available, Feenberg's
CBF theory should not be considered an extension
of Zastrow's theory. Also, E(I. (40) states that
Feynman's phonon spectrum in liquid helium
emerges fr om the CBF as a zeroth-order approx-
imation.

Campbell and Feenberg' showed that when the
optimized Zastrow function (t(z is employed to rep-
resent the ground state, the matrix element con-
necting the ground state !0) to every two-phonon
state I K, L) vanishes. Hence the diagram shown
in Fig. 1(a) does not contribute toward perturba-
tive corrections. Yhe leading correction is given
by the three-phonon diagram Fig. 1(b). For liq-
uid helium, Davison and Feenberg' evaluated Fig.
1(b) to yield —0. 76 'K/N, which when added to the
unperturbed energy

led to reasonable agreement with the experimental
value of —V. 14 '

K/lV. In order to understand the
implications of perturbative calculations in the
CBF, we evaluated diagram 1(b) for the weakly in-

A set of basis functions is then obtained:

(38) (c)

FIG. 1. Second-order perturbative corrections in the
CBF representation.
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FIG. 2. Examples
of higher-order contri-
bQ tlons,

teracting Bose gas, and found" that its leading
term is of order y and equals Ae4 of Eq. (19).
Thus one sees that the simplest perturbative cor-
rection in the representation of CBF completes the
energy series to O(y~) and gathers for summation
yet a new class of diagrams in the independent-
particle picture.

There are practical difficulties in going beyond
the Davison- Feenberg correction. First of all,
with each higher order, either in the perturbation
expansion (e. g. , Fig. 2) or in the vertex [e.g. ,
Fig. I(c)], comes an additional internal phonon
line, thus another threefold integration over mo-
mentum. Second, the orthogonalization of the
basis becomes increasingly prohibitive: It is not
only necessary to orthogonalize all states to IO),
but also with respect to one another. As a corn-
plement to the CBF theory, and as a practical
alternative, another method is presented here that
reaches beyond the range of the Jastrow theory.

The idea is extremely simple, and indeed obvi-
ous. A natural extension of Jastrow's theory calls
for the inclusion of three-particle functions in the
basis. Following the pattern established by Eqs.
(4)-(9), I construct for the ground state of a Bose
liquid the variational wave function

j(1, 2, . . . , N)= II f(r, ) II
1&i+&N

k(r,„r,„,r.a, )

=-2 ~"e„, (44)
m

with respect to u(ij) and ((j(ijk) It is fou. nd to be
possible to derive and solve coupled Euler-La-
grange equations and determine the optimum u(ij)
and u)(ijk) at least to 0()(, ). (For realistic sys-
tems it is clear from Ref. V and from the work of
Broyles and co-workers' that the solution of a
highly nonlinear Euler-Lagrange equation is by no
means straightforward, even in the case of a Jas-
trow calculation. ) The choice of g is expected to

rr ~
i&& i&/ &k

=( (), &, . . . , N)ax( —,
' Z )w(jj).)) .

(43)
To obtain in energy upper bound, the proper vari-
ational procedure requires the minimization of the
energy expectation value

II q (ijkl). . . ,
i&j&k&l

(45)

it is far from obvious that each factor should be
optimized when taken alone. However, to O(X ) it
can be shown easily that simultaneous solution of
the Euler-i. agrange equations for u(ij) and (()(ijk)
does give rise to u(ij) In a.nticipation of this re-
sult, one begins with u(ij) =u(ij) and varies u)(ijk)
alone in the minimization of e.

The evaluation of & makes use of the Jackson-
Feenberg transformation' —an integration by parts
valid for real g:

f (1)V,. (I) dr~. . . drj)( =~& f (I) V, in/dr~. . .dr„.
(46)The result is given by

e/0=-,'n'/ v(ij)g(ij)dr, dr,

(8 n f g(ijk)V, (()(ijk) dr, dr& dr„, (47)

where

v(ij) = Xv(r(, ) ——,
' V', u(ij),

and the v-particle distribution function g(12. . . v)
is defined by Eq. (21), with gz replaced now by g.
Note that g(12. . . v) depends on both u(ij) and
u)(ijk). They are quite different from the optimum
g(12. . . v) determined earlier in the Jastrow theo-
ry In order to e.xpress e/0 in a usable form, ex-
plicit relations between g(12. . . v), the known func-
tions u(ij) or g (ij), and the unknown function u)(ijk)
first must be obtained; then these relations sub-
stituted into Eq. (47). This is accomplished by
generalizing the BBGKY equation (26).

Equation (26) was obtained by applying the opera-
tor V, to the definition of g(12), Eq. (21). The re-
placement of )P~ by ()) in Eq. (21) now leads to a
somewhat more complicated version:

at least account for the Davison-Feenberg cor-
rection. In other words, e of Eq. (44) upon mini-
mization must reproduce the exact energy series
of Eqs. (12)-(19)to at least 0()(. ). Also, an im-
proved g(k) is expected.

III. GENERALIZED BBGKY EQUATIONS AND ENERGY
MINIMIZATION

Since the use of the optimized Jastrow function
corresponds to summing a large class of impor-
tant diagrams in the independent-particle picture,
it is probably a reasonably good starting point for
the present work. Instead of determining u(ij)
freely along with u(ijk), the optimized form 0(ij)
is chosen for u(ij) as defined by Eqs. (33)-(37) and
(29)-(31). Clearly this cannot be rigorous: While
it is perfectly general to express the true ground-
state eigenfunction as a product of factors involv-
ing ever increasing numbers of particles, thus

y. (1, 2, . . . , A)=II y, (i) III(ij) II k(i')
i i&& ig&k
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V,g(12) = g(1 2)V, u(12) +nf g(123)V,u(13) dr,

+n f g(123)V,w(123) dr,

+ —,'n' f g(1234)VTw(134) dra dr4 . (49)

This equation alone is not sufficient for determin-
ing the relations between g, u, and gg to the order
desired. Applying gj on the three- and four-par-
ticle distribution functions g(123) and g(1234), it is
found that

v, g(123)=g(123) [v,u(12)+ v, u(13)+ v,w(123)]

+ n f g(1234) [V,u(14) + V,w(124) + V,w(134)] dr, + —,
' n' f g (12345)VTw(145) dr, dr, (50)

VTg(1234) =g(1234)[VTu(12)+ VTu(13)+ V,u(14)+ VTw(123) + VTw(124)+ VTw(134)]

+ nf g(12345) [V,u(15)+ V,w(125)+ VTw(135)+ VTw(145)] dr +-', ' f g(123456)V,w(156) dr, dr, .
(51)

Also, I define the functions x(123) and y(1234) for
convenience:

g(123) —= g(12)g(23)g(31) [1+x(123)] (52)

x [g(34) —1]dr, + ~, (54)

g(1234) =g(12)g(13)g(14)g(23)g(24)g(34) [1+y(1234)] .
(53)

Note that x(123) is no longer given by Abe's correc-
tion

x(123) = n f [g(14) —1][g(24) —1]

t

which is well known in classical theory of liquids.
The introduction of three-particle factors in the
trial wave function corresponds to taking into con-
sideration three-particle interactions between
molecules of a classical liquid. In the same way
that a cluster expansion of g(12) leads off with
e"(Ta], x(123) is expected to lead off with w(123):
a fact which I shall presently verify. I,ikewise, e,
y(1234) is expected to be a functional of g(ij) and
g(ijk)

It is more convenient to work in the momentum
space. One thus Fourier transforms g, m, the g's,
x, and y and expresses them as power series in A.:

u(ij)=Z u(k)e'"'']~=+~X~u (ij)=XX 5~ u (k)e'' &z
k f8 m jf,

w(ijk) =4 w(IT,. 1, —K-1) exp[ik ~ r, +i 1 r~ —i(k+1) r, ]
k1

=+i& w (ijk) =Z & Z w (k, 1, —k —1)exp[ik ~ r&+il ~ r —i(l(;+1) ~ r ]
m m kl

(55)

(56)

(57)g(ij)=Z g(k)e'" '&& =5~ 'X"g„(ij)=Z X Z g„(k)e'"''&,
17 m m p7

etc. The primes on the summation signs denote the exclusion of terms with vanishing k, 1, or k+1. Sub-
stituting these expansions into Eq. (49) and using the earlier results in Eqs. (34)-(3V), the following are
obtained:

g, (k) =1,

g, (k) =u, (k) =g,(k),

g (k) =u (k)+-,' Z g, (l)g, (R+T) ~', (k)=g, (k),
jl

ga(k) =ua(k)+ngT(k)ua(k)+ nga(k)uT(k)

ka IgT(~+1)ua(l)+ga(&+1)uT(l)+ngT(l)gT(k+1)uT(l)+nga(k)gT(k+1)u&(l)+ng&(k)gT(l)uT(l)]

k5 (ki(k+T)rki(k, 1, —k —1) — [k (k+1)ik (-k, -T k+T) ii ())ki(-k, -T k 1)][j

yT(~+1 -~ p 1 p) wa(-l, -p 1 p
jp

(56)

(59)
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etc. In the above, I had to make use of Eq. (63) be-
low and the anticipated result

soi(k, 1, -k —1)=0, (62) (66)

uate the energy expectation value ~. It is found,
after some lengthy algebra, that

&=~~ &m~
m&0

which is required in order that the energy series
up to O(X ) be unaltered by the introduction of in-
to the wave function. Note that g(k) is also unal-
tered up to O(X ); however, g, (k) differs from

g, (k).
Substituting the expansion formulas such as Eqs.

(55)-(57) into Eq. (50), further relations between
zg, x, and y are obtained as follows:

xo (k, 1, —k —1) = duo(k, 1, —k —1)= 0, (63)

~1 ~1~

&a= &a ~

C4 = $4+564 p

etc. , where

6q4 = —4 n Z k g&(k)g&(l)wz(k, 1, —k —1)
k1

(69)

(70)

(»)
(72)

xi(k, 1, —k —1)=go, (k, 1, —k —1), (64)

x2 (k, 1, —k -1)= n)~(k, 1, —k —1) —n 5~

x gg(P)y, (1, —p, -k -T, k pp),
(65)

etc. Finally, doing the same to Eq. (51) leads to

yo(k, l, p, —k —1 —p)=0, (66)

y&(k, l, p, —k —1 —p)=0, (67)

etc.
Armed with these relations, I now return to eval-

+ ss n Hk m2(k, 1, —k —1)ur2(-k, —1, k+1)
kl

+ fgn Ek [gi(k)gi(1) +gg(k)g (k+ 1)
k1

+gi(l)g, (k+1)]su, (k, 1, —k -1) . (73)

To O(& ), this expression is what one wishes to
minimize with respect to M2. The solution of the
Euler —Lagrange equation

5e[zu, ]/6u, =0

is straightforward, yielding

(k 1
-

1)
k Ig|(k)g1(l)+k (-k-1)gl(k)gl(k+I)+I (-k-1)gl(l)gl(k+I)

k +l +(k+1)2

The corresponding energy is given by Eqs. (68)-
(72), with

5 E.'4 = +E'4 (76)

To the author's knowledge, a. wave function that
includes three-particle factors in the form of Eq.
(44) has never been tried in variational calcula-
tions for quantum liquids. The reason is believed
to be the following. In the Jastrow theory, one has
some idea as to what u(x) should look like. For
instance, it must make the wave function vanish
ra.pidly whenever the hard cores of two particles
overlap. In other words, u(r)- 0 as r 0. Fur--
thermore, it can be shown easily that for a Lennard-
Jones 6-12 potential, u(r) goes as x ' at small x.
At long range, u(x) must approach a, constant.
Asymptotically, u(x)- r- ~. Also, the radial dis-
tribution function g(r) or the liquid-structure func-
tion S(k) is known quite well from neutron- and
x-ray-scattering experiments. The variational

of Eq. (19), as expected.
At least to this order, the same results are ob-

tained when one frees u(ij ) from the choice u(ij ) and

varies it along with w(ij k)

IV. DISCUSSION

calculation must be able to reproduce detailed
features of these functions. In choosing an appro-
priate form for u(x), the latter condition is often
leaned upon for guidance. In fact in certain rea-
sonably successful calculations, ' the energy ex-
pectation value q~ is first expressed as a func-
tional of g(r) via the solution of integral equations
relating u(x) to g(x)—such as the BBGKY equation
(26), or the Percus-Yevick equation, or the hyper-
netted chain —and then minimized with respect to
g (x). This procedure allows one to choose a form
for g (r) which contains all the essential features of
the experimental data. Gn the other hand, little is
known about the properties of the three-particle
factor xv(ij k). Presumably whatever discrepancy
remains between the experimental g(r) and the
g(r) determined by optimizing ~Pz must be account-
able to ge(ijk) and higher-order correlations. But
such information is unreliable. One is dealing with
small differences between large numbers. Neither
the Jastrow g(x) nor the experimental data are suf-
ficiently accurate to assure a precise determina-
tion of their difference. The question thus re-
mains open as to what would constitute a reason-
able form for nr(ijk).

In this work, the view of the variational approach
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took on a change of direction. Instead of blindly
varying m(ijk) in search of good numerical results,
a formal analysis was carried out for a system
which possesses an exact solution, namely, the
weakly interacting Bose gas. The form of the
leading term of (ijk) was determined, and it was
shown that it managed to pick up, to 0(& ), pre-
cisely what the Jastrow theory has missed. Such

a three-particle factor enables the variational
theory to include a totally new class of diagrams
in the independent-particle picture. In 0(X ), they
are identically the diagrams evaluated by Davison
and Feenbergto, 1t in their CBF perturbation theory.

It is proposed that in place of Eq. (75) which de-
fines the optimum ggz, the following form of zg be
used in any actual calculation:

zo(k, 1, —k —1)=- 1 k(k)k(l) + k (-k —l)k(k)k(k+1) +1 (-k —l)k(l)k(k+ I)
k +l +(k+ )

(77)

where

(78)

Expanding Eq. (77) in powers of X, it is clear that
the leading term reduces to Eq. (75). This ensures
that the matrix elements connecting g to three-
phonon states p-„p; p „-;~P must vanish in 0(),').
My belief is that in higher orders they also vanish,
or are much reduced in magnitude when compared

A,

to the matrix elements connecting g~ to p„-p;p I;g~.
A proof of this statement requires a generaliza-
tion of the paired-phonon analysis of Jackson and
Feenberg, which as yet does not exist.

To conclude this report, I wish to propose sev-
eral applications of the present analysis to familar
Bose liquids.

(i) The trial wave function defined by Eqs. (44),
(56), and (77) should be applied to study the ground
state of liquid helium. On account of the many folds
of integrations involved, a Monte Carlo or molecu-
lar-dynamics technique is desirable. Note that
Eq. (77) differs in form from its counterpart pro-
posed by the author in an earlier letter. ' To the
leading order they are actually identical. The
present form is preferred because u(x) is frequent-
ly unintegrable and consequently u(k) cannot be de-
fined, whereas k(k) in Eq. (77) is well defined,

The resulting energy change is expected to be
roughly of the same magnitude as the perturbative
correction found by Davison and Feenberg. How-
ever, what one obtains here will be a variational
upper bound. There is an apparent inconsistency:
The total energy obtained by Davi. son and Feen-
berg is actually /Ogpu@ than the experimental ener-
gy. If this result persists, it must be concluded
that the Lennard- Jones potential with parameters
determined by de Boer and Michels" must be in-
accurate. Even though the claim may seem to be
similar to certain statements in recent literature,
the conclusion is based on the mere requirement
that the variational energy be higher than the true
energy —a consistency condition which is not so
optimistic as to imply the exact agreement between

these two values.
Incidentally, the form in which is given is

particularly convenient for calculations that make
use of a Fourier-transformable He-He potential,
such as that of Mihara and Puff" and of Sposito. '8

(ii) In a recent Monte Carlo calculation to be
reported elsewhere, a convenient two-parameter
form for w(ijk) was employed,

K(i') = A/('Y(g + Kgb + f'p ) (79)

in an attempt to improve the liquid-structure func-
tion in helium. We found significant improvement
in the agreement between the calculated result and
experiment, especially in the regions about the
first maximum and the first minimum. In the
present analysis of a weakly interacting Bose gas,
it was noted that g(k) agrees with g'(k) to 0(X ).
The finding that the newly obtained g(k) is unaltered
from g(k) up to 0(X ) is consistent with this fact.
In 0(X~), however, g(k) and g(k) disagree. This
suggests that gs(k) is inaccurate, and that the in-
clusion of three-particle factors into the wave
function results in an improved g, (k). A calculation
of g~(k) via the Hugenholtz-Pines procedure is
highly desirable for verifying this statement and
for measuring the extent of the improvement. It
may also show us why a three-particle function of
the form Eq. (79) works.

(iii) The same trial wave function should be at-
tempted for the charged Bose gas. For y, «1,
this will lead to two exact terms as expected' and
estimates for higher-order terms yet undeter-
mined by other methods. For intermediate den-
sities, this will improve the variational results
previously obtained using the Jastrow theory.
This in turn will improve the metallic-density
electron-gas calculation based on the CBF theory. ~'

It is interesting, and indeed of practical impor-
tance, to find out whether an improved wave func-
tion such as that proposed here would give rise to
positive-definite g(r) at small r

(iv) To 0(X ), the optimum choice of g requires
that the Jastrow factor gz be the one which is op-
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timized while taken alone. Will this result remain
valid to all orders? While a formal analysis
proves to be rather difficult, a numerical test is
possible for both liquid He and the charged Bose
gas. One could first carry out a paired-phonon
analysis using the Jastrow function alone, and then
study the effect of including three-particle factors

such as that in Eq. (79). The energy thus obtained
is expected to be logvsr than that obtained in (ii).
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The velocity-distribution function of ions in a neutral gas is studied. A uniform electric
field of arbitrary strength is assumed and only binary-ion-neutral-particle collisions are con-
sidered. Under these conditions part of the Boltzmann-equation collision operator is replaced
by a kinetic model which enables the ion velocity distribution to be found in compact ana1ytical
form if the mean free time between ions and neutrals is independent of velocity. This veloc-
ity distribution exhibits the expected properties of drift, elevated ion temperature (as com-
pared to the neutral gas), and skewness in the field direction. In addition, the velocity dis-
tribution obtained agrees with the known distributions in the extreme cases of (a) low fields and
arbitrary masses and (b) arbitrary fields but extremely disparate ion and gas masses. Other
tests are made for this distribution with satisfactory agreement.

I. INTRODUCTION

Previous research on the effect of an applied
electric field on the motion of charged particles
colliding elastically with a neutral gas has pro-
ceeded along severaI. lines, none of which estab-
lishes analytically the ion velocity distribution for
arbitrary fields and ion-neutral mass ratios. The

analytical results thus far obtained for elastic col-
lisions are only applicable for extreme ion-neutral
mass ratios. Most experiments studying
weakly ionized gaseous systems in uniform elec-
tric fields are done when the extreme conditions
previously mentioned are not applicable.

We shall use the BGK or kinetic-model method
which has not apparently been exploited for this


