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The asymptotic distribution of the eigenvalues k„of the scalar wave equation 4N+k z =0 is
calculated for a three-dimensional finite domain of general cylindrical shape with Dirichlet
and Neumann boundary conditions. In the limit of large k, the number N(k) of modes not ex-
ceeding k, smoothed in order to eliminate its fluctuating part, is determined. Four terms
of the expansion of Ã(k) are obtained. The boundary effects for the thermal phonon radiation
of thin films are discussed as an application. The respective results for the electromagnetic
vector waves in a lossless closed cavity (blackbody radiation) are presented as well. Here
the constant term in the expansion is independent of the shape of the domain and does not ac-
count for corners or connectivity. E- and H-type resonances have to be observed separately
in order to yield the complete shape dependence of N(k). The edge- and curvature-dependent
corrections of the Planck, Wien, and Stefan-Boltzmann radiation formulas are given.

I. INTRODUCTION

In this article we investigate refinements of the
smoothed asymptotic distribution of the eigenval-
ues k„of the Laplace operator for the following
boundary-value problems:. (a) the scalar wave
equation

in a finite domain G~ R with Dirichlet or Neumann
boundary conditions

or

on the closed boundary surface SG; and (b) the
electromagnetic vector wave equation

(~+k') -„=0,E (1.4)

N(k) = Z 1+ Z —,',
denoting the number of eigenvalues not exceeding

with the divergence conditions

V E=0 )
V' H=O

in the interior of a cavity covering the domain G,
with the boundary conditions

n&&E =0, n ~ H=0

on the enclosing wall 8G. For our calculations,
G is a cylinder with arbitrary cross section speci-
fied below.

We describe the eigenvalue distribution by the
"mode number"

In the limit k- ~, the asymptotic behavior for
both cases (a) and (b) is known as~ s

N(k) = No(k)+ &(k ink),

where the logarithmic factor can be removed for
polyhedral domains in the case (a) and where No
denotes Weyl's volume term.

The determination of N(k) for cases (a) and (b)
constitutes an old problem of mathematical phys-
ics with implications on many branches of modern
physics as discussed recently by Hilf, s Balian and
Bloch, and Baltes. For most applications in
physics, it is appropriate to study the smoothed
mode number N(k), where the fluctuating part has
been eliminated by one of the averaging procedures
reviewed inRefs. 7 and 8. This leads to the refined,
expansion

N(k) = N ( 0)k+ Ng( )k+ N~( )k+N~,

with the surface term Nj proportional to the area
S of 8G and the second power of the wave number
k for the scalar problem, " and vanishing for the
electromagnetic problem. '" ' The second-order
linear correction in k, accounting for the curvature
andf or the edges of BG, is known for smoothboundary
surfaces "' and for the particular case of the paral-
lelepiped- shaped domain. ' N3 is known only for the
cube-shaped domain, where it reads + 8 for the
scalar problems' and —,

' for the electromagnetic
case. '

It is the aim of this article to study the edge and
corner contributions to the average asymptotic
mode number N(k) occurring for piecewise smooth
domain boundaries 8G. For this purpose we con-
sider the following domain G.

Let G be a general prism or cylinder of volume
V, surface area S, and length I.. Assume that the
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cross section g of Q is a simply connected two-
dimensional domain of area g with a piecewise
smooth boundary curve sg of length y= p, y, , where

y, denotes the length of the ith smooth arc of eg.
The angle of the jth corner of g is denoted by n&.
G is sufficiently general for the study of the edge and
corner contributions hitherto unknown, but on the oth-
er hand, G is still sufficiently simple, allowing us to
determine Nz and Ns using the summation proce-
dure described in Sec. II. N& and N3 for the scalar
problem [case (a)] are derived in Sec. III, where
a discussion of Fedosov's results is included.
Section IV describes boundary effects in the long-
wave acoustic emission of thin metallic films. In
Sec. V, we investigate Na and N3 for the cavity
radiation [case (b)] and discuss the corresponding
corrections of the Planck, Mien, and Stefan-Boltz-
mann radiation formulas. The comparison with
computer results for finite k is included. An ex-
tension to multiply connected cylinder cross sec-
tions is suggested in Sec. VI.

II. SUMMATION PROCEDURE FOR SCALAR PROBLEMS

For the eigenvalue problem [case (a)], the den-
sity of states D= dN/dk can be written in terms of
the time-independent Green's function .g(r, r'; E),
reminiscent of quantum field theory. ' The domain
G described above allows the separation of the
variables such that

g (r, r'; E) = Z g"(p, p'; E-E.)Z.(z)Z„(~'),

(2. 1)
where

The summation has to be extended over all k & 0,
i.e. , m & kL/v.

The averaged mode numbers corresponding to
the D and N problems for the domain g read'

—rr ok yk
ND&g&(k)= + +C1+C2P (2.a)

with the curvature term

C, =Z(1/122) f v(y, ) dy, ,

where v(y, ) denotes the curvature of the arc y„
and the corner term

(2.O)

III. EDGE AND CORNER TERMS FOR SCALAR
DIRICHLET AND NEUMANN PROBLEMS

The summation [Eqs. (2. 6) and (2. 7)] is carried
through by converting the sum into an integral.
This procedure can be made rigorous, because we

sum over a one-dimensional set of equidistant
points. Thus we obtain

N„„,(k) = (L/v) f, dk. N,",„,((k'- k,')"')

+-,'N«, (k)+ e(k "), (S.1)

7T2 2

C, =Z.(,) =Z,', (2. 1O)
24mez

Here c(n) is the "corner number. " '2 That is, we
have C& = 8, C, = 0 for a circle, and C, = 0, C,
= 4c(2 v) =

4 for a rectangle. The average remainder
is 8(k ")with arbitrary real r & 0 for polygonal do-
mains, but only 6(k ink) for domains showing a
curved piece y, . '

«( I. E E ) P P, (P)&,(P')
8 P) P ) ))t g g g e~

(2. 2) where the density

is the Green's function for the respective two-di-
mensional problem on the domain g, with E= k3,

E„=E„+E„=k„+k„=k,+(vm/L) =k„, (2. 3)

a'(k )=L/v+&(k ") (3.2)

of the (k, )„=k and the conditions (2. 4) and (2. 5) at
the lower boundary k, = 0 are accounted for. In-
serting (2. 8) and using

p= (x; y, @=const)= (x, y)qg .
Re observe that

m=m~=1) 2, 3, . . .
for the Dirichlet and

(2.4)

f (k2 ~2)1/2 dx l. vk2
0

we find

Vk Sk
ND(N)(k) 5 2 15

(3.3)

m=m~=0, 1, 2, 3, . . . (2. 5) + ' + +—k+-, (C+C). (3 4)C,L C,L y

with
m= 1(0&

(2. 5)

k = [k' —(mv/L)2]" 2 . (2. &)

The conditions (2.4) and (2. 5) are accounted for.

for the Neumann problem. The functions P„(p) and
Z (z) are orthonormal systems on@ and [O, L],
respectively. As a consequence

v 'C,Lk=(122' ) k Z f K(y, )d(Ly, )
g

(s. 5)

The remainder is 8(k ") for polygonal cross sec-
tions g (i.e. , C, =O) and &((Ink)2) for curved

Sg(C, WO). The first two terms in (3.4) are the
well-known volume and surface contributions.

l,et us discuss the term N, (k) which is linear in

k. It consists of the following three contributions:
(i) The expression
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can be written

(12v') 'kZ f „dS,"«(S,"), (3.6)

v-'c(n)k= (2 —n') (24«'n)-'k (3.7)

per unit length.
Strictly speaking, the discussion of the constant

term Nz is meaningful for polygonal cross sections
only. Here the term reads as

where S," denotes the ith smooth component of the
area

S„=yL= Zy)L

of the cylinder and «(S,") is the curvature of S,".
Thus (S. 6) is identified as the curvature term ac-
counting for the curved smooth pieces of G, and
it has the same form as the mell-known curvature
term for smooth boundaries BG.S ~'

(ii) v 'C,Lk obviously accounts for the edges
parallel to the z direction with length I., angles

and curvature zero. This term has to be
compared with Fedosov's results for m-dimen-
sional polyhedra. Putting pn = 3, Fedosov's inte-
gral formula for k- ~, implies an edge term show-
ing the opposite sign of the above correct edge con-
tribution in N(k).

(iii) (8v) yk stems from the edges at the top and
the bottom of the general cylinder with angle —,'m,

length y=P, y, , and curvature «(y).
We observe that (ii) reads as (1/v)g&c(n&)Lk and

(iii) can be written as (1/v)2c(~ v) k. Hence we
conjecture that a general edge of angle e and arbi-
trary finite curvature contributes

IV. ACOUSTIC PHONON EMISSION OF THIN FILMS

Recently Berth and Weis' studied the thermal
phonon radiation of thin metallic films deposited
on a dielectric crystal. The thickness L of these
films is below 1000 A (typically between 100 and
300 A) and hence is not very large compared to the
wavelengths of the low-frequency phonons (10"-
10"sec ') prevailing at low temperatures. Con-
sequently, the use of the "infinite-thickness" eigen-
value distribution No(k) adopted by Weis' is not
justified and the corrections (3.4) of Weyl's formu-
la are relevant. In particular the spectral and

total thermal phonon radiation deviates from the
ideal "blackbody" behavior, even in the case of
perfect acoustic match as a consequence of size
and shape effects. We mention that size and

shape corrections of Weyl's formula are known in
technical acoustics for the case of a parallelepiped-
shaped domain.

For the study of the long-wavelength correc-
tions it is sufficient to consider the regime jp

«4 and hence to adopt the Debye model as it
was done by Herth and leis.

The vibrations are described by du+a u= 0 with
k=ruc, and k=&oc, for the transverse (V ~ u=0)
and for the longitudinal (k&&u=0) waves, respec-
tively. The mode numbers are Nt 2Nse&ar and

N& = N„„., where N, , is the distribution studied

in Sec. ID. For simplicity let us assume Dirichlet
or Neumann conditions for u. With L «y, formula
(3.4) leads to the following relative su+ace cor
rections for the spectral density D(& '), with &

=2v/k. Thus we have

N3=+4~g Z v/n~ —n~/v (3.8) a,(x') 1 2 y—+-
Do(V') 8 L o 4L (4. 1)

and obviously stems from the corners with angles
6&=-,'m and 82 = o~ at the top and the bottom of G.

For curved parts of Bg, N3 shows a contribution
due to the curvature «(y, ) of the edges of length y,
and angle —,'w. This term, however, is less im-
portant than the remainder 8((ink)3). From the
results known for the circle, '~ we have the impres-
sion that the (ink) cannot be removed in general.

Let us consider two simple domain shapes. For
the circular cylinder with radius R, we find from
(3.4)

N2+ Ng = (—,'R+ L/6v)k+ ~gp,

whereas for the parallelepiped (3.4) yields

Kg+NO=(4v) (Ai+As+As)k+ s,

(3.9)

{S.10)

with A, denoting the edge lengths. This result com-
prehends the one for the cube-shaped domain
(1.10) due to Brownell. '0 The edge contributions
occurring in (3.4) cannot be obtained from the ex-
trapolation of the smooth boundary formula. ' '

because V= aL and S = 2o + Ly, where 0 denotes the
area and y the circumference of the thin film. The
relative second-order correction reads

D2(& ) CgL+CpI+'y 2 yX

Do(& ) 2vo'L 16vaL
(4. 2)

Inserting the data L= 500 A, @=4 mm, and O=1
mm2 for the constantan film studied in Ref. 19 and

considering the longitudinal modes with c = 5. 24
km/sec, we obtain the relative corrections

+2.62x10 v (Hz ) and 4. 16x10 v (Hz ).
Hence the first-order correctionamounts to approxi-
mately 26% for 10 Hz and 2. 6% for 10 Hz,
whereas the second-order correction is only 4
&&10 and 4&&10 span for the same phonon frequen-
cies and can be neglected. For the thinner and

smaller crystals reported in Ref. 20, the correc-
tions are accordingly larger.

The formulas describing the spectral and total
phonon emission have to be corrected accordingly.



ASYMPTOTIC E IGE NVA LUE DIST RI BUT ION FOR. . . 2255

For an isotropic medium this yields, e. g. , for the
longitudinal branch

p ( Zl) (
tlall acr 1)

@co 1 dk S 5(o 1 dk
RIP C~ dQl(k l) V Sll Cp dt's(k l))

=ND+N~,II

instead of (3.1). From (5. 2) we conclude that

Vk

(5. 2)

(4. 3)
if (d «co~~„,. The peak of the spectral radiant
power is shifted accordingly. For small tem-
peratures T compared to the Debye temperature 0
= Au&,„/ks, the frequency integration can be ex-
tended to infinity and the Stefan-Boltzmann equa-
tion for phonons is obtained. Assuming ideal
acoustic impedance match and zero temperature
for the transmitting dielectric medium, we find
the refined formula

-a'k T y'2acg +2c~' h S 15
Cl Ct B

2 4

Po= 2 (Cg +2ct )TmkB 2 2 4
(4. 4)

The procedure developed in the Secs. II and GI
has to be modified accordingly for the case of the
electromagnetic boundary-value problem [Eqs.
(1.4)-(1.6)]. In a cavity with a gener'al cylindrical
shape, E- and H type (TM and -TE ) modes can be
studied separately. The peculiar boundary condi-
tion (1.6) leads to the following structure of the
spectra. For the E-type resonances, the eigen-
values are

k =k„+(mm/L) (5. 1)

where k„~ belongs to the two-dimensional Dirichlet
problem, but where yn=O is not forbidden as it
was in the case of the three-dimensional Dirichlet
problem (see 2. 4). For this reason we obtain

N~= (L/„) f dk N&&((k& k2)&&&)~-'N«

describing the total phonon-radiation flux yer unit
contact area. f denotes the Riemann g function
with f (3)= 1.202. . . . For a constantan film of
thickness L = 2 V/S with c, = 2.46 km/sec and c, as
given above, we obtain P=PO [1+122/T (K) L(A)].
Hence, for L= 500 A and T = 10 K the correction is
2. 44%%uo. The correction is approximately propor-
tional to c, because c, » c, and therefore is much
smaller for "softer" materials like lead.

The author is well aware of the fact that the
boundary conditions considered above are unreal-
istic, as yhonons can be reflected both specularly
and diffusely at the contact area and furthermore,
can be refracted or undergo a conversion of polar-
ization. Such effects can reduce or enhance the
surface corrections described above, in particular,
because the two thin-film faces are under differ-
ent physical conditions.

V. ELECTROMAGNETK WAVES IN FINITE CAVITIES

+—[8L(Cg+ Cg) —y]k+ —', (Cg + Cp), (5. 3)

with $, =2o. and S, =yL. The remainder is the same
as the one found for the scalar problems in Sec.
III. The analogous, though more complicated, con-
siderations for the H-type resonances yield

N„= (L/v) f dke [N„"((k —k' )e'~ ) —1]

——[N„"(k) —1]

= Ng —Ng —m Lk+ p,II -1 1 (5.4)

+—[6L(C, +C~ —1)—y]k —-', (C, +C2)+ —,
' .
(5. 6)

Vile observe that the surface terms are identical
with those derived previously using a different
technique. ' In particular, the surface terms in
Eqs. (5. 3) and (5. 6) cancel if the total mode num-
ber N=N~+N~ is calculated. Thus we gave a fur-
ther, simple proof for the well-known vanishing
of the surface term N&.

" '3 The total mode num-
ber reads

N= N, +[v 'I.(2C, +.2C —I)-(4v) y]k+-,' (5. 7)

and comprehends the new result that the corner-
and edge-curvature contributions + —,'(C, +C2) of
Eqs. (5. 3) and (5.6) cancel as well. Hence tke
constant teem N3=2 does not dePend on the shape
of tke cavity. The vanishing of the surface and

the corner terms is peculiar to the electromag-
netic problem and does not occur in the scalar
case studied in Sec. III. The term —m 'Lk in Eq.
(5. 7) is a further peculiarity of the electromagnetic
problem and is due to the cancellation of certain
modes with zero amplitude. The term involving C,
accounts for the curvature of the smooth pieces of
the surface parallel to z and agrees with the linear
term derived by Halian and Bloch" for cavities with
a smooth boundary.

The only surviving shape-dependent correction

because
k'„= k„',+ (mv//L)', (5. 5)

where m =0 is allowed, but where k2 „=0 leads to
zero-amplitude fields and has to be eliminated,
giving rise to the term —p Lk. The term —,

' re-
sults from the discussion of the point k = (0, 0, 0) in-
volved in the terms in different ways. As a con-
sequence we find

Vk
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is

N, = v '(2C, L+2C,L ——,'y- I.)k, (5.8)

'" = 2. 822+ 0. 0094 —
ikgT V (kq T

(v'/6)~(k, r)' k, r

where op denotes the Stefan-Boltzmann constant
and c denotes the velocity of light. The length A

is given by

with C, and C2 given above [Egs. (2.9) and (2. 10)].
The first three terms account for curved surfaces
and edges. We observe that the contributions per
unit length of a —,'m edge parallel to z and of a —,'z
edge orthogonal to z are equal, but have opposite
sign, i.e. , + k/8v. Therefore a general conjecture
concerning the contribution of arbitrary edges is
not possible here. Let us consider a few special
cavity geometries in order to compare (5.7) with
known computer results for finite k. For the
parallelepiped, we obtain

N No ——(A,——+A2+A~) (k/2v)+~+6(k ") (5.9)

in agreement with Ref. 8. The result for the
cA"cular cylinder with radius 9 is

N No= —-(~+L+wR) (k/2v)+ —,'+ 8((Ink) ) (5. 10)

and is compatible with the (l. 4+ 0. 2)L found by
computation. For sectoral cavities with sectoral
angle 4, length I., and radius 8 the second-order
correction reads

N, = -(Z(1+-,'C)+L[-.'+i-(4/v - v/O)]] (k/2v) .
(5. 11)

This is compatible with the computer results ob-
tained for 4 =m, —,'m, and —,'m, within the accuracy
achieved by the computer program. We mention
that the term (5. 11) becomes positive for extreme-
ly small sectoral angles 4 only, i.e. , for

C & (-,'v) (S+2a/L)-' .
The mode density D=dN/dk as obtained from (5.7)
leads to shape and size correction of Planck's
radiation formula. The accordingly refined Wien
and Stefan-Boltzmann radiation formulas read as
follows:

cube-shaped cavity with edge length A, we find h,
= SA, and our formula (5. 14) is consistent with the
result derived by Case and Chiu" for this special
case.

The difference between the F.- and H-type mode
numbers [Eqs. (5. S) and (5. 6)] reveals an anisot-
ropy of the radiation field and leads to corrections
of the temporal coherence function. ' The differ-
ence reads

N = N@ —NH = (8m) (Si —S„)k

+Lk/v+Cg+Ca —
2 . (5. 16)

For a cross section g with smooth convex
boundary eg showing p holes the constant term in
N~n'&„& reads +~(1-p). The according terms for
the three-dimensional cylinder with holes parallel
to the z direction r ead as

(1 -p)L k (1 -p)
NDN) —Np —Ng= +—k + ---

~2

(6.1)
for the sca,lar problems and

(i -P)L J. y&N- Np= -- ——
i k+-.'

3~ w 4~&
(6. 2)

for the electromagnetic problem, where y denotes
the length of the total boundary Bg of g. We notice
that the connectivity does not appear in the constant
term of (6. 2). It appears however, in the constant
term of the mode number difference

N —Nq = Lk/w++~(l -p) —
2 . (6.s)

For a circular cylinder with a concentric hole of
radius It, Egs. (6. 1) and (6. 2) become

We notice that the edge and curvature terms can-
cel in (5. 16) whereas the k~ and the constant terms
are shape dependent now. That is, N compre-
hends the volume as well as the edges and curva-
tures of the cavity, whereas N implies the surface
and the corners. In order to obtain the full infor-
mation it is therefore not sufficient to measure the
total spectral intensity, but the "polarization" is
compulsory as well. Thus we may say that it is
easier to "hear the shape of an organ pipe" than to
"see the shape of a blackbody. "

VI. MULTIPLY CONNECTED CROSS SECTIONS

A= ~y+ (2 —4Cg-4Cp)L . (5. 15)

We notice that the last term 2ks T in (5. 14) is in-
dependent from the shape of the cavity. For the

Apparently, the contribution of the surface curva-
ture vanishes.
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The linearized Vlasov equation for a hot inhomogeneous magnetoplasma is solved through the
particle-orbit theory using the techniques of Fourier transforms. An analytical integral ex-
pression in k space is obtained for the current density for waves propagating across the static
magnetic field. When inverse Fourier transformed, it gives rise to a differential expression
which is accurate up to order (r~/X), (Hl&L), and (r,/L)t. The integral equation is solved
numerically for the problems of Buchsbaum-Hasegawa resonances and the Bernstein modes

propagating in an inhomogeneous magnetoplasma.

I. INTRODUCTION

The literature on the kinetic theory of waves in
inhomogeneous plasmas is relatively scant in

comparison with the existing theories for homoge-
neous plasmas, and also in comparison with the
numerous experiments that have been carried out
on inhomogeneous plasmas. As naturallyoccurring
plasmas as well as laboratory plasmas are gen-
erally nonuniform, it is a natural curiosity and is
of fundamental importance to ask whether one can
develop a theory of inhomogeneous plasmas to fit
the experimental situations better than that by the

theory of homogeneous plasmas. Earlier, Buchs-
baum and Hasegawa ' derived an equation for the
radial electrostatic modes in the positive column
immersed in an axial static magnetic field to ac-
count for the observed absorption spectrum. A
similar study was followed by Pearson. Pearson
developed a set of differential equations for the
wave field correct up to the first order in r,/)t
and r,/L, where r, is the thermal-electron Lar-
mor radius, X is the effective wavelength, and I.
is the scale length of plasma inhomogeneity. More

recently, Azevedo and Vianna have used an expan-
sion procedure to obtain similar equations that
are valid up to the order of rs~/XL In a stud.y on

the interaction of quasilongitudinal and quasitrans-
verse waves in an inhomogeneous Vlasov plasma,
Hedrick' has also derived wave equations for the
case of perpendicular wave propagation when the
wave vector k lies parallel to the direction of in-
homogeneity. But, as with Azevedo and Vianna's
equations, his are also valid only to order rs/X7, .

We have systematically developed an integral
equation for the wave fields in an unbounded in-
homogeneous magnetoactive plasma. Our ap-
proach, similar to that of Pear son, is through the
particle-orbit theory. However, unlike Pearson,
who used a power-series expansion in spatial co-
ordinates before the velocity integrations were
carried out, we first make a direct Fourier trans-
form and later expand the result into a power ser-
ies in wave number k. Such expansion enables us
to identify the order of magnitude of each term
easily when the equation is inverse Fourier trans-
formed to the coordinate space. A similar ap-
proach has been used to study electrostatic modes


