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When discussing matter on an atomic level it is often useful to employ the notion of a three-
dimensional lattice even if the x-ray diffraction pattern is diffuse and, hence, the long-range
order characteristic of a crystalline lattice is absent. Phases in which this notion is par-
ticularly helpful are called paracrystalline phases. The theory of paracrystals has been ap-
plied to various solids and has recently been employed for analyzing the diffraction pattern
from liquid metals. In this paper the theory is used for analyzing the diffraction pattern
from liquid Cu at 1100'C, as measured by Ruppersberg. The radial density function out to
distances of 25 K is synthesized extremely well by means of the paracrystalline convolution
polynomial made up only of first-neighbor or "coordination" statistics. These statistics are
inhomogeneous in the sense that two different first-neighbor distances are employed. Forty
percent of the first-neighbor distances are 10% larger than the others and arise from inter-
crystalline distances measured across the paracrystalline grain boundaries. Since, it is
well known from inelastic neutron scattering that the lifetime of the paracrystalline domains
is about 10 sec, the intercrystalline distances include diffusive motion. The melt is de-
scribed in terms of a fcc lattice and consists of microparacrystallites with a mean diameter
(for copper of about 51 and for alkaline metals up to 100 A) of about 5 A. The results of
the paracrystalline theory are compared with the model of Kaplow and Averbach which is
based on the known structure of the solid. The two approaches agree in the assignment of
the same lattice type above and below the melting point.

I. INTRODUCTION

The concept of a three-dimensional lattice is
not employed in the common theories ' of liquids
and of amorphous materials since reflections of
crystalline character are not observed in their
x-ray diffraction patterns. In the theory of para-
crystals, on the other hand, well-defined three-
dimensional lattices exist which give several dif-
ferent types of pattern varying from quasicrystal-
line to a more diffuse type with partially crystal-
line features and, f inally, to totally diffuse
amorphouslike scattering. In the paracrystalline
theory the lattice planes are statistically bent and
displaced so that there is no long-range order. '
If one specifies the atomic arrangement by giving
the pair probability function z(x), i. e. , the prob-
ability of finding a structural unit at a given dis-
tance from any other, it has been found that this
pair probability function is well defined in terms
of first-neighbor or "coordination" statistics,
H, (x).s'9 That is, if one knows the pair probability
function only out to a distance corresponding ap-
proximately to the first-nearest-neighbor distance
(the coordination statistics), the entire pair prob-
ability for distances greater than this are then well
described in terms of the coordination statistics.
Moreover, this description yields an x-ray scat-
tering pattern that agrees with that observed ex-

perimentally.
The theory of paracrystals has been applied to

inorganic "crystals" such as manganese-rich fer-
rites and promoted ammonia crystals, to poly-
ethylene single crystals, ' and to other synthetic
and biological polymers. ' In all these cases
the paracrystalline description in terms of a three-
dimensi. onal lattice having no long-range order
was found to be appropriate. The distortions in the
paracrystalline structure are produced when the
structural units —"bricks" or "motifs" —having dif-
ferent volumes or irregular shapes are distributed
randomly on the lattice points.

The theory has also been used to calculate the
radial density function (RDF) for monatomic liquids
out to distances of 10 A. The calculations have
recently been extended out to distances of 25 A,
and it has been shown that additional new informa-
tion is accessible by this approach. In this
paper a brief account of these results is given.

II. CONVOLUTION POLYNOMIAL

In Refs. 1-6 it was proven that three-coordina-
tion or first-neighbor statistics Ht(x), Hs(x), and
Hs(x) can be determined by line profile analysis
of the x-ray diffraction pattern. These functions
give the probability of finding the center of a struc-
tural unit or brick as a first neighbor at the point
x along a direction a» a» or a, , where a» a»
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and a3 define the edges of the mean paracrystalline
lattice cell. The pair distribution is defined by
the convolution polynomial ' z(x) as

z(x) =Z H~, „(x) (I)
Pqr

where H~, „(x) gives the a priori distance statis-
tics between the centers of gravity of.the struc-
tural units or bricks at the lattice point (k, I, m)
and at the lattice point (k+P, I+q, m+r) .Now,
it is an essential feature of the theory that

H~,„(x)= (P(x)*H~*H~* ~ ~ ~ ) (*Hz*H2+ ~ ~ ~ ) (*H~* H~ ~ . ) . (2)

convolution p times q times z times

The symbol * stands for the convolution product

&*/ = f a(y)~(x-y) dy

and P(x) is a Dirac 6 function. In Eg. (2) thermal
vibrations are not yet included. Contrary to con-
ventional crystallography the lattice cell is un-
ambiguously defined by the directions whose dis-
tance statistics are the sharpest, that is, have the
smallest statistical fluctuation. "

For example, in the spinel Fe, „Mn„04 with x
= 1.88 the conventional lattice cell is fcc and con-
tains 32 O ions. In the theory of paracrystals the
structure is described in terms of the eight edge
vectors with components (+ —,', a-,', + —,') along the
four-body diagonals of the conventional lattice
cell. A bcc lattice is thus built up of alternating
bricks of Me' O4 tetrahedra and Me4' O4

cubes, connected along the body diagonal. This
arrangement shows that the structure consists of
chains of these structural bricks which corre-
spond directly to the "periodic bond chains" (PBC)
of the PBC theory of Hartmann.

III. SIMPLIFIED THEORY FOR LIQUIDS

=0 to the nth shell. K„, r„, and f(n) are unam-
biguously defined by the lattice type and the shape
of the normalized coordination statistics H&. B,
is the vibrational statistic'"'~ and k is an index
that enumerates the maxima of the RDF. Ilj and B,
must be varied until the best fit with the experi-
mentally observed RDF is found. In Fig. 1 the
RDF of molten Cu at 1100 C, as measured by Rup-
persberg, is shown together with a synthesis ac-
cording to Eq. (4). For H~ a five-parameter
Gaussian function was used:

(~-~, '
Hg(r) =

(2 p/, exp —
~ ~2

I-f ~ —r, '
+

(2 )1/2 P

Taking f=0. 6, x~=2. 5 A, ran= 2. 8 A, a&=0. I A,
and a&= 0. 2 A and employing a fcc lattice containing
20% stacking faults, one obtains an excellent fit
to the experimental data. ' The standard deviation
fromthe Debye function B„was taken as 0. 3 A for
all B, with 0 & 3. Cooperative oscillations were
taken into account by setting Bq= 0. 15 A and B,

The x-ray diffraction pattern from a liquid usu-
ally consists of only one relatively sharp peak
which is fairly well separated from the other, more
diffusely distributed intensity. The RDF is ob-
tained from this pattern by a one-dimensional
Fourier transform. The RDF is connected with

Eq. (I) by'

41rr p(r)= f z(x) df„.
x= I r I

The integration is carried out over the surface of
a sphere with radius r and center at x=0; df„ is a
surface element.

For simplicity we interchange the order of the
two integrations and build up a one-dimensional
convolution polynomial of the RDF'4:

4mr p(r)-p,
10.

Cu 1100 C

4 1 18 rA

47/r p(y) =Z„K„B„wH/(„)(x& r„) &
(4)

where K„ is the number of atoms in a shell at the
mean distance x„, H/&„& is the I f(n) —I]-fold con-
volution product of H~, and f (n) is the number of
direct steps in the paracrystalline lattice from r

FIG. 1. Radial density difference function (BDDF) of
molten Cu at 1100'C as measured by Huppersberg (Hef.
21) (dashed line) and the synthesized function (solid
line) calculated from. Eq. (4). po is the mean density.
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FIG. 2. Mean-square
atomic displacements
02& of the shells A of Cu.
Dashed line, Averbach's
approach; open circles,
pure paracrystalline dis-
tortions; closed circles,
thermal vibrations with-
out {and crosses with)
coupling effects. (The
latter values have been
used in the synthesized
function shown in Fig. &.
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=0. 25 A. As indicated in Eq. (5), H~ consists of
two kinds of distances, intraparticular with aver-
age value y, and interparticular with average value

Thus 40% of the distances are interparticular
arising from first-neighbor atoms of adjacent para-
crystallites. The mean number of atoms in one
direction within a domain is given by I/(I -f) and
hence, the mean diameter of the paracrystallites
is very small and of the order of 5 A. 3

For other molten metals much larger paracrys-
tallites, up to mean diameters of 200 A and more'
were found. It is also of interest that for all
liquids investigated so far the lattice type does not
change at the melting point. In particular, Li,
Na, K, Rb, and Cs remain bcc and Cu, Ag, Fe,
Co, Ni, Pb, Ne, Ar, and Xe remain fcc usually
with 20% stacking faults or more. Mg remains
hexagonal close packed and also contains stacking
faults.

IV. COMPARISON WITH THE MODEL OF
KAPLOW-A VERBACH

Kaplow et al. also studied the RDF out to large
distances and found that the liquid pattern was
strikingly similar to that of the lattice below the
melting point. In addition they found a significant
increase in the broadening of the functions used to
describe the shells of the RDF. They attributed this to
a diffusive motion superimposed upon the vibration-
al motion owing to thermal oscillations in a "quasi-
crystalline" lattice. If we let a& be the broadening
owing to diffusive and oz that owing to thermal os-
cillations, then the statistical fluctuation of the
shell k for Gaussian distribution functions is given

0~ = Oia+ O'a~ ~ (5)

The o~ values of Kaplow et al. used for Pb are
adapted to the Cu diagram of Fig. 1 and are shown

by the dashed line in Fig. 2. This adaption can
easily be performed, since Pb and Cu have identi-
cal RDF's in reduced coordinates. ' As a conse-
quence of introducing coupling factors into their
model, 0~ increases with increasing 0 and is as-
signed a constant value a„ for distances larger
than their "correlation length" d. At these larger
distances, they argue, a coupling of the motions
by means of elastic waves no longer exists in the
time-averaged distance statistics.

Kaplow et al. found, that the RDF calculated in
this way fits very well at smaller distances but is
not sufficiently damped at larger distances. Con-
sequently they introduced a so-called "damping
factor" into the radial density difference function
(RDDF), p -p, which has the value of 1 for r small-
er than d, and decreases for larger values of y

to 0. The correlation length d is a distance of the
order of 20 A and is a measure of the loss of cor-
relation with increasing y and thus corresponds
to the diameter of quasicrystalline domains. This
result is quite similar to the results of our analy-
sis. Our interpretation, based upon the theory of
paracrystals, however, is somewhat different. In
contrast tothe interpretation of Kaplow et al. , in
the paracrystalline theory the o~ values do not be-
come constant at these larger distances, but in-
crease monotonically. The par acrystalline theory
when applied to lattices with no long-range order
gives an excellent fit to the experimental measure-
ments and, hence, automatically provides the re-
quired damping of the BDDF. In Fig. 2 the &2»

values for Cu, calculated from Eqs. (1) and (5),
are plotted together with the g» values from the
Debye function after introducing the coupling ef-
fects for 8, and 82 [Eg. (4)j. It is these param-
eters which have been used in synthesizing the
curve shown in Fig. 1. If, on the other hand the
paracrystalline g2 values are made constant for
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FIG. 8. BDDF of Cu at 1100'C based on the theory
of paracrystals, using a convolution polynomial, Eq.
{4), where f(n) has been set equal to 4 for all values of
n for which t'(g) is larger than 4 {solid line), compared
again with Huppersberg's results {dashed line).

n & 14, which means that f(n) has the constant val-
ue 4, the HDDF is no longer damped enough for
r& 10 A (Fig. 3).

The analysis of Kaplow et al. and the approach
of the paracrystalline theory are both capable of
reproducing the experimental results. The param-
eters employed in the paracrystalline theory, how-
ever, lead to a substantially different physical in-
terpretation. In particular, the coordination sta-
tistics H& always con.ain two different kinds of dis-
tances [see Eq. (5)]. The one with average dis-
tance r& arises from the intrapartieular distances
within the paracrystalline domains, the other, with
the longer mean distance r2, arises from interpar-
ticular distances and, hence, includes what Kap-
low et al. have called diffusive motion. The size
of paracrystalline domains can be calculated direct-
ly from these "inhomogeneous" coordination sta-
tistics H, and gives, for copper, much smaller
values than the correlation lengths d introduced by
Kaplow et aE; In addition, the paracrystalline
theory shows that a statistical description of the
first-nearest-neighbor distances based upon an
approyriate lattice suffices to determine the BDF.

V. DISCUSSION

Bernal ' 6 has proposed that the atoms in a
simple liquid are arranged as randomly as possi-
ble. Unfortunately the differences between the ex-
perimental and randomly packed structures were
deemphasized by plotting the BDF instead of RDDF,
where the deviations of Bernal's theory are very
large (cf. Fig. 10 of Fessler et al. 27). Itisalsoin-
t~ "esting to note that Bernal always found 1.ow pack-
ing densities for irregular arrangements and that
there is an absolute impossibility of forming a

homogeneous assembly of points of volume inter-
mediate between those of long-range order and
close packed disorder. ~s

In the theory of paracrystals one has a homoge-
neous assembly with some well-defined a priori
distance statistics by which the long-range order is
partially destroyed and partially still exists. This
very general theory, well established for yoly-
mers and some other low molecular systems, can
be applied to simple liquids too and yields quite
easily the correct observed density and the ex-
perimentally obtained RDDF with high accuracy
by means of a convolution polynomial.

An essential idea in the theory of paracrystals
is that the bricks, or units from which the struc-
ture is built uy, have different sizes or shapes.
These units are then distributed randomly on the
lattice points. Accordingly, one must understand
how, in a monatomic liquid such variations in
size or shape occur. In the paracrystalline de-
scription of such a monatomic liquid, each brick
consists of the atom itself plus the additional vol-
ume required by the thermal oscillations that the
atom experiences. Based on the results of inelas-
tic neutron scattering, Rahman points out that
the lifetime of a given yhonon in the liquid is ex-
tremely short; that is, each elastic wave is so
strongly damped that the wave essentially con-
sists of only one peak. 3 In the solid the elastic
waves propagate coherently through the entire crys-
talline domain and the amplitudes of the oscilla-
tions in the $ average are the same, v whereas above
the melting point practically no correlation exists
between the amplitudes of the atomic oscillations.

Since the volume occupied by a brick increases
with increasing amplitude of the phonon wave, the
volume of the different paracrystalline lattice
cells or bricks varies statistically. Thus the
bricks do, indeed, have different sizes. Since
the theory of paracrystals accounts for the experi-
mental intensity of monatomic liquids in a very
satisfactory way, and since the question of the
source of yaracrystalline distortions has been
adequately explained, it is of interest to demon-
strate the validity for liquids of the relation~~

obeyed by all paracrystalline solids, where N
is the maximum possible number of net planes in
a paracrystalline domain with the relative para-
erystalline distance Quctuations g. The dimen-
sionless quantity z is of the order of 0. 1 to 0. 25
depending on the nature of the chemical forces be-
tween the bricks. In the solid structures men-
tioned in Secs. I and II one finds g values of the
order of 0. 5 to 3% and paracrystalline domains
of the order of 1000 down to 50 A. For molten
Cu the g value, a,ccording to Eg. (5), is, of the
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order of 10%%uo and, hence, the diameter only a few
A. Moreover, it can be shown from inelastic neu-
tron scattering, that the paracrystalline domains
have a lifetime of the order of 10 "sec.3 This
implies that distances z&, which are momentarily
regarded as interparticular, must, in a very

short time, be regarded as intrayarticular rq (that
is, after the domain boundary has moved). The
x-rays, which do not differentiate between elastic
and inelastic scattering, only yield the informa-
tion that at any moment the liquid structure con-
sists of paracrystalline clusters.
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The problem of the time evolution of a closed system, consisting of a two-level atom and

its field in a cavity, is investigated by a quantum formalism in which the field is assumed to
be a part of the atomic source and is expressible directly in terms of source variables. The
source and its field form an irreducible quantum system, that is completely representable
within the two-dimensional Hilbert space of the atom. The behavior of the system has features
that are similar to those predicted by conventional quantum electrodynamics.

I. INTRODUCTION

In recerit years there has been renewed interest
in the subject of the interaction of electromagnetic

radiation with atoms and electrons. The question
has been raised whether quantum electrodynamics
is necessary in order to account for the observed
effects, ' or whether the effects are adequately


