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We utilize the analytic atomic independent-particle model (IPM) of Green, Sellin, and

Zachor to calculate generalized oscillator strengths (GOS) and total cross sections for exci-
tation and ionization of atomic oxygen. First we average over the experimental energy levels
within a multiplet to arrive at single-particle levels. Then we adjust the two parameters of
the IPM potential so that it accurately characterizes the ground state and 15 lowest excited
states. Using the wave functions so obtained, and assuming the Born approximation and the

I S-coupling scheme, we calculate absolute GOS and cross sections for excitation to these
levels, and for ionization with incident energies up to 1000 eV and secondary electron energy

up to 200 eV. We obtain an analytic representation of the excitation GOS as a function of the

momentum transfer. We also obtain an analytic representation of the energy differential
cross section for ionization as a function of the energies of the incident and secondary elec-
trons. Comparison is made with available experimental data and other calculations.

I. INTRODUCTION

Because of the importance of atomic oxygen in
the upper atmosphere (it is the predominant species
above 150 km), it is essential for an understanding
of aeronomical phenomena to have a reliable char-
acterization of its properties. Of particular inter-
est to the understanding of auroral, dayglow, and
ionospheric phenomena are electron-impact cross
sections. Unfortunately, because of difficulties in
working with atomic oxygen, there is little experi-
mental information available on important cross
sections.

From a theoretical point of view, atomic oxygen
plus the electron constitutes a nine-electron sys-
tem. Techniques for treating such systems rigor-
ously have not yet been reduced to practice. For
this reason, the present theoretical calculation
exploits a realistic independent-particle-model

(IpM) description for arriving at approximate elec-
tron-impact cross sections in the Born- Bethe
approximation.

In comparison to Hartree-Pock-Slater calcula-
tions and to experiment, a simple two-parameter
IPM potential has been found to provide a good
representation of atoms and electron-atom inter-
actions. ' We apply the IPM to the excitation and

ionization of oxygen.

II. EXPERIMENTAL LEVELS AND IPM POTENTIAL

The ground state of oxygen has the configuration

ls'2s'2P'('&2) .

From the tables of Moore, e it can be seen that of
the 44 excited states below the ionization limit
which are listed, 40 of them are in the configuration
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where E„, is the single-particle energy.

gI. FORMULAS FOR EXCITATION GENERALIZED
OSCILLATOR STRENGTHS
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FIG. 1. Excited-state energies of oxygen. The lines
denote average of experimental levels. The symbol H

denotes theoretical IPM energy levels based upon param-
eters d =0.8164 and H=2. 224.

1s'2s'2p'('S, q, ) nf . (2)

In other words, the active electron is coupled
to a 8 core. We will only consider such states,
where the core is in a '8 state. A given configura-
tion gives rise to a triplet and quintet state very
close to each other. Since the ground state is a
triplet, we can only reach with direct interaction
excited states that are triplets. We will only con-
sider the 15 lowest excited states since the five
highest ones are very close to ea,ch other just be-
low the ionization limit. These 15 states have con-
figurations 2p ( S) 3s-8s, 2p (4S)3p-6p, and 2p3(~S)
3d- M.

Since the IPM cannot distinguish between differ-
ent states lying within a given multiplet, we re-
place each multiplet by an average value, as dis-
cussed in Sec. II of Ref. 3. The averages so ob-
tained serve as the experimental single-particle
levels. The parameters d and H for f,-he IPM po-
tential were determined by searching on the 15 ex-
perimental energies and the ground-state ioniza-
tion energy. In Fig. 1 we present the experimental
levels and the calculated levels corresponding to
d=0. 8164 and H=2. 224. We see that the experi-
mental levels are fitted quite well by our model.
It might be added that the quintet st, ~,tes would fall
on top of the triplet states to within plotting accu-
racy in Fig. 1, except for the 3P state. In Table I,
we present the quantum defects for oxygen based
on the averages of the experimental levels. The
quantum defect 5, is defined by

Following the formulation and notation of Ganas
and Green, e we consider the transition of an atom
from its ground state to an excited state with mo-
mentum transfer K. We define x =K a~, where ap
is the Bohr radius and x, =W/R, where Wis the

energy loss and R is the Rydberg energy. We
shall also make considerable use of the reduced
or scaled quantity

g =x/x, = (Z'/W) a,'R .

We suppose thai the atom is initially in a state
specified by the quantum numbers L&, S&, J&, M&.
After the active electron has been promoted from
a splp orbital to a nl orbital, the atom is in a final
state specified by the quantum numbers Lf Sf,
Jf, Mf . We note that the possible values of Lf
are determined by the coupling Lf = L,+1, where

L, designates the core. The possible values of Jf
are determined by the coupling J& =L&+ 5&. We
consider only transitions with Sf S) .

Using the Born approximation and the Russell-
Saunders LS-coupling scheme, ' it can be shown

that (see Appendix A) the generalized oscillator
strength (GOS) is given by

f(x) =Q Ci, (2fo+1) (2l+1) (2L+1)(
~

Si,

where

S, =~-'~' J R„,, (r)q, (Z~)R„,(r)~'d~ (6)

Cl =NCpp (2L)+ l)(2Lf+ 1)(2tT~+ 1)

Lf L Lg Jg L Jf (7)

TABLE I. Quantum defects for oxygen.

1.174 0.797 0.020

The array in the large parentheses in Eq. (6) is a
3j symbol, while the arrays in curly brackets in

Eq. (7) are 6j symbols. The functions R„~ (x)
and R„,(v) are the bound-state radial wave functions
for the single-particle excitations, and ji(Kx) is
a spherical Bessel function. The quantity N in Eq.
(7) is the total number of electrons in the active
subshell, and the quantity C» is the "coefficient
of fractional parentage. "' The summation index
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L in Eq. (5) is required to satisfy the following
three conditions:
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FIG. 2. Curves indicating oscillator amplitude gf v.s
reduced square of momentum transfer $ =x/x&, for 2p

ns transitions in oxygen. The circles represent an
analytic fit using Eq. {13).

Equation (12) is an expression for the GOS (summed
over Jz) for excitations from the 2p subshell in
oxygen, assuming a S core.

IV. RESULTS FOR EXCITATION

We have calculated the GOS from Eq. (12) for
the allowed transitions 2p- 3s-8s and 2p- 3d'-'1d,
and the forbidden transitions 2p- 3p-6p, for the
range 0.01 & $ & 900. Some representative curves
are shown in Figs. 2-4. The curves have a nodal
structure similar to that obtained in calculations
with the rare gases. ' The excitation GOS calcu-
lated by McGuire" using approximate Hartree-
Fock-Slater wave functions is close to our re-
sults.

To expedite use in applications, we have param-
etrized all our GOS results with simple analytic
forms. For transitions to s and d states, the
following analytic expression gives good fits to the
GOS:

lo+ l+ L is even. ,(10), e(h) = (f(g))'-" = y, (e-"+Pie "') . (13)

It is interesting to note that Eq. (5) is very simi-
lar to Eq. (18) of Ref. 3. The main difference is
the fact that the coefficient CI. was treated as an
adjustable parameter in Ref. 3, while in the pres-
ent work it is given by an explicit formula, Eq.
(7), based on LS coupling.

Equations (5)-(7) are general formulas within
the framework of the Born approximation and the
LS-coupling scheme. If we consider excitations
from the 2p subshell in oxygen, we have, for a 'S
core,

c„=[P'('a)
~

P'('s) j = —I/W3 .

In addi. tion, %CFOG = 3, lo —-1, I.~=O, L =1, S) —-1,
J& =2, L&—- l. Substituting these values into Eqs.
(5) and (7) and summing over J&, we obtain

For transitions to P states we use

y(5) =- (f(5))'"= &09/[(I+ o. $)(I+4+ rh')]P" .
(14)

We have not attempted to fit the GOS over the
whole range of g; values of g beyond which the GOS
has fallen to at least 10 4 of its largest value were
not considered. In considering transitions to s
and d states, we did not vary the parameter iPO;
rather, iPO was determined by extrapolating to $ = 0,
and was then left fixed. We identify iPo~as the op-
tical oscillator strength. The parameter iPO was
allowed to vary in the case of transitions to p
states. Thus, we obtain three-parameter fits to
the GOS for transitions to s and d states and
four-parameter fits for transitions to P states.
The best fits are indicated by small circles in

10'- 10'
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FIG. 3. Curves for 2p-nd transitions in oxygen. {See
caption to Fig. 2. )

Flo. 4. Curves for 2p np transitions in oxygen. The
analytic fits are based on Eq. {14).
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TABLE II. Parameters for analytic amplitudes, Eqs. (13)
and (14).

2p-nl

2p to

3s

5s
6s
7s
8s
3d
4d
5d
6d
7d
3p
4p
5p

0.2363
0.0945
0.0559
0.0384
0.0285
0.0223
0.1768
0.1270
0.0937
0.0723
0.0577
0.3845
0.1938
0.1241
0.0885

1.129
0.989
0.940
0.920
0. 905
0.893
1.648
l.598
l.552
1.538
1.530
4. 51
4.17
3.89
3.69

-0.056
-0.122
-0, 150
-0.164
-0.174
-0.183

0.124
0.124
0.115
0.113
0.114

—0. 507
—0.733
-0.758
-0.753

0.182
0.250
0.271
0.281
0.288
0.294
0.507
0.505
0.486
0.483
0.485
0.891
0.943
0.958
0.967

100X2

1.0
1.4
1.3
1.1
1.0
0.9
1.1
0.9
0.8
0.7
0.6
1.2
1.2
0.9
0.7

AJ

E

b

IO

3p

TABLE III. Values of parameters g and P* in Zq. (15)
for the three transition series in oxygen.

Transitions

2p ns
2p nd
2P np

l.74
—0.66

1.22

0.33
l.25
0.91

Figs. 2-4. In Table II we list the values of the
parameters obtained in fitting all the GOS. Also
given are 100'~ obtained when the weight 1/P is
used for each point. Using Table II and Eqs. (13)
and (14), we can accurately generate GOS for the
range of $ in which the GOS is significant.

The practical aspects of our study of GOS arise
from its usefulness in providing cross sections.
The cross sections and the GOS are related by
standard formulas. '" The parametric forms (13)
and (14) lead to a total cross section in closed
form. In Fig. 5 we present some representative
cross sections. The experimental data on excitation
cross sections for atomic oxygen are rather sparse.
We have found only one measurement of an excita-
tion cross section for atomic oxygen in the litera-
ture. ' This experiment on the excitation of the
3~(~S) resonance state is carried out up to 150-eV
incident electron energy. An extremely sharp peak
near 20 eV is observed and is attributed to cas-
cade processes. The values of the 2P-Ss cross
section given in Fig. 5 in the range 50-150 eV are
all about one-half of the experimental result. This
difference may be due to the contribution of a
variety of cascade processes to the experimental
result.

We have examined the rule for optical oscillator
strengths in Rydberg series,

Io-
IQ IOO

F (ev)
PIG. 5. Representative excitation cross sections for

oxygen. The curves are based upon our analytic repre-
sentation of the Born GOS.

TABLE IV. Optical oscillator strengths for transitions
in oxygen.

3s
4s
5s
6s
7s
8s
3d
4d
5d
6d
7d

This work

0.056
0.008
0.003
0.0015
0.0008
0.0005
0.0313
0.0161
0.0088
0.0052
0.0033

Kelly
(Ref. 15)

0.059
0.008
0.002
0.0008
0.0004
0.0002
0.027
0.019
0.013
0.0079
0.0051

McGuire
Q,ef. 11)

0.106
0.019
0.007

0.044
0.022

y, = y*/(n - 5)'", (15)
which has been suggested in previous studies. 3' '"
We find that Eq. (15) gives a good fit to the values
of Po given in Table H. The best values of P* and
D are given in Table III.

Finally, we discuss the optical oscillator strength
which, of course, is the GOS in the. limit of zero
momentum transfer. In Table IV we present our
calculated values based on our IPM wave functions.
Also included for comparison in Table IV are the
results of Kelly" using Hartree-Fock-Slater wave
functions, and McGuire~' using approximations to
Hartree- Fock-Slater wave functions. Our results
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TABLE V. Experimental oscillator strengths for the
2P-3s resonance transition in oxygen.

Reference

16
17
18
19
20
21
22
23

This work

Oscillator strength

0.033
0.033
0.023
0.18
0.044
0.035
0.050
0.046
0.056

V. FORMULAS FOR IONIZATION GOS

In considering collisions in which the incident
electron ionizes the target atom, we use the same
prescription to describe this process as in the
case of discrete excitations. Specifically, we
assume that the incident electron interacts with

generally lie close to Kelly's. The differences
between the results of the various calculations may
reflect the sensitivity of optical oscillator results
to fine details of the radial wave functions. There
appears to be an abundance of experimental' data
on the Ss('S) resonance state. In Table V we give
a list of experimental determinations of the 2p-3s
oscillator strength. It is clear from Table V that
the experimental values vary appreciably. Our
calculated value is centrally located with respect
to these determinations.

the atom according to the Born approximation. One
2P electron is ejected into the continuum. The
final-state wave function of the ejected electron is
now a continuum wave function in our analytical
potential. As such, it has an infinite number of
orbital angular momentum components rather than
one specific one as in the case of discrete excita-
tions. Herein lies one major difference and com-
plication of the ionization problem. Another dif-
ference from the discrete case is that the ejected
electron can have a continuum of energies rather
than one specific one. After integrating over the
angles of the ejected electron, we arrive at a dif-
ferential cross section which is now a double dif-
ferential cross section. It is differential in the
final angles of the incident electron and in the energy
loss, i.e. , d~v/dQdW. We note that W=T+I,
where T is the energy of the ejected electron and
I is the binding energy of the ground state.

We consider an ionization process in which an
electron in the nplp subshell is ejected into the
continuum with a momentum k'. Let the initial and
final momenta of the projectile electron be ko and

k, respectively, and let K = ko- k be the momentum
transfer. We suppose that the target atom is ini-
tially in a state specified by the quantum numbers
Lp Sp Jp Mp Afte r ionization, the residual
atom, or "core, " is in a state specified by the
quantum numbers L„S„J„M,. By using the
Born approximation and the Russell-Saunders
LS-coupling scheme, ' it can be shown that (see
Appendix B) in atomic units

, NC v p (2SO+ 1) (2LO+ 1)(2j,+ 1)
do 4 k 1

p 7T

xQ (2j+1)

2

Lp Jp (I' l Io')
(2l'+ I)Z (2l+ I) i ig,

'
&,i, (16)

l

lp j

where

a i, =f, Ri (k'~)jiÃ~)R. ,i,(~)~'d~. (17)

In Eg. (17), R,.(k'x) is the radial component of the
l'th partial wave of the continuum wave function,
and is obtained by solving the radial Schrodinger
equation with the same analytic IPM potential as
the initial state. In E(I. (16), the array in the large
parentheses is a 3j symbol, while the array in the
large curly brackets is a 9j symbol. ' In Eqs. (16)
and (17), the (Iuantities N, C» and the functions

j,(Kx), R„(, (x) have the same interpretations as innplp
1Sec. III. In E(I. (16), j takes the values l, + —, and

lp —2, while /' runs from 0 to and 1 runs from

l

I&'-Ep~ to ~'+&p.
The continuum GOS is defined by

do
dndn k, K'=4 ——,(df/dW)/W . (16)

g (2l'+ I)
dW mk'&

xp(2(+(l( «0)' ~~r
~

(19)

where the coefficient 8 is given by the expression

From E(ls. (16) and (16) we obtain for the continu-

um GOS
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B=N C'„(as, + I)(aL, + I)(ZZ, +I)

xg(aj+ I)

So Lo ~o

S, L, J, . (20)

lo j

Q B=NCrp, (21)

which is consistent with the results of Table VI.
We conclude that the cores S, P (= P, &2+ Ps&2),
and D (= D3&2+ D, &2) give contributions to the
GQS and total cross section which are, respec-

Equation (19) is a general formula for the continu-
um GOS within the framework of th'e Born approxi-
mation and the L8-coupling scheme. It is similar
in form to Eq. (5) for the excitation GOS; the ma-
jor difference lies in the sum over the orbital an-
gular momenta of the ejected electron.

In discussing the excitation of atomic oxygen, we
assumed that the core remains in a 'S state. How-
ever, in the ionization process for oxygen, we will
take into account all the possible core states:
4 2 p 2
S3/3, P&&z, P3&~, D3&» and D, &3. The rela-

tive contributions to the GOS and total ionization
cross section from these cores are determined by
the coefficient B in Eq. (19). The values of B are
listed in Table VI. If we take Eq. (20) and perform
a sum over Z, by using the orthogonality property
of Qj symbols, - we arrive at the result

TABLE VI. Values of B, Eq. (20), for different core
states in the ionization of atomic oxygen from the 2p sub-
shell.

Core
483(2
2
Pi/2

P3I2
2 2Pi)2+ P3)2
2
D3(2

2
D5(2

2 2D3)2+ DS)2

4

f

tively, in the ratio 4: 3:5. This ratio is readily
obtained from the tables of coefficients of frac-
tional parentage given in Ref. 9. It follows that we
need only calculate the contribution from the S
core; then we multiply by a factor 3 to obtain the
total cross section. As noted in Sec. III, the
right-hand side of Eq. (21) is 4Sfor a 4S core.
Finally, we have an expression for the GQS for
ionization from the 2P subshell in oxygen, which is
analogous to Eq. (12) for the excitation GOS:

,~ Z (af '+ 1)df 4 W

dW 3 mk

I
IO

IO

O.OOI

I

10

-I
IO

IO

l6

IO

03

IO

IO4-

IO
I

IO
1

IO
I

IO
IO

IO

IO

IO

IO

IO-4

VI. RESULTS FOR IONIZATION

Using Eq. (22), and restricting the sum over I'
to the first 14 values, we have computed the GOS
for values of x in the range 0 & x & 77 and for values
of T in the range 0.001& T& 16 Ry. The latter
range corresponds to 1& W& 17 Ry. In Fig. 6 are
shown curves of df/dW for the two extreme values
of T and some representative values in between.
This figure then represents a series of cuts through
the Bethe surface. Similar curves have been ob-
tained in electron-impact ionization studies of the
rare gases using the present approach. '

The differential ionization cross section do/dW
can be obtained from Eq. (18) by integrating out
the angular dependence. If E is the incident elec-
tron energy, then

IO

10

I

IO IO

X

IO

IO

IO
where

dW R'E „, i dS'

w '~' w
x„,, =aE E (24)

FIG. 6. Ionization GOS for oxygen as a function of x
for fixed values of T. The numbers labeling the curves
are the values of T in Ry.

If we take the function S(E, W) and express W in
terms of T, we obtain a function of E and T which
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To facilitate the numerical integrationin Eq. (26),
we have parametrized the differential cross sec-
tion with the analytic form

e(1 —W/E) (1+PE'i /W)
E(1+yw+6W )

(2V)

IO
-)7

~& IO
-l8

E
CP

ILI

CO

x
fO

-19
)O

)
0-20

IO

I I I II
IOO

E (ev)

I I I I I I II
IOOO

where o., P, y, and 6 are adjustable parameters.
For values of E in the range 55&E&1000 eV
and values of W in the range 1 & W& 14 Ry [subject
to W& —',(E+I)], we have obtained 115 points to be
fitted with the form (2V}. The best fits are repre-
sented by circles in Fig. 8, and the corresponding
parameter values are n=O. VO, P=0. 25, y= —0. 5V,

and 5 = 0.42 if W, E are expressed in Ry and S is
expressed in cm /eV. This fit gives 100'~=0.8
when the weight 1/S is used for each point.

Finally, the computed total, ionization cross sec-
tions are shown in Fig. 9. The experimental data
are taken from the comyilation of Kieffer. ~' The
solid line, which represents the results of the
present calculations, includes multiplication by a
factor 3, representing the contributions from all
possible core states as discussed in Sec. V. The
over-all agreement between the present results
and the experimental data is rather good. Above
100-eV incident electron energy, the present re-
sults are centrally located with respect to the two
sets of experimental data and are moderately close

FIG. 7. Secondary-electron distribution for oxygen as
a function of incident electron energy for fixed values of
secondary-electron energy (T in Ry). The curve labeled
MAX represents the function T~, Eq. (25).

lp-I f

we write as S(E, T). This function gives the sec-
ondary-electron distribution. We present the com-
puted secondary-electron distributions in Figs. 7 and
8. In Fig. V, S(E, T) is presented as a function of
E for fixed values of T, while in Fig. 8, it is pre-
sented as a function of 7'. for fixed values of E.
According to our model the secondary electron can
have any energy up toE —I. However, this is not
realistic since the incident electron would have
zero energy at this limit. If we make the assump-
tion that the most energetic electron emerging is
by definition the primary electron, then the sec-
ondary electron has at most the energy

T „=.'(E-I) . - (26)

The 7.' ~ curve is shown in Figs. 7 and 8. The
meaningful parts of these figures lie to the right-
hand side of the T,„curve in Fig. 7 and to the
left-hand side in Fig. 8.

The total ionization cross section is obtained
using

~(E}=f""'"s(E,w)dw. (26)I

)p-le0
E
O

t-
LLj

X

lp-l9

IP
Q, l l IQ

7 inRy

FIG. 8. Secondary-electron distribution for oxygen
as a function of secondary-electron energy for fixed
values of incident electron energy. The curve labeled
Tm~ corresponds to Eq. (25).. The circles represent
parametric fits to the distribution curves using Eq. (27).
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to the theoretical results of Seaton using Hartree-
Fock methods.

In Sec. V we showed that the cores 'S, 'P, and
D give contributions which are, respectively, in

the ratio 4: 3: 5. This ratio is confirmed by the
high-energy results of Seaton. ~6 This ratio is ex-
pected to hold only if the ionization process is fast
compared to a period necessary for any rearrange-
ment of the electronic structure. This situation
occurs only when the outgoing electron is suffi-
ciently energetic.

VII. DISCUSSION

As we indicated in the Introduction, atomic oxy-
gen plays a major role in a number of important
atmospheric phenomena which require for their
explanation a detailed knowledge of electron-impact
cross sections for excitation and ionization. It
is still premature to undertake rigorous many-body
calculations of such properties which would be valid
at all energies. The present approach utilizes a
simple analytic independent-particle model which
is quite close to the Hartree-Pock-Slater model.
Here, however, we can utilize certain aspects of
the phenomena in question, in particular the energy
levels, to tune up the parameters of the model.
In the present instance we have adjusted these
parameters to the ground electronic state and 15
excited electronic states of the atom to a high de-

l I (((II I t ( ( I(((
lO~ lo~

Incident Electron Energy (eV)

FIG. 9. Total ionization cross sections for oxygen.
Experimental data points 0 and X are from Refs. 24 and
25, respectively. Solid curve represents the results of
our IPM calculation, while broken curve represents the
theoretical results of Ref. 26.

gree of precision. Our calculationsleadtoreason-
able excitation and differential ionization cross
sections and total ionization cross sections. On
the other hand, experimental data are primarily
available for the total ionization cross sections for
comparison with the data. Thus the fact that our
model gives reasonable results in the Born region
in this latter instance lends credence to the excita-
tion and differential ionization cross sections which
also are attendant to this model.

In addition to replacing the many-electron sys-
tem by an independent-particle model, we have
pursued our work in the Born approximation. How-
ever, if results are needed at low energies (e.g. ,
below 100 eV), rules are available based upon a
phenomenological analysis of experimental data'
for approximately modifying our results. We also
have under way a study using the distorted-wave
Born approximation to make a more rigorous allow-
ance for the distortion of the incident plane waves
in the field of the oxygen atom. The present work
serves as a basic starting point for such calcula-
tions.
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APPENDIX A: DERIVATION OF FORMULA FOR
EXCITATION GOS

In what follows, the quantum numbers I, , svI~, ,
8&, M~, , J&, M& specify the initial state of the tar-
get atom, and I.&, Mz, 8» M~, J» M& specify
the final state. The differential cross section for
the scattering of an electron by an atom is

This is exactly correct if the interaction is spin
independent, and we consider only transitions
with S& =S&. In (Al), ko and k are, respectively,
the initial and final momenta of the projectile elec-
tron.

The scattering amplitude is given in the Born
approximation by

Aep"e=(e' '
(e(Zg, Me)

2

x Q (g((g Mg)e'&'). (A2)4

In (A2), g& and ())& are the initial- and final-state
wave functions, respectively, of the target atom,
and Z is the atomic number. According to the
well-known expression due to Bethe, (A2) may be
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written as

4' g

li I 4t~+f I~ + ~ i Sl~+I Ml~)
f~1

(AS)
where K=ko —k is the momentum transfer. Using
the Rayleigh expansion for e' ', (Al) becomes

do I' m,
'

k - 4m

dQ (2 8'

where

(A5)

4ve (2Jg+1) i

K' (JMLOIZ, M)

I jL Kfp YL0 9p

In (A4), L runs from IZ, —J& I to J', + J&. In (A5),
the quantity (J&MLO I J&M) is a Clebsch-Gordan co-
efficient. We have chosen M& =M& =M and ML =0.
The evaluation of g~, & L depends on the coupling
scheme. We consider the Russell-Saunders LS-
coupling scheme. The antisymmetric initial state
is given by

(S)Mo,L(Mz,
I
J')M) Q Cpz, Q (S)Mo pm, IS M,)

MSfML~
'

S1I1 MS1ML1
m mg0 0

x(L,Mi Iomi, IL,Mz, ) g((&ofo)" 'SzLgMo, Mz. ) g(&odom, ,mi ), (A6)

where C» is the coefficient of fractional parentage,

CFp [(nofo) (S1L1)(zzoio) S«~ I
(soio) "S«j]

In (A6), $((nolo)" 'SzLzMo Mz, ) describes the anti-
symmetric wave function of the core electrons in
a (nolo)" ' configuration with spin and orbital angu-
lar momentum 81 and L„respectively. The wave

I

function tII(nolom m, ) describes the extra core
electron which is in a n0l0 state and couples to the

core to produce the initial state of the atom. The
particle in $(nolom, m, ) can be any one of 1 through

s0
N electrons.

For the final state (nolo)" znl, the antisymmetri-
zation is done explicitly:

Z (SzMo LzMz I JzM) Z (S,Mo —
m2, I SzM)o(L~z ImgILzMz)

( N
&&N" i

I 1 —ZP» g((nolo)" 'S,L„Mo,Mz; 234 ~ $(nlm, m„l). (AB)
Jaa

In (AS), P» is the permutation operator for elec-
trons 1 and j. The wave function tt((nolo)» zS+„
Mo Mz, ,' 234 ~ N) describes the core with spin S,
and orbital angular momentum L, coupled to an
electron described by ((nlm, m„1) to produce the
final state of the atom.

Since Pq and gz as given by (A6) and (A6) are

antisymmetric with respect to 1throughN electrons,

g~j z (Krz, ) Yzo (r~) in (A5) can be replaced by

Njz, (Kr, )Yzo(r, ). Substituting (A6) and (AS) into

(A5), and separating the spatial components of

the single-particle wave functions into radial and

angular parts, and taking advantage of all orthogo-
nalities, we finally obtain (aside from aphase factor)

gz z z, = (4' /K ) (4 N) 5o o Cpp [(2lo+ 1)(2L+ I)/4n' ] (IoOLO I
l0) [(2L)+ 1)(2Lz+ 1)]

x z ~ [(2J~+ 1)(2J'z+ I)]'io ' z (R i(r) Ij z(Kr) IR & (~)) (A9)

(A10)

In (A9) the arrays in the curly brackets are 6j
symbols. Equation (5) now follows after inserting
(AS) in (A4), and using

(„) ~o K'aoodo
4k g dA

APPENDIX 8: DERIVATION OF FORMULA FOR
IONIZATION GOS

Inthis Appendix we give a derivation of Eq. (16)
based on the Born approximation and LS coupling.
The differential ionization cross section is given
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where

(»)
MOM0 c

d~o t'. m, 2 u 1 gyes, y'
dWdA I, 2vif ko 2 J~+ 1

initial and sum over final spin substates are done
in (81). The symbol 8 in (82) is for antisymmetri-
zation. It is assumed here that C, and go are al-
ready antisymmetrized. However, the antisym-
metrization between the incident and target elec-
trons is not considered. Thus no exchange effects
are included.

Using Bethe's formula we find
K= ~ @Pe' I, e~~ r

5ff=N(4ve /K ) I,
where

(84)

Here W is the energy loss, ko is the initial mo-
mentum and k is the final momentum of the pro-
jectile electron, 4,(LP,J,M,) is the wave function
of the core, (o(LoSo J„sV,) is the wave function of
the atom initially, and P-„' is the wave function of
the ejected electron in the continuum, which is
normalized as in

(2v) 'g (())„*.(r) (t)„.(r) dr =5(k' —k") .
Corresponding to the experimental situation where
the ejected electron is not observed, we integrate
over the angles of R' in (81). The average over

I = «[gree, (LP,Z, M,)]
~

8'"'~
~
qo(Losoeo Mo) & .

(85)
We have used the fact that both Po and ft[P-„, 4,] are
antisymmetric with respect to N target electrons
to replace g& in (82) by the factor N. Using (84)
in (81), we find (in atomic units)

doo 4 o
)'o)'o' 1

dWdn '~ )'oo 2Zo+1 o ~
(85)

The initial-state wave function is the antisym-
metrized and angular momentum coupled sum of
the one-electron wave function and the core wave
function:

q, (L,S,Z, M,)= g (S,M, ,L,M, ~Z,Mg Q(C„),'o', o

NS Mg Sc~c

x Q Q Q(S,M, ,'m„)S,M—, &(L~, f,m, JLPS,,&

NS M'I m sOmlo J+c c

(S,M, L~~ ~Z~,&y(nolom, m, ) e;(L,S,Z, M,), (87)

where the fractional parentage coefficient (CF~)q~, takes care of the antisymmetrization. The sum over
Moo, M~o, Mq, and M~ can be simplified, and (87) becomes

4

4o(LoSo~oMo) = ~ (f'vx) pop ~ + (-)" (~oSoLo&,)'"+ g

. So Lo jo

ms m) w) 2 )o j (88)

where ~=- —28'+ ~+lo+Zo —2' -Mc and A —= 2A+1 ~

For the continuum wave function we introduce the
partial-wave expansion:

yP~(r)=(u'r) 'Z Q 4'' P-, .(n'r)
r'=o m~

x I „„,(r") I *„„,(u') )(,;, , (89)

where P,i(k'r) is the reduced radial continuum wave
function. The bound-state single-electron wave
function is

y(nolom, ,mg ) =r 'P„,, (r) I'g,„, (r) y ",
810

where P„, (r) is the reduced radial bound-state
wave function. The antisymmetrized final state
can be written explicitly as

ft [y-„,'e, (L,S,Z, M,)] =
&

1 —Z P»
~)

x 4,(L,S,J,M„' 234 ~ N) py (1), (811)

where P» is the exchange operator for the first
and jth electrons.

To evaluate the matrix element I, E(I. (85), we
shall choose K as the z axis. Then we have

(812)
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Thus (B5) becomes

I= (4v)' Q (2P+ I)' &+[/-„; 4,(L,S,J,M,))

x~j,(If~,) I'„(~,)
~ y, (L,S,Z, M, ) & . (B18)

We substitute (Bll) and (B8) into (B13). In (B8),

any one of N electrons can be in Q(no lorn, m, ),0
and hence we choose the first electron. Then
provided that the bound and continuum wave func-
tions are orthogonal to each other (which is true
if they are solutions in the same potential), the
only contribution comes from the first term of
(Bll), and we have (assuming 4', is normalized to
unity)

r 1/2
&+~ ~ @.Lc~cJ.~. ~po &i ip «i o L0~0J0~0

4g) / ~ A A A

(gF ) ~oz~o ( )"(g S L z )&1&Q (p)H2 p Q ~ 0

P so )0

So Lo Jo
l

X Sc Lc Jc k' ~pogP -~+ QO toms m
ms m$ m

2 ~0

The matrix element in (B14) can be calculated using (B9) and (BIO). We find

~0 Lo Jo
00

~0

p m )gal 0 g m (m~ m( m
lo 0

(B15)

[where m(lo) is identical to m, o
and is used in subscripts for typesetting reasons] where

(B16)

Using (B15) we find

)om)

' So Lo Jo ~o Lo Jo

x ' ' ' . o — S L J 8 L J
~0 2 . 2 ~0

The sums over the magnetic quantum numbers can be done explicitly; then (B1V) reduces to

'So Lo Jo '

~0

Substituting (B18) into (B6) we obtain Eq. (16) of the text.

(B17)
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Dissociative excitation of molecular hydrogen can proceed via the process H2+e H(2s) +H
+e and yield metastable H(2s) atoms that have kinetic energies near 0.3 eV ("slow" ) or near
4 eV ("fast"). The dissociation process has been studied using a pulsed electron gun with an

energy resolution of + 0.3 eV and using a metastable atom detector capable of viewing H(2s)
atoms with an angular resolution of 1' over a range 60'-120' with respect to the electron-
beam direction. The measurement of the angular intensity distribution gives information
about the final states that are involved in the dissociation process. (i) For slow H(2s) atoms,
the electron energy threshold for production of the least energetic of the slow metastable
atoms is 14.6 +0.3 eV. The excitation function and the angular distribution of the slow H(2g)
atoms suggest that the 8' Z'„, e Z'„, D'II„', and d 3II„' excited states are involved in the forma-
tion of these metastable fragments. (ii) For fast H(2s) atoms, the electron energy threshold
for production of the least energetic of the fast H(2s) atoms is near 29 eV. The angular dis-
tribution data would indicate that these atoms arise from a II„state; the form of the excitation
function indicates that the parent state has a multiplicity of l. 3he change in energy distri-
bution of the fast H(2s) atoms, measured as a function of electron-gun voltage, supports the
view that the Il„state is a previously unreported doubly excited state that has an asymptotic
energy of 24. 9 eV.

I. INTRODUCTION

Recently Leventhal, Bobiscoe, and Lea' em-
ployed a time-of-flight (TOP) technique to mea-
sure the energy distributions of metastable H(2s)
atom fragments that were produced via the pro-
cess

Hz+ e- H(2s)+H+e .

H(2s) atoms were produced by pulsing a simple
triode electron gun in an H~ atmosphere. The
metastable atoms moved translationally with kinet-
ic energy released during the dissociation process
and after some collimation entered a "quench"
region 10 cm away. A strong electric field was
applied in this region which mixed the 28&gp and

2P&&2 states causing a decay to the ground state.


