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the order of (radiative wavelength) 3, which is typically
about 10 cm . Resonant broadening effects typically
become significant at active-atom densities of 10i5 atoms j
cm . If the density of "foreign-gas" perturbers is much
greater than that of "resonant" perturbers, the resonant
broadening effects may still be negligible by comparison.

We are, in effect, assuming that the atomic system is
in equilibrium before the external fields are "turned on"
and that the presence of the fields cannot alter the veloc-
ity distribution of the active atoms to an extent where
they, in turn, can modify the perturber velocity distribu-
tion. To allow for changes in the perturber velocity dis-
tribution, one would have to consider the density matrix
for the total system of active atoms plus perturbers and
obtain a Boltzmann equation for its time development.
Reduced density matrices for either the active atoms or
perturbers are then obtained by appropriate traces of the
solutions to this equation.

OFor example, in many laser problems, one considers
a two-level problem with both levels representing excited
states. This system is not closed and allowance is made
for excitation to and decay from this subsystem.

Note that this is a much stronger condition than that
given in Appendix C of QMTE-I for the neglect of velocity-
changing collisions. There are really two considerations
here. Equation (10) is valid provided velocity-changing
collisions have no significant effect on the output of the
atomic system. However, the value of T~~ss (v) to be de-
rived will agree with semiclassical calculations only if
the stronger condition 8 & 8, is satisfied; in all other cases
T™~as(v) should be computed from Etl. (5).
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The variational methods of Kohn and Hulthdn are used to calculate the scattering parameters
of the positron-hydrogen rearrangement collision. The R-matrix elements are computed for
positron energies 0-0.33 a. u. with accuracy of (1-10)%. It is also shown that a good approxi-
mation to the diagonal elements of the R matrix can be obtained by ignoring the coupling be-
tween the channels.

I. INTRODUCTION

The problem of low-energy scattering of posi-
trons by hydrogen atoms has attracted many re-

searchers by its simple structure and because of
the hope that its solution might lead to the develop-
ment of approximate methods for solving more
complex scattering problems. The main difficulty
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encountered by the theoreticians considering this
problem is the lack of experimental data by which
the theoretical calcul. ations could be checked. Var-
ious approximations were used for calculating the
elastic S-wave phase shifts below the positronium
formation threshold, ' 6 giving different results.
There was, however, no criterion for preferring
one result over another.

The "experimental data" for this problem were
provided in 1961 by Schwartz, ' who calculated these
phase shifts accuratel. y using Kohn's variational
method Bnd the Hylleraas-type wave function. A
similar difficulty is encountered in the calculation
of the S-wave parameters above the positr onium
formation threshold. C alculations were recently
published by several authors, s ' with different re-
sults, and again no experimental data are available
to which these calculations could be compared.

In the present work we have tried to extend
Schwartz's calculation beyond the positronium for-
mation threshold, in order to supply accurate values
for the rearrangement collision parameter s. The
scattering parameters were calculated for posi-
tron energies from 0 to 0. 33 a. u. to precision of
afew percent. In Sec. II we describe the wave
functions used and the method of calculation. The
results are summarized in Table I, and are dis-
cussed in Sec. III.

II. METHOD OF CALCULATION

A. Wave Function

where r, is the position vector of the electron and
rz is the position vector of the positron, ,

=I I, =I
I

=I"-
k =2E/„q =4(E&, —0. 5),

~(=k(s-&), ~&=k(s+f) &»=u,

~ =2/(s+t)=s-'/[1- (s —f)/2s]

=7/4s —f/s +f /4s'+O(s ),
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R = —,
' s[1 —(u' —t')/s']'"

= —'s —(B —f )/4s —(Q —f ) /16s +O(s ), (10)

R '=2/s+ (u' —f )/s'+O(s ').
Therefore, we have

T = &(' e (' " sin —'k(s+ f)

x(7/4s —t/s'+ t'/4s'), (l2)

and E~ is the free positron energy in a. u. gr, and
describe the asymptotic form of (C& with error

of the order O(x~ ). gz, and &1&r describe the asymp-
totic form of g with error of the order O(R 4).

In order to be able to calculate the matrix ele-
ments (t/)[H Er g-) analytically, we had to choose
another set of tail functions' T„T2,Ts, T4.
This new set" was obtained from the previous one
by the following transformation (using Hylleraas
coordinates):

The wave function chosen was comprised of a
Hylleraas-type core plus tail:

g = g„+agr, + b fr + cd + der

g„=Q a„, & (&z& (2exp(- b, rf bmpp bshe»),
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TABLE I. R-mitrix elements for the e+-8 inelastic scattering above positronium threshold.

Ep (a. u. )

0.26
0.27
0. 28
0.29
0.30
0.31
0.32
0.33

Estimated

0. 721
0.735
0.748
0. 762
0. 775
0. 787
0. 800
0.812

0. 200
0.283
0.346
0.400
0. 447
0.490
0. 529
0. 566

error within 10%.

-0.066
-0.074
-0.079
—0. 085
—0. 090
-0.100
-0.105
-0. 1.10

Coupled channels~

Ru

-0.022
-0.024
-0.027
-0.032
-0.037
-0.045
—0.050
-0.060

—0. 01
—0.28
—0. 53
—0. 75
-1.00
—l.30
—1.50
—1.90

Uncoupled

—0. 064
-0.070
-0.079
—0. 085
-0.091
—0.098
—0. 103
-0.108

—0.124
—0. 132
—0. 139
-0.146
—0. 153
-0.159
-0.165

Dirks and Hahn

R)2

—0. 0016
-0.0025
—0. 0044
-0.0063
—0. 0075
-0.0087

"Interpolated values from Ref. 11.

—1.43

—2. 448
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TABLE II. Elastic and inelastic cross sections for
S-wave positron-hydrogen and positronium-proton scat-
tering. (Subscript 1 denotes the positron-hydrogen chan-
nel and subscript 2 denotes the positronium-proton chan-
nel. )

dures for inelastic collisions were discussed in
detail in Ref. 16. Here we show briefly how we
used the three variational methods for our re-
arrangement collision, where the incoming particle
has mass m& and the outgoing particle has mass
m2 ~

Following Refs. 16 and 17 let us define Z~:0.26 0. 721
0.27 0. 735
0.28 0.748
0.29 0.762
0.30 0. 775
0.31 0. 787
0.32 0. 800
0.33 0. 812

0.200
0.283
0.346
0.400
0.447
0.490
0.529
0.566

0.10
0.13
0. 14
0.15
0.17
0.20
0.21
0.22

0.011
0, 012
0. 013
0.014
0.014
0. 015
0. 015
0, 015

0. 15
0. 08
0.06
0, 05
0.04
0.04
0. 03
0.03

0. 025
12
23
28
31
33
31
31

Z T + p &2 Snt tume-33 nt-v-n
num

n+l+m +N

k =1& ~ ~ ~, 4 (19)

so that

(s"t'u"e-"-"'- ~If-Z~ Z, )=O

(for all n+ l+ m ~ N). (20)

—[(u —t')/16s'][q2cos(-, 'qs)+ p'e "~2]

+ [(u —t )/2s ][q sin(-,'qs) —pe " ']); (16)

we also have

Let us now define S1 Zi Ci Z2, S2=Z3, C =Z4.
Then the Kohn wave functions are

Pi= (klmi) (Si+ Rii Ci)+ (qlm2) R21 C2 t

tI1&Nt Q k Snt 1 me 33+t w
H num

n+I+m &E
(16)

(21)
I

g= (qlm2) '
(S2+R22 C2)+ (k/mi) '

R12 Ci.
(22)

These four functions represent the four tail func-
tions with about the same formal accuracy as Pr,1
gr, gr, and (r, respectively. The effect of
the transformation on the results was tested by re-
placing gr, and @ by T, and T2 in the calculation
of the elastic phase shifts below the positronium
threshold. The convergence with T, and T2 is slower
than with gr, and g&, but we still get two signifi-
cant digits with sixth-order Hylleraas functions.

Using these functions we define the channel wave
functions in the usual way:

(1= (s+k (Ti+R11T2)+ (-',q) R2, T4

The "inverse-Kohn" wave functions are

RIJ 310
11—

10—

e N=4

h Nm5

~ N=6

41 (klmi)" '(Ci+ ~11 Si) + (q!m,) "'U21S„

42 (q/ 2) ( 2+ ~22 2) + (klml) ~12 1 '

(23)

(24)

(positron hydrogen), (17)

4H+ (2q) (T3+R22 T4) +k

R)g

(positronium proton}, (18)

where R&& are the elements of the R matrix.

B. Variational Calculation

After choosing the wave functions, we tried to
calculate the R matrix by Kohn's variational meth-
od. Following the idea of Schwartz, v we plotted
the R-matrix elements as a function of the nonlin-
ear parameter A in g„looking for "flat" parts of
the graph. As was. to be expected, , we found too
many pseudoresonances, and so had to smooth
the graph using Nesbet's idea of combining several
variational methods together. ' The variational
methods employed were those of Kohn, Hulth4n
and inverse Kohn.

The Kohn and inverse-Kohn variational proce-

3 bmoc

o I

0.5
I

0.8
I

02
I

0-8

FIG. 1. Smoothed R&~ and R&2 as functions of the
nonlinear parameter A,. E&=0.28 a.u.
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TABLE III. Phase shifts for elastic S-wave e'-H
scattering (a. u. ).

Houston and Present
Schwartz Bhatia et gE.

"' Drachmanc work

S, rad.

"-0.2—

0.1
0.2
0.3
0.4
0. 5
0. 6
0. 7

0.151
0.188
0,. 168
0. 120
0. 062
0. 007

-0.054

~Reference 7.

0. 148
0. 187
0. 167
0. 120
0. 062
0.0033

—0.0515

0. 1483 0. 149
0. 1877 0. 189
0. 1677 0. 169
0. 1.201 0. 123
0. 0624 0. 065
0.0039 0. 008

—0. 0512 —0. 049

"Reference 18. 'Reference 19.

+0.1—

Q

(c)IH-EI ( ))=0, i j =1, 2 (25)

In the John variational calculation we solved the
four linear equations -0.1--

0 0.2 Q4
I

p.6 0.7& p.s
k , a.u.

for the values R&&, and then

RO=R', , -2 (g", Ia E.
I qf-), (26)

In the inverse-Kohn variational calculation we
solved the equations

FIG. 2. Elastic S-wave positron-hydrogen phase
shift as a function of k. The curve is almost continuous
at the positronium threshold g =0, 71). (Above the
threshold &=tan R~~. )

(s, III-EI q,')=0, i, j=1,2

for the values U, &, and then

(27)
C. Calculation with Decoupled Channels

(R ')g= ~~&= ~0~~+2(0'~ I& EI g~)
(26)

In the Hulthen variational calculation we so].ved
the four nonlinear equations

(g, IH-EI $&)=0, i,j =1,2

for the R,&, by using the Newton-Raphson method,
starting from the values obtained from the Kohn
variational calculation.

In al]. cases we solved the four equations using
the symmetry of the R matrix as a check for the
results.

Except near the singular points of the Kohn and
inverse-Kohn methods, all three methods yield
practically the same results. Around the singular
points of one of the methods, the results from the
two other methods did not differ significantly.
Thus, by choosing the nonsingular values, we ob-
tained smooth graphs for the R-matrix elements as
functions of the nonlinear para, meter X. An example
of such a smoothed curve is given in Fig. 1.

For each value of E~ the R matrix elements
were calculated using Hylleraas functions with N
= 4 (35X 35 matrix), N= 5 (M&& 56), and Ã=6
(84&& &4). As can be seen from Fig. 1, actual
convergence begins onI.y for N= 5, making error
estimation a difficult task.

The computed R-matrix e].ements are given in

Table I. The partial cross sections for elastic
and inelastic scattering are shown in Table II.

The main difficu]. ty in this calculation was the
"mixing" of two types of coordinates: in the posi-
tron channel, the natural coordinates are r, and

z3, while in the positronium channel they are x&~

and R. Knowing, from the present and previous
calculations, that the coupling between the chan-
nels is weak, we repeated our calculation for the
elastic phase shift ignoring the coupling between
the channels. The results, shown in Table I, dif-
fer from the full calculation by less than 6%.

III. DISCUSSION

Below the positronium threshold the values of the
R-matrix elements are within 1% of the correct
ones. The phase shifts are compared with those
of Schwartz, v Bhatia et al. , ' and Houston and
Drachman' in Table III. It is estimated that above
the threshold the values are within 10% of the cor-
rect ones. In Fig. 2 we plotted the elastic phase
shift as a function of k. Because of the weakness
of the coupling between the channels the curve is
almost continuous through the threshold. Dirks
and Hahn" calculated lower bounds to the values
of R» and R3~. The values as computed here are
indeed higher (Table I).
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We utilize the analytic atomic independent-particle model (IPM) of Green, Sellin, and

Zachor to calculate generalized oscillator strengths (GOS) and total cross sections for exci-
tation and ionization of atomic oxygen. First we average over the experimental energy levels
within a multiplet to arrive at single-particle levels. Then we adjust the two parameters of
the IPM potential so that it accurately characterizes the ground state and 15 lowest excited
states. Using the wave functions so obtained, and assuming the Born approximation and the

I S-coupling scheme, we calculate absolute GOS and cross sections for excitation to these
levels, and for ionization with incident energies up to 1000 eV and secondary electron energy

up to 200 eV. We obtain an analytic representation of the excitation GOS as a function of the

momentum transfer. We also obtain an analytic representation of the energy differential
cross section for ionization as a function of the energies of the incident and secondary elec-
trons. Comparison is made with available experimental data and other calculations.

I. INTRODUCTION

Because of the importance of atomic oxygen in
the upper atmosphere (it is the predominant species
above 150 km), it is essential for an understanding
of aeronomical phenomena to have a reliable char-
acterization of its properties. Of particular inter-
est to the understanding of auroral, dayglow, and
ionospheric phenomena are electron-impact cross
sections. Unfortunately, because of difficulties in
working with atomic oxygen, there is little experi-
mental information available on important cross
sections.

From a theoretical point of view, atomic oxygen
plus the electron constitutes a nine-electron sys-
tem. Techniques for treating such systems rigor-
ously have not yet been reduced to practice. For
this reason, the present theoretical calculation
exploits a realistic independent-particle-model

(IpM) description for arriving at approximate elec-
tron-impact cross sections in the Born- Bethe
approximation.

In comparison to Hartree-Pock-Slater calcula-
tions and to experiment, a simple two-parameter
IPM potential has been found to provide a good
representation of atoms and electron-atom inter-
actions. ' We apply the IPM to the excitation and

ionization of oxygen.

II. EXPERIMENTAL LEVELS AND IPM POTENTIAL

The ground state of oxygen has the configuration

ls'2s'2P'('&2) .

From the tables of Moore, e it can be seen that of
the 44 excited states below the ionization limit
which are listed, 40 of them are in the configuration


