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Microscopic Optical-Model Analysis of Electron Scattering from Atomic Hydrogen*
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The projection-operator formalism advanced by Feshbach is used to derive a numerically
tractable equation which describes the elastic scattering of electrons from atomic hydrogen
under multichannel conditions. By neglecting the potential of interaction in the inverse opera-
tor, analytical expressions can be obtained for the Green's function which permit the inclusion
of both discrete and continuum target-state contributions to the optical potential. The numeri-
cal procedures used to solve the resulting nonlocal integrochfferential equation and to generate
differential, total elastic and inelastic cross sections are discussed. Good agreement is
found with available experimental data.

l. INTRODUCTION

The theoretical determination of atomic and
molecular scattering cross sections in the low-
energy region is greatly complicated by the pres-
enoe of a large (usually infinite) number of open
scattering channels. Thus, in order to obtain an
accurate description of scattering phenomena for
charged particles of energy below the region where
the Born approximation is valid, effects due to the
various inelastic processes which may occur must
be included. . The usual practice of expanding the

total wave functions in terms of a set of target
eigenfunctions leads to an infinite set of coupled
differential equations which describe the scatter-
ing probabilities for elastic and inelastic pro-
cesses. The difficulties associated with large
coupled sets of equations preclude accurate solu-
tions for all but a very limited range of projectile
energies.

Two important effects that should be accounted
for at low energies in electron scattering from
atoms and molecules are exchange and polarization.
Exchange arises as a result of the Pauli principle



MICROSCOPIC OPTICAL-MODEL ANALYSIS OF. . .

and is accounted for by explicitly antisymmetrizing
the electronic wave functions. Polarization is the
distortion of the electronic wave functions in the
presence of the incident projectile resulting in
virtual excitations which contribute to the elastic
scattering amplitude. The target electrons are
often assumed to adjust adiabatically at low
projectile energies though dynamic polarization
effects are operative at the lowest projectile en-
ergies. The adiabatic assumption is expected
to be very inappropriate for atoms such as the
alkali-earth metals in which polarization effects
are expected to be large. The microscopic optical
model described by Feshbach ' and Bell and
Squires is formulated directly from the exact,
nonrelativistic, many-body Schrodinger equation.
The dynamical properties of the interaction are an

integral part of the formalism.
Feshbach developed an elegant and powerful

technique for determining elastic and inelastic
scattering cross sections under multichannel con-
ditions. In the projection-operator approach the
total wave function, which describes the interacting
system, is projected onto the elastic channel sub-
space and all other channels are included in a com-
plex nonlocal "optical-potential" operator. The
difficulties associated with a large set of coupled
equations are transformed into the complexities
associated with the optical potential. However,
the formalism is amenable to a number of different
approximations which offer some distinct advan-
tages over other methods of calculating cross sec-
tions in the difficult low-energy region.

The optical-potential formalism has been applied
to a number of different atomic and molecular
scattering problems, Mittleman and Watson first
formally applie'd the concepts of the optical model
to the scattering of slow electrons from hydrogen.
The Feshbach projection-operator formulation of
the optical potential was first applied by Hahn,
O' Malley, and Spruch to atomic scattering of elec-
trons and positrons for single-channel scattering. ~

The formal developments of Feshbach were applied
by Chen to slow-electron scattering by molecules.
The results of this study illustrate the role of
compound negative-ion states in the vibrational
excitation of molecules. A theoretical treat-
ment of dissociative attachment of electrons to
diatomic molecules was made by O' Malley using
the projection-operator formalism. ' The tech-
nique was also used by Rotenberg to describe
elastic scattering of an atom from a structureless
rigid rotator. '

In the present investigation, we have utilized
optical-potential analysis to determine atomic
scattering cross sections in the energy region
where inelastic processes are important but below
where the Born approximation is applicable. With

II. FORMALISM

The wave function X that describes a quantum-
mechanical system with definite symmetry proper-
ties can be expanded in any complete basis set of
eigenfunctions which span the same space. In-
troducing such an expansion into the Schrodinger
equation leads to an infinite set of coupled differ-
ential equations, which can be manipulated into a
single equation by using the Feshbach approach.

The Schrodinger equation, describing the inter-
action between a projectile and a structured target,
1S

where E, and H are the total energy and Hamilto-
nian of the system. We define a projection opera-
tor P which projects onto the elastic channel sub-
space of the total Hilbert space spanned by the
eigenfunctions of H. We also define a complemen-
tary projection operator Q = I —P which projects
onto the complete inelastic channel subspace. By
using the properties of P and Q, we can transform
Eq. (1) into two coupled equations

(E, —PHP)Py= (PHQ)Qy

(& —QHQ)QX = (QHP)PX

(2)

Formally, we can solve Eq. (3) for Qy and substi-
tute the result into Eq. (2) to obtain

[PHP+ PHQ(Eq —QHQ) QHP —E, ] Py = 0 . (4)

Equation (4) is an integrodifferential equation
whose solution Px represents the elastic channel
component of the total wave function X for the sys-
tem. The complex, nonlocal operator PHQ(E',
—QHQ) QHP is referred to as the "optical poten-
tial. " In Eq. (4) E', =E, +i6 for outgoing waves, 5

being a positive infinitesimal. PHQ and QHP in

Eq. (4) represent interactions between two com-
plementary segments of the Hilbert space which is
spanned by P and Q.

this method it is possible to investigate the im-
portance of various inelastic contributions and
total scattering cross sections without encounter-
ing the difficulties associated with large sets of
coupled differential equations.

The basic Feshbach formalism is briefly out-
lined in Sec. II. Our particular choice of a
Green's function for electron-hydrogen scatter ing
and the resulting elastic channel radial equations
are described in Secs. III and IV. A brief descrip-
tion of the numerical procedures which were used
in solving the complex nonlocal radial equations
is given in Sec. V, followed by results and con-
clusions in Sec. VI.
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III. APPROXIMATIONS TO THE GREEN'S FUNCTION

The Green's function which describes the inter-
action between a target with one internal coordinate
r and a projectile at position ii with respect to the
center of mass of the target is the solution to

and

v
'

v, ,(R) —(',)x,.(((l = 0
2 i',p

@
2 @2/2

v'+2 „(f)— x, (E, ii) =o .
2j(Lp 2 p p

(E; —QHQ)G(a, iF; r, r') =6(a —iF)5(r —r') . (5)

We may solve Eq. (5) formally for G:

G(R, F; r, r') =(E,' —qHq) '5(f -F)6(r -r') . (6)

Denoting the eigenfunctions of (E', —QHQ)
'

by
I y, (R, r)), we use the closure relation

5(K-F)5(r —r')= Z
~ y, (R, r))(p, (iF, r')

~

to write

Gg yf I) ~ I (())((5 r) ) ((I()~ (5 r ) I

for the Green's function which describes a bound
final state of the projectile and

G'(K, F; r, r ) = lim (2v)

I p, (ii, r))( y, (Ii', r')
I

(9)
E2+ 26 —&2+C

for the continuum final states of the projectile
where 4 and $„are eigenvalues belonging to the
eigenfunctions p. The contour C in expression (9)
is chosen to satisfy the boundary condition at in-
finity for outgoing waves. The basis functions are
chosen to be solutions to the equation

(14)
Expressions (11) and (12) are numerically tracta-
ble. However, in problems where the continuum
states of the target make important contributions
to the scattering interaction, numerical determina-
tion of this part of the optical potential is not
practicable with present computers.

Another approximation that may be used is one
in which the potenital of interaction is neglected
in the inverse operator. Analytical expressions
can then be obtained for the Green's functions and
numerical solutions found which include the con-
tributions from the discrete and continuum states
of the target to the optical potential. This approxi-
mation has been used by Rotenberg in a micro-
scopic optical-model analysis of atomic scattering
from a structureless rigid rotator. We shall also
use this approach in the present study of electron
scattering from atomic hydrogen.

The open-channel Green's functions for this
case are easily derived. For the energy-conserv-
ing discrete target excitations, we can write

jgn& [ 8-R' I

G'(fg; r, r )= —
2 - -, Q„. , (15)

where

(qHq —~)
~

q (5, r)) = O . (lo)
or +t ~ ~n'

In practice, the solution to Eq. (10) is formida-
ble. However, the equation is amenable to a
number of approximations. For example, we may
choose only the diagonal components of QHQ or re-
place the potential function in QHQ by a local func-
tion. In these approximations the Green's func-
tions may be expressed as

G(g g . - - g Ix;(%&(x;(& )IQ
F.t —&;—

G'(g, 5; r, r )= lim
g" p R2~/

I x,.(k, 0) ) ( x, (k, R')
I q,

E2 y 26 —E( —k k /2P()

(12)
where $I and k k /2(u~ are the eigenenergies of the
bound and continuum intermediate states of the
projectile, respectively, and E, is the eigenenergy
of the jth excited state of the target. The wave
functions g are solutions to the relative motion
equations which describe the intermediate states
of the projectile,

for &„&Et .

Similarly, we write the Green's functions for the

target -continuum energy -conserving transitions

48 c I R-R' I

I Ii —1F I

G'(K, iF; r, r')=-
27TS

where

2 jL(p 8 «r &2 ~@'kg/2m .

Here k1is the magnitude of the wave vector of the

Here p.~ is the reduced mass of the projectile and
target, &„. is the excitation energy of the yg th dis-
crete state of the target, and Q„. is the projection
operator for the g th excited state of the target.
X'he energy-nonconserving Green's function for the
discrete target excitations is given by

-o„.l R-R' I

G'(aF;r, r')=-- "'2'
N 5 q. (6)

where
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where

2iS C )

(18)

@a 2 k, -E, for ri k/2m&E, .

The appropriate multipole expansions for terms
found in the Green's function are

g-'l l R-R' I ao r

=4~lP Z 2 j, (PR, )k&'&(PR, )
I

—
I rom=-r

x Y& (R)Y~& (R') (19)

e -0, l R-R' I CO

gg
= 8n Z i, (nR~)k, (nR))

r=o m=-r

x Y,„(R)Y'*,„(R ) . (20)

In expressions (19) and (20) j, is a spherical Bessel
function, h'r ' is a Hankel function of the first kind,
ir and k, are modified spherical Bessel functions
as defined by Antosiewitz, " and Pr is a. spherical
harmonic. R& and R& represent the greater or
lesser of the scalar quantities R and R .

IV. DEVELOPMENT OF THE ELASTIC CHANNEL
RADIAL EQUATION

The Hamiltonian of relative motion for an elec-
tron interacting with a stationary single-electron
atom can be written

f2-8= — II +V(R, r)+H„) =E
2p,~

(21)

In expression (21) (- k /2p~)V is the kinetic ener-
gy operator for the relative motion of the projec-
tile of reduced mass p~, V(R, r) = —e /R+ e /
) 8 —r I' is the potential of interaction between the
electron and atom, H„ is the Hamiltonian of the
isolated atom, and F., is the total energy of the
system. We choose the origin of our coordinate
system to be at the center of mass of the atom and
ignore exchange, spin-dependent forces, and re-
coil during the interaction. We confine ourselves
to a particular elastic channel, allowing for exci-
tations and ionization of the target.

We define the P projection operator as

P= Z ~R„,~ (r)l~m', )(R„,'(r)l~m, ~, (22)

where IR„, (r)lqmq) is a hydrogenic wave function
nl&

for any discrete state of the target with principal,
orbital angular momentum, and azimuthal quantum
numbers n, l&, and m', , respectively. We shall
use the symbol I l&m&) to represent a spherical

initially bound target electron of mass m and Q,
is the projection operator for the continuum states
of the target. For the energy-nonconserving
transitions

I R-R' l

harmonic in the Dirac notation.
We define the Q projection operator

n cf7

+
( 3 Z I E~(q, k, r)x p, ) (E~(q, kyar')x p,

~
dkg

(23)
where all states except the set with quantum num-
bers n, l&, and m& are to be included in the sum or
integral. . The E~(q, k,r) are the regular Coulomb
wave functions which are eigenfunctions of the
target Hamiltonian with continuum eigenvalues
k 2lP&/2m with the appropriate value for q = —e m/
8 kg.

To develop the elastic channel radial equation,
we let X~(R, r) represent the total wave function
for the interacting system with total angular mo-
mentum J and projection M and write

PXz„= Z IR„r,(r)em', I',m', ) (l', l',m', m',
(
d~)

t ll2mlm2

x
U" (lslaJ'I R) (24)

R

Here Il"(l', l~ JI R) is the reduced wave function for
the relative motion and (lql2mqmal JM) is a vector
coupling coefficient which allows J and J = m&

+mz = M to be simultaneously diagonal in the cou-
pled representation. For a given l& and l2, the
values of J are restricted in the usual sense by the
triangular condition

(28)

where J ranges from l&+l2 down to )l', —l2I in inte-
gral steps. It is convenient to express (22) in
terms of the Wigner 3j symbols, so that we can
take advantage of their symmetry properties

PX~„= Z
~ R„,~(r)lgmglpmp) (- 1)"

r &t 2m&m&

d' k l (l +1) e
2 dR 2 R R

+ Z A, ~, „V„"(',)„(R)U"(lg'lp AIR)+
r 'r "x.2 1 t+gl gee r rate

x (2d I)'I2 ls I ~ J Il"(i)la O'I R)
mg m2 —M R

(28)
If we substitute the expressions for PX, P, q,

G(R, R'; r, r'), and B into Eg. (4), integrate over
angular coordinates and perform a number of alge-
braic manipulations, " ' we obtain the elastic chan-
nel equation
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x Kg. ,&,
'& (R, R')U" (l&'l2 JI R')R'dR' = 0 . (27)

The terms appearing in Eq. (27) are defined as

A&. , ~= [(2l, +1) (2l", +1) (2l2+1) (2l2+1)]'&

)&,&", ,I l& X l&' l2 && l2 l& l2

0 0 0 0 0 0 l21&'

4
K&,~ ~ &&I'(R RI) R)("&&&'Q &R&C&("&&(&'(R R()

g=l
and

8" "& = (2o+1) (2l+1) [(2l&+1) (2l", +1)(2l2+1) (2l2+1)]' (-1)'&'&

where the expressions in curly brackets are Gj
symbols in the signer notation. ' The explicit
expressions for the "'C terms are given by

I I
&l&C)(''&&'&'(R R)) 2i"I2R Q p V»'» (R)

&& j, (P„,R&)l&,"'(P„.R&) V"„.,'„., (R'),

I

include all of the energy-conserving processes
while the sum from n" to ~ and the integral from v to
~ represent projectile-target interactions which
are closed by energy conservation.

If the target is initially in the ground state
(n=1, l. , =m, =o) then Eq. (27) assumes the simpler
form

8 d F. l2(l2+ 1) e
1 a~--~+ — —

g
—— 1+—e

2p~ dR 2p~ R a0 R

(2&C &.
"

& & &'(R

x i, (n„.R&))'2, (n,R&) V„&.,»&„( R),
K

0

x j, (P,R, )~,"&(P,R, )V""., (R')]u, ,

x l, (n,R, )u, (n,R, )V"'.2,„(R')]dn, ,

n'-1 f

x U'(Ol2l2~R)+p Z (~ K„(R,R')
l=0 @=0 &

x U'(Ol2l2 ~R')R'dR'= 0, (28)

where ao is the radius of the first Bohr orbit and

4

K„(R,R')=B„Z ' C„(R,R') .
s=2

Here

a„= i&l2oooiio)~2,

where

tl 2

V.",„(R)= R.„(.) ~, .„,(.)),
2

p It

Fp

2
)'"„.;,, (R)=(R„,, (r) +!, .(R, a r)),

V"„,', "(R') =(F,(R, hr) ..'., R„„(v)) .

In the expressions for the V's, x& and x& refer to
the lesser or greater of the scalar quantities x
and R.

Equation (27) is the elastic channel Schrodinger
equation for an electron scattering from a hydrogen
atom in the nth excited state with eigenfunction
IR„„(x)l,m, ). The parts of Eq. (27) which involve
a sum from n'= 2 to x" and an integral from 0 to ~

where

(L2o'00
i
l 0 )

is a vector coupling coefficient and

n"
' 'C

&,(R, R') = —
2 Q PV »(R&(&)2 (P» &R&)le ~ g n

xl&', '(P„,R&)V „,,(R') ~

'C„(R,R') = —
2 Z n„.v&(&'(R)

4p. pg

ntl

x i &(o'».R&))'2&(&2» R&)V'„',(R'),
&)» K

'C „(R,R') = —
@ P, ~,' [V,",'(R)j &(P»R&)

x hI (p»R&)v»(R')]dk

"'C,.(R, R') = ——," 2 &2P& [V&(&(R)l &(&2A&)
8 p

7l 4

x)», , (n@&)V'„,(R')]dl&& .
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AND FITE
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where

I
z

+ W(R) ))(R)=, "ft(R R')y(R )dR
0

(29)
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0.50
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0.25

W()))=Z- —— —, + —)+ ) e'""ii' l, (l2+1) e'
2IU p R QP

(80)
These relations describe an electron of energy E
scattered from atomic hydrogen for all appropriate
values of the relative-motion angular-momentum
quantum number /2. Here R is the radial dis-
tance beyond which the local potential (e /uo}(1
+ u /R) e 2sy'0 is assumed to be negligibly small.

We wish to find the wave function g in the re-
gion 0 = R ~ R subject to the following boundary

0

).0

0.5

l E= 0.279 Ry

O
QJ
V)

tl)

o

E=2 Ry

30 60 90 (20

e, SCATTERING ANGLE (deg)

&50 180

O

0.5
4J

hJ
4 p

FIG. 1. Comparison of observed and calculated dif-
ferential cross sections for electrons scattered by atomic
hydrogen.

E=t Ry

1.0

0.5

6P 90 I 20 &50

g, SCATTERING ANGLE (deg)

FIG. 2. Calculated differential cross sections for
electrons scattered by atomic hydrogen.

The V's are defined by the following expressions:

V(0~(A)= (F'„'..{R))'=(R,o(r) ...' R,.(vl)Jp
2 6

V)((R)=('V„,(R))~= (R,o(r),.,'E(nkgr)), ,

The scattering data presented in this study were
obtained by numerically solving Eq. (28}.

NUMERICAL PROCEDURES
%'e wish to generate the nonlocal potential

K(R, R ) and solve the radial Schrodinger equation
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conditions:

(32)

A typical run, involving generation of the non-

local potential for a single projectile energy and

solution of the resulting Schrodinger equation, re-
quires less than 6 min on the IBM 360/91 computer.

VI. RESULTS AND DISCUSSION

where S is the scattering matrix element. The
primes denote differentiation with respect to R.

The computer program used to solve Eq. (26)
was written by Owen, ' based on the method
described by Robertson. Discretizing Eq. (29)
yields a set of simultaneous equations

1+~d 5') g

+ 1+~d 8'],g
1 P.

= ~pre? K( |)+ lozgq+Kg, |,g)
T~ &),

)=0

f =2, 3 N. (34)

Here d is the interval size and T& is the weighting
appropriate for Simpson's rule. There are only
N —1 simultaneous equations since &I&o is fixed by
the boundary condition (31) and &I&, is arbitrarily
chosen. The solution to Eq. (34) may be renor-
malized to satisfy the boundary conditions (32) and

(33). Equation (34), which is of order d, is solved
by Gaussian elimination with partial pivoting.
Results of timing and accuracy tests on this code
are given by Reeves and Owen.

Both the nonlocal potential generator routine
and the code for solution of the Schrodinger equa-
tion were written in double precision FGRTRAN Iv.

The computer code iused in the solution of Eq.
(26)] was written in a versatile manner. Effects
produced by the real and imaginary parts of the
kernel, K(R, R'), can be examined independently
or simultaneously. The structure of the kernel
also allows one to consider separately the bound
and continuum states of the target.

Comparison between our calculated results and
those observed experimentally by Qilbody, Steb-
bings, and Fite are shown in Fig, 1. With the
exception of 0. 279-Ry measurements, we find good
agreement. The disparity between our theoretical
and the measured results at 0. 2V9 Ry may be at-
tributable to increased experimental difficulties at
this low energy. Examples of calculated angular
distributions for electron energies greater than the
excitation or ionization thresholds are shown in
Fig. 2.

Comparisons between the data of Brackmann,
Fite, and Neynaber (obtained from the p-wave
calculations of McEachran and Frazer ) and those
of Neynaber, Marino, Rothe, and Trujillo25 are
shown in Fig. 3. Our results agree remarkably
well with both sets of these data over the energy
range in which the measurements were made. The
importance of the distortion effect is readily seen
in the difference between the calculated and static
elastic scattering cross sections. According to
these results, the adiabatic approximation is poor
in the energy range considered here.

i
l

50

I I I I I I I I I

OBSERVED BY BRACKMANN, FITE, AND NEYNABER------ OBSERVED BY NEYNABER ef'u/
PRESENT STUDY——STATlC SCATTERlNG

—20Ngb

C&

I- l 0
O
V)

PL-

O

FIG. 3. Comparison of observed
and calculated elastic cross sections
for electrons scattered by atomic
hydrogen.

0 0.2 0.4 0.6 0.8 l.O &.2 l.4 &.6 ),8 2.0 2.2 2.4 2.6 2.8
ELECTRON ENERGY ( Ry )
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higher than those observed may be indicative of the
importance of exchange in the ionization process
or perhaps the approximations made in our model.

The total elastic, inelastic, and interaction cross
sections are shown in Fig. 6.

VII. CONCLUSIONS

In this study we have incorporated in a consistent
manner all of the significant contributing open
channels to the scattering of slow electrons from
atomic hydrogen. We have demonstrated that the
zeroth-order approximation made in the exact
Green's functiori yields results which agree well
with the available data. Obviously, physically
more realistic approximations can be made which
are tractable- some of which wer e suggested in Sec.
III. For practical reasons these approximations
preclude incorporation of the continuum contribu-
tions to the optical potential.

The present model could be improved by includ-
ing exchange into the formalism. However, this

would introduce additional nonlocality into the mod-

el, and it is not certain what numerical difficulties
would result.

We have omitted the bound- and resonance pro-
jectile-state contributions. These closed-channel
terms contribute principally to the real part of the
optical potential and, consequently, affect the elas-
tic scattering process below the first excitation
level. The resonances arise as a result of forma-
tion of negative-ion states at energies near the dis-
crete excitation threshold. These states are un-
stable toward autodetachment and are usually a
few tenths of an electron volt in width. In hydro-
gen, one permanently bound negative-ion state
has been observed and has a measured binding en-
ergy of 0.8 eV. ' The formation of such a state
must involve a third body —either another electron,
photon, or hydrogen atom. The significance of
such processes in elastic scattering of electrons
from atomic hydrogen is not expected to be impor-
tant.
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