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Low-Energy Photoionization
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Low-energy-photoionization cross sections for the elements hydrogen through plutonium
were calculated using a nonrelativistic single-particle model. Initial-atom and final-ion
wave functions were developed from the Hartree-Fock equations using Slater's free-electron
exchange approximation. Core relaxation was included approximately by using experimental
binding energies in the Schrodinger equation for the continuum electron. Subshell contributions
and total-cross-section calculations for the noble gases are compared with Hartree-Fockval-
ues with complete exchange. Total cross sections are compared with experiments for low-,
medium-, and high-atomic-number elements.

INTRODUCTION

Attenuation of photons by atoms has been a
phenomenon of interest for approximately a cen-
tury. At photon energies between 0. 1 and 10 keV,
photoionization is the dominant attenuation mecha-
nism with practically negligible contributions from
other processes. Experimental data in this en-
ergy range are sparse. Most of the experimental
data were obtained for the noble gases because of
the relative ease with which those gases can be
handled in the laboratory and because they are in
the free-atom state. In addition, experimental
data have been obtained only at selective photon
energies because of the availability of x-ray line
sources.

Extrapolations and interpolations of the experi-
mental results yield values for elements at en-
ergies for which experiments were not performed,
but knowledge of photon attenuation in this energy
range still relies mainly on theory. Various the-
ories have been developed, but, to date, none has
been used to calculate a comprehensive set of
photoionization cross sections for all elements
over the energy range 0. 1-10 keV. This is pri-
marily because the more complete theories involve
large amounts of computer time, and the simpler
theories allowing quick calculations use relatively
unrealistic models. Current reviews and bibliog-
raphies of the work above 1 keV are given by
Storm and Israel' and Hubbell~; and reviews of
theory down to 0. 1 keV are given by Fano and
Cooper, ' Kennedy and Manson, and Amusia,
Cherepkov, and Chernysheva.

The work reported here6 uses a fairly realistic
model with improved computational techniques in-
volving moderate computational effort to obtain
reliable calculations of photoionization cross sec-
tions over a range of low energies for all ele-
ments.

Theories for calculating photoelectric cross sec-
tions vary considerably in complexity. Effects

such as electron exchange, multielectron correla-
tions, and coupling in the final electron states have
recently been considered in detail for selected
elements. ' " Such effects have considerable in-
fluence on atomic cross sections at energies be-
low approximately 0. 1 keV, and on selected sub-
shell contributions for higher energies. The com-
putational difficulties involved in including these
effects in their entirety for all elements, how-
ever, forces the consideration of approximations
for the effects or neglect of them where possible.

In this paper we describe a model incorporating
such approximations and present calculations of
total photoionization cross sections for all ele-
ments from hydrogen through plutonium in the en-
ergy range 0.1-10 keV. Calculations were ex-
tended to 0. 01 keV for the noble gases to examine
the influence of the approximations used by com-
paring our results with experiment and earlier
calculations. Electron exchange was included in
the approximate form developed by Slater, and
core relaxation was included approximately by
using experimental electron-binding energies in
the wave equation for the continuum electron.
Relativistic, multiparticle, and coupling effects
were neglected.

THEORY

The contribution to the total photoionization
cross section by an electron in the nl subshell of
an atom was computed from the dipole central-
field expr ession

a ~ 'l a &+&& 2„(= 3 1TQQON„gkv
2) l ~B( g+

~

R(+ J 2+

where a is the fine-structure constant, ao is the
Bohr radius, N„, is the subshell occupation num-
ber, hv is the photon energy in rydbergs, and
R~ y are the radial matrix elements for the transi-
tion of the electron from the bound state with or-
bital quantum number / to continuum states with
l'= l+ 1. The electronic states of the ionic core
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were assumed unchanged from their initial states,
and transitions to discrete final states were ne-
glected.

The radial matrix elements were found from the
dipole-length expr ession

Z„,= f P„,(r)~P, „,(~)A, (2)

where x is the electron radial position in Bohr
units, & is the continuum electron energy, and

P„,(x) and P, ,„,(r) are the bound and continuum
radial wave functions, respectively, of the photo-
electron. These wave functions were determined
by solving the radial Schrodinger equation with
E„&0 and q &0 for the same central potential,
where E„ is the total energy of the electron in the
nth level. The potential V(x) in the radial Schro-
dinger equation

d2
, + V(~)+Z„-, P(~)=0,(

l(l+ 1)
(3)

in which E„ is in rydbergs and x is in Bohr units,
was obtained by summing the nuclear Coulomb
potential, the net electronic Coulomb potential,
and the Slater free-electron exchange potential.

For low- energy-photoionization calculations,
exchange must be included at least in this approx-
imate fashion, because for the large orbital quan-
tum numbers of the outer subshells the centrifugal
term cancels more of the attractive net Coulomb
potential making the attractive exchange term a
greater portion of the net attractive potential.
Values of V(x) in this approximation are listed for
most elements by Herman and Skillman. '

In Hartree —Fock (HF) calculations with complete
electron exchange' the radial-length expression
agrees better with experiment near threshold than
does the velocity expression, and the velocity ex-
pression agrees better at higher energies than does
the length expression. Furthermore, smoothing
of the electron exchange potential, as in the Slater
free-electron exchange approximation used in the
present work, gives results that agree with the
HF length (HF-L) calculation near threshold and
with the HF velocity (HF-V) calculation at higher
energies. It appears that this treatment of the
exchange portion of the Hamiltonian retains the
best features of the length and velocity formalisms
and is reasonable for calculating photoionization
cross sections over a wide range of photon en-
ergies for many elements.

Bound-state wave functions were calculated by
the HF self-consistent field method" for solving
Eq. (3) and were normalized to satisfy the expres-
sion

with the small-x starting functions given by
Hartree, "and normalized in energy by the method
of Bates and Seaton' to the asymptotic form'

P„(y)=e ' 4sin[e'~sr —2lv+Z'e '~aln(2e'~Sr)+ 5,],
(5)

where Z' is the residual ionic-charge number and

5, is a constant phase shift. This procedure, de-
scribed in detail by Cooper, ' does not require
knowledge of the phase shift, but it must be per-
formed at a radius where the slope of the argu-
ment of the sine function in Eq. (5) is approxi-
mately constant. The slope of the argument is

+q ' x ', which approaches the constant g

as x becomes large. Because the ratio of the sec-
ond term to the first term in the slope is energy
dependent, the normalization constant must be
calculated at a different radius for different & to
obtain the same accuracy in the cross section for
tha, t subshell over the photon energy range.

Though the same wave functions were used for
the ionic core electrons in their initial and final
states, the effect of core relaxation on the con-
tinuum electron was included approximately by
using experimental binding energies in the Schro-
dinger equation for the continuum radial wave
function. The experimental energies used in this
study were primarily those tabulated by Bearden
and Burr, "Moore, "and Siegbahn et al. ' They
were combined, where necessary, to subshell en-
ergies according to electron occupation numbers.
Energies for the 5f electrons were taken from
Ref. 10 and other energies were interpolated.

Figure 1 for the xenon 5s subshell shows the ef-
fect on the photoionization cross section of using
the experimental binding energy in the Schro-
dinger equation for the continuum wave function.
The Hartree-Slater (HS) results including approx-
imate core relaxation (HS„) from the present work
are shifted from the HS results toward the HF-L
curve, given in Ref. 4.

NUMERICAL PROCEDURES

Computations were performed on a CDC 6400
digital computer. Integrals were evaluated by the
Simpson's rule quadrature method, and differential
equations were solved by Runga-Kutta numerical
methods. The running time for the total program
varied from approximately 4 sec per subshell per
photon energy at low-Z elements to about 5. 5 sec
per subshell per photon energy for high-Z ele-
ments. The computing time for our complete set
of photoionization calculations was approximately
17 h.

f P„, (y) y=d. I (4) Radial Matrix Elements

Continuum radial wave functions were obtained by
numerical integration of Eq. (3), initiated atr = 0

The radial matrix elements given by Eg. (2)
were computed by using the basic Herman-Skill-
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FIG. 1. Photoionization cross section of the 5g sub-
shell of Xe; HF-L and HF-V are from Ref. 4; HS is from
Ref. 4; HS„ is the present calculation including approx-
imate core relaxation.

man' integration intervals adjusted for each ele-
ment and photoelectron energy. The intervals re-
ferred to here are —,

' the size of those published in
Ref. 10. Adjustment of the interval size to ensure
fairly constant integration accuracy over the range
of elements and energies considered was accom-
plished by examining the oscillations of the con-
tinuum wave function. As the integration of Eq.
(2) proceeded outward to larger interval sizes, the
interval size was compared to ~0 the wavelength
of the continuum wave function. If the interval
size was greater, it was .divided by 2 and com-
pared again. When proper comparison was ob-
tained, the bound-electron wave function was in-
terpolated for values at the new integration points.
Equation (3) for the continuum wave function was
integrated in more refined steps by dividing the
interval size used in Eq. (2) by 4 for «50 Ry
and by 6 for & &50 Ry.

Continuum Wave Function

then, if

a,. -=X'~' (r;)P„(~;)
and

(10)

where PI, (v;) is the unnormalized continuum wave
function at radial distance x;, and xa and x, are
arbitrary but different values of x&, it can be
shown that the normalization constant is

sinyC= a a
(Qy+ 02 —20) Ap cosp) 1/2 ~

In regions where the denominator of Eq. (11)
vanishes, C will be indeterminate, so the condi-
tion

Ne

phase shift of the asymptotic form of the wave
function. Here C is defined as the ratio of the
asymptotic form to the unnormalized form of the
wave function determined from Eq. (3). In elim-
inating the phase shift, it is proposed in Ref. 13
that determination of the slope X=-C8/Ch of the
argument 8(r) of the asymptotic wave function

P„=e '~'sin8(r),

in which

8(~)=-e' 'r ——,'lv+ Z'e ' 'In(2c' 't)+ 5, ,

be performed by examination of a second-order
differential equation in X and x. We have de-
termined the slope directly and examined it and the
function 8(x) itself at two separate radii to elim-
inate the phase shift 5, . In particular, since

The continuum wave function was determined
from Eq. (3) by using the same central potential
V(r) that was used in determining the bound-elec-
tron wave function. The energy & was found, how-
ever, by subtracting the experimental binding en-
ergy from the incident photon energy. Integration
of Eq. (3) was started near r =0 with the power-
series expansion given by Hartree. " As the con-
tinuum wave function was evaluated step by step
fram Eq. (3) it was immediately substituted into
Eq. (2) to eliminate the duplicate setup of the in-
tegration interval scheme.

Normalization of the continuum wave function is
similar to that described in Appendix A of Ref.
13. By this technique, the normalization con-
stant C can be determined without knowing the
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FIG. 2. Photoionization cross section for Ne. HS,~ is
present work; HF-L and HF-V are from Ref. 4. Data
points are closed circles from Ref. 17, open circles
from Ref. 18.
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a, +a2 —2a, a2cosy=02 2 (12) 100 = I I I I I I' I I I I I

defines regions of numerical instability. Since
a, =a2, indeterminacy may occur where y=nm,
implying that

(a, + a~ )/2a, a~ ~ a 1 . (13)

Because (1 —1/er, )'~2 = 1 at either r, or ra, Eq.
(13) indicates numerical instability in C wherever
the continuum wave function satisfies the condition

z0
I-0
Ltl
tA

tA

0tA
K0

P(r, ) =t P(r, ) . (14)

This condition may be satisfied when C is calcu-
lated near a positive or negative peak in the con-
tinuum wave function, or at a node.

The procedures used in calculating the normal-
ization constant were designed, therefore, to
meet the two criteria that (i) normalization was
performed in the asymptotic region of the con-
tinuum wavefunction; and (ii) regions of calcula-
tional instability were avoided. Criterion (i) was
satisfied by selecting r, &ro, where ro was a radius
greater than that for which the bound-electron
wave function effectively vanished and for which
the condition 1/era& 0.01 was satisfied. This sec-
ond condition assures that X is within 1% of the
value q', and that the influence of the residual
ion on the continuum electron is small. Cri-
terion (ii) was satisfied by examining the slope of
the wave function for a positive or negative peak,
and then fixing r, a few intervals past the peak.
Values of r2 &r, were used to calculate C until two
successive calculations showed a round-off agree-
ment to four significant figures. Successive r2
values were stepped off from the first r2 by using
5 the step size between r, and the first value of

Selection of values for r2 never proceeded

10-'
'10 100

PHOTON ENERGY (e~ )

800

FIG. 4. Photoionization cross section for Kr. HS,~

is present work; HF-L and HF-V are from Bef. 4. Data

points are closed circles from Bef. 17, open circles
from Ref. 20.

Figures 2-5 show our HS„results for neon,
argon, krypton, and xenon compared with the HF-
L and HF-V calculations from Ref. 4 and experi-
mental values, ' ' In Fig. 2 the agreement of the
HS„results with the length calculation at low en-

ergies and the velocity calculation toward higher
energies is evident. The same feature occurs for
argon and krypton, and comparison with experi-

past the point where the difference r, -r, equalled
a quarter wavelength of the continuum wave func-
tion. Before C was calculated, the comparison
sin2y & 0. 001 was made as an additional precaution
against instability in the calculation.

RESULTS

Noble Gases
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is present
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Photoionization cross section for Ar. HS„
work; HF-L and HF-V are from Bef. 4. Data
closed circles from Hef. 17, open circles
19.

FIG. 5.
is present
points are
from Bef.

Photoionization cross section for Xe. HS„
work HF-L and HF-V are from Bef. 4. Data
closed circles from Ref. 17, open circles
21, triangles from Bef. 20.
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FIG. 10. Photoionization cross section for Ag; data
points are from Refs. 26, 27, 34, 36, 39, 41-44, 48,
49, and 52-55.

FIG. 12. Photoionization cross section for W; data
points are from Befs. 22, 41, 49, and 60.

ments from hydrogen through plutonium, and
graphical comparisons were made with experiment
for 52 elements for which experimental data were

available. Sample comparisons with experiment
are presented for aluminum, silicon, silver, tin,
tungsten, and gold in Figs. 8-13. Comparison is
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FIG. 11. Photoionization cross section for Sn; data
points are from Befs. 27, 30, 39, 44, 45, 49, 52, and
55-59.

FIG. 13. Photoionization cross section for Au; data
points are from Befs. 22, 26, 27, 30, 32, 36, 41, 42,
48, 49, 52, 54, 59, and 61-65.
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good at all energies for low-Z elements and above
approximately 0. 2 keV for medium- and high-Z
elements. The discrepancies below 0. 2 keV in
silver, tin, and gold are due to incomplete ex-
change in the d-subshell cross-section contribu-
tions, such as for xenon.

Though the discrepancy between theory and ex-
periment has been shown here to be due mostly to
the Slater exchange potential, multielectron cor-
relations and the physical and chemical states of
the experimental samples also affect the cross
sections at low photon energies, especially near
thresholds. Amusia, Cherepkov, and Cherny-
sheva~ have shown that though single-particle-
model cross sections may vary from experimental
values at threshold by as much as a factor of 2,
theoretical cross sections that include multielec-
tron correlations in addition to exchange are in
good agreement with experiment. Jaegle et al. 6'

also refer to effects from multiple-excitation
mechanisms in the spectra of high-Z elements,
and the possibility that part of the discrepancy be-
tween any free-atom theory and experiment is due
to the crystalline structure of the absorbers.

CONCLUSIONS

The calculations agree qualitatively with ex-
periments. Scatter in experimental data makes
it difficult to assign quantitative uncertainties.
For example, Kr and Xe between 10 and 20 eV and
Si and Au between 0. 1 and 0. 2 keV in Figs. 4, 5,
9, and 13 show scatter varying from factors of
2-6, well beyond the experimental errors reported.
Over many regions for which there are sufficient
and consistent experimental data, uncertainties in
our calculations are of an order of magnitude of
10%%uo. Largest discrepancies appear at the lower
energies for medium- to high-Z elements. Anal-
ysis of subshell cross-section contributions has
shown the reason to be incomplete calculation of
electron exchange and possibly lack of correlation.
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The projection-operator formalism advanced by Feshbach is used to derive a numerically
tractable equation which describes the elastic scattering of electrons from atomic hydrogen
under multichannel conditions. By neglecting the potential of interaction in the inverse opera-
tor, analytical expressions can be obtained for the Green's function which permit the inclusion
of both discrete and continuum target-state contributions to the optical potential. The numeri-
cal procedures used to solve the resulting nonlocal integrochfferential equation and to generate
differential, total elastic and inelastic cross sections are discussed. Good agreement is
found with available experimental data.

l. INTRODUCTION

The theoretical determination of atomic and
molecular scattering cross sections in the low-
energy region is greatly complicated by the pres-
enoe of a large (usually infinite) number of open
scattering channels. Thus, in order to obtain an
accurate description of scattering phenomena for
charged particles of energy below the region where
the Born approximation is valid, effects due to the
various inelastic processes which may occur must
be included. . The usual practice of expanding the

total wave functions in terms of a set of target
eigenfunctions leads to an infinite set of coupled
differential equations which describe the scatter-
ing probabilities for elastic and inelastic pro-
cesses. The difficulties associated with large
coupled sets of equations preclude accurate solu-
tions for all but a very limited range of projectile
energies.

Two important effects that should be accounted
for at low energies in electron scattering from
atoms and molecules are exchange and polarization.
Exchange arises as a result of the Pauli principle


