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The four second-order terms in the Born series for the proton-hydrogen electron-transfer
problem are analytically reduced from six-dimensional to three-dimensional integrals. No

mass approximations are made. This permits an accurate numerical calculation of the total
cross section to second order. Numerical results are given from 0.1 to 2. 5 MeV. The com-
plete second-order cross section reduces the first-order results by 30k from 1 to 2. 5 MeV.
The various first- and second-order Born approximations for this problem are discussed.

I. INTRODUCTION

One of the most basic and widely studied three-
body rearrangement processes is that of resonant
proton-hydrogen elec tron-transf er collisions. ~ In
an early classical analysis of the problem,
Thomas described the collision process as a two-
step interaction and found that the total cross sec-
tion behaved as E "at high energy, where E is
the energy of the incident proton. At about the
same time, Oppenheimers and Brinkman and Kra-
mers performed a quantum-mechanical calcula-
tion leading to a cross section sharply peaked in
the forward direction ("pickup" process) with a
high-energy behavior of E . They used an ab-
breviated form of the first-order Born approxi-
mation which neglected the proton-proton inter-
action. This neglect is justified in the expected
high-energy region of validity of the first-order
Born approximation by the large proton-electron
mass ratio which allows a classical description of
the internuclear motion.

The neglect of the proton-proton interaction was
disputed by Bates and Dalgarno and by Jackson
and Schiff. The latter have shown that inclusion
of this interaction for forward-scattering angles
reduces the Brinkman-Kramers cross section at
all energies and, in the high-energy limit, by a
factor of 0. 661. In this approximation, the energy
dependence of the cross section remains as E 6.

Mapletonv has pointed out that Jackson and

Schiff erred in neglecting the contribution to the

proton-proton interaction from backward-scat-
tering angles ("knockout" process). Including
this, he shows that for resonant systems at high

energy the total cross section behaves as E '.
However, due to the small coefficient of the E 3

term, the Jackson-Schiff cross section is not in

error until around 50 MeV, and the E behavior
is not approached until well over 100 MeV, a re-
gion where relativistic corrections must be con-
sidered. It is interesting to note that for the
resonant positron-positronium system the E 3 be-
havior is readily apparent at an energy of only
200 eV.

The four second-order terms of the Born approx-
imation were first investigated by Drisko in the

high-energy limit. 'o For forward-scattering
angles, he found that the first-order proton-pro-
ton interaction was cancelled by some of the sec-
ond-order terms. The total cross section then
behaved as E ' at high energy as predicted clas-
sically by Thomas. However, he did not consider
backward scattering, and his arguments need
modification in that region. Also, the coefficients
of the second-order terms are such that they do
not dominate the first-order terms at forward-
scattering angles until 50-100 MeV.

The question of the convergence of the Born
series for rearrangement collisions has been
raised by Aaron et al. ~~ Their proof of noncon-
vergence dealt with a divergence of the Green's-
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function series for rearrangement collisions, and
no rigorous conclusion can be drawn about the
Born series itself. Indeed, a one-dimensional
counter example has been given by Dettmann and

Liebfried. The latter have also carefully ex-
arnined the asymptotic behavior of the various
terms in the Born series and have concluded that
for resonant systems the first-order repulsive in-
teraction does eventually dominate the cross
section because of backward scattering. At for-
ward angles, they agree with Drisko's results.
For nonresonant systems, they conclude that both
the first- and second-order Born terms are needed
even at high energies.

The purpose of this paper is to investigate the
role of the second-order Born terms at inter-
mediate energies (100 keV to a few MeV). In this
region the various asymptotic expressions that
have been used to examine the high-energy be-
havior are not completely valid. In Sec. II, the
analytic reduction of the four second-order Born
terms from six-dimensional to three-dimensional
integrals is given. This permits an accurate
numerical calculation of the second-order terms
to be done by computer. The results are dis-
cussed in Secs. III and IV.

II. EVALUATION OF MATRIX ELEMENTS

We consider the rearrangement process in which
particle 1 (proton) is incident on a bound state of
particles 2 (proton) and 3 (electron):

k)k = I"yk (2 4)

&a, +k„
p, = p, , I ) — (i,j, k cyclic), (2. 5)

k m&+mk& m&

where

m;(m, +m„)
p, )=

mf +m' +mk

The three sets of p&, k» are related by

mg +mk

p~ = —(&~~/ma) p&+k~» (2. 7)

k» = —(p»/ p~) p&
—(p»/m~) k„(i,j, k cyclic)

(2. 3)
In this coordinate system, the matrix element for
the process [Eq. (2. 1)j can be written

(o,"'IMI c,"')= 64~x' dkp,
l

dk»
(gp~k2 )2

l (& +k )

+ (p&k31IM
I » k») (2' 9)

dg I i P2 iP2I ITI TII 12
dn (2v)' Ip,'I

(2. 10)

where p& and p2 are the initial and final momenta,
respectively, for the free proton (with the scat-
tering angle 8 given by P,' Pp= —cos8); M is any of
the operators in Eq. (2. 2); and where the two-

body bound states in Eq. (2. 1) were taken to be
the ground state of hydrogen with ~ = p23e = ao' as
the reciprocal Bohr radius. The differential cross
section to second order in the Born series is
given by

1 + (2, S)- (1, 3) + 2 . (2. 1)
A. First-Order Terms

After the collision, particle 2 is ejected. The
first- and second-order Born-series terms for
this process are, respectively,

z'„=
& e,'"

I
v, + v, I

c!"&,
T $f

= ( cy
I

vg Gp vp+ vg Gp v3 + v3 Gp vp

(2. 2a)

Gp=(S-ap)-' . (2. 3)

Here S is the three-body center-of-mass energy
with positive imaginary part, and IIO is the Hamil-
tonian for three free particles.

The coordinate system used to evaluate the
matrix elements in Eq. (2. 2) describes three par-
ticles with charges Z&, masses m&, and momenta
k, (i=1, 2, 3). In terms of these, we define the
relative momenta

+V, G, vslc'l') (2 b)

where 4&
' represents the final three-body state

with particle 2 free; 4&
' represents the initial

three-body state with particle 1 free, V& is the
potential between particles 2 and 3, etc. ; and Go
is the Green's function for three free particles
given by

The first-order terms have been extensively
referred to in the literature and are given for
reference in the present notation. Using the

Coulomb potential

f
I
» p q 5(pg —p ()ZgZf8

(p;k» I
V( I p ( k)»= 2q Ik —k '

jk jk
(2. 11)

the matrix element evaluated by Brinkman and

Kramers is

(c "'
I v, I e '" ) = - 32vx'e'/(x' g')'

where

A = p I+ (p„/m, )p p .

(2. 12)

(2. 13)

To first order in the electron-proton mass ratio,
Eq. (2. 12) leads to the cross sectionP (in units of

app)

cr „=40.2/E(1+E), (2. 14)

where E is the proton energy in the lab system in

units of 100 keV.
The matrix element of V3 has been evaluated by

Jackson and Schiff and may be written as'
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&ols)l& l@(i)) &@& )vite) ) (3B —B'A)x i 2P —B'A
)2(B'-s X) (2B'-25 A)'"""

B (B + B && —X )+ B ~ A(X (B A- 2X )- (B + X )
(B —B A+ax )

(a. is)

where
~ fB= pi &23/ms+Pa . (a. 18)

The first of the four second-order matrix ele-
ments from Eqs. (2. 2b) and (2. 9) is

( p I V&{:0Val@» )=84» 2 ka 2
}

a 2)a
(2) I dk31 dk23

X +A3, „X+023

x{P 2 ks1 I vl GO v2 I p 1 k23) (2 18)

The integrand can be expanded by introducing the
complete set of basis vectors }pa ks, ):
(p 2 311 V1GOV2 P 1k23)

ii ) p (paksi } Vi }pa ksi)(pa'ksi} Va}p ik»)
~-Pa /2}12 —ksi /2}isi

(2. 19)
where the Green's function was defined in Eq.
(2. 3). Using Eqs. (2. 7), (2. 8), and (2. 11) the
matrix element of V2 becomes

In deriving Eqs. (2. 12) and (2. 1S), mi ——ma was
used, but no approximations were made.

In evaluating Eq. (2. 15) for the scattering angle
8= 180, a limit must be taken. The limiting form
ls

(I(I& &

I
v

I

@& &) —( (lg & &

} v }4&& &)/24$ )

x (1S&&4+10''Ba+ 3B') (8 = 180' only) . (2. 17)

Neglecting backward scattering and keeping only
the leading energy dependence, Jackson and Schiff
have given an analytic formula for the first-order
total cross section 0».

B. Second-Order Terms

1 ($23 ~fx, s-
I

»+kas)k»- Al 2» i m3

2--1
Ik„-"»k -"»B . (2. 21)

Equation (2. 21) may now be inserted into Eq.
(2. 18). Finally, the change of variables k, =kas+8
and ka--k»- A leaves Eq. (2. 18) in the form

2 4 5

(@& &

I
V 6 V 14& &1&)

—32/31 izaz e X

where

dk1 I12
k2 [) 2 (k B)2]2 i ( ' )

I

dka(x'+ (k —B) +aka' [A- (p, aj/ms)ki]+ka]
12 ka [ga (k A )2]2

(2. 23)
In a similar manner, the matrix elements of

V1+Q V3 and V3GO V2 can be reduced to this form.
The results are

2 4 5
&a& ) (1), —32',23Z1 Z2Z3e X

4'p
I
Vi{:0Vslc'& ) =

where
~flf f
P2 (P'23/ 3)P 1 k23 t

k 31 (P'31/} 1)P 1 (i 31/ms) 23 '

Similarly evaluating the matrix element for V, and
utilizing the two S functions, Eq. (2. 19) can be
written

~ f f Z1Z2Z3e2 4

(pak311V1GQV2IP1k23) 4 4
} }24m Ik23+ B I

(P2 k311 V2IP 1 23) {P2 311 V2IP2 31 )

z,z,e s(pa -pp )
2 }k"-k"

}31 31 where

d 1 I13x
I

2 [, (- -),], , (2. 24)

&8 2 [ au23~+ (ki + A) '+ (i 23/u2)pa au3 2k'a(kl/m'3+ B/P'23)+k2]
is

}
ka [~'+(k, —k, - B)']' (a. as)

where

2 5
(2) I g V I (1)X

—32P31Z1Z2Z3
k2 [ya (k B)2 ]2 I

. dk~ [ ai1318+ (ki + B) + (p'31/p'1)P 1 + 2p'sika (ki/m3+ A/}1'31) + ka ]
[~2+(k, +k +X)2]2

(a. 28)

(2. 2'7)
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The three integrals I&3, I», and I3& are all of the
same form and can be done analytically. The de-
tails are given in the Appendix. This reduces
three of the second-order Born terms to a single
vector integral.

The last second-order term is V, GpV, which
contains the proton-proton interaction twice. For
this term, the analog of Zq. (2. 19) is

(p 2 k$11 ~3GO~3 I p 1 k23 ) p3
~

potentials in Eq. (2. 28) make it, more convenient
to eliminate the variables k» and k~3 in terms of
the set p, and k» in the complete matrix element,
Eq. (2. 9). Then, the change of variables

pg $3 ~ II+ ~ p ~P ~1k)= p3 —kq~+pa and kq=p +p+p

leads to

g 2gP 4gs
(@& 1@G @1@&)) i a s 2

X (pak3, j Uq (psk, ~)(psk&2l Vs[p ik2s)
2 2 2. 28S-p,/2&, —ki, /2&„

The 5 functions derived from evaluating the two

X'
P Pi k 8 2 y2

where

~) ~ -1
I ~a a a' -. p~ pa ~a 3[X +(k2 —A) ]+2p(2k)' —— ——+kq (k~ —kg)

i k& p3 Ply Alp tÃ. g

(2. 30)

The three-dimensional integrals representing
the second-order Born terms, Eqs. (2. 22), (2. 24),
(2. 26), and (2. 29) were evaluated numerically for
several energies from 0. 1 to 2. 5 MeV. In Table I
the cross sections calculated in the various ap-
proximations discussed in Sec. I are compared.
In this energy region, backward scattering is com-
pletely negligible and the Jackson-Schiff cross
section represents the correct first-order Born
approximation. Above 0. 5 MeV, the exact second-
order cross section is smaller than the other ap-
proximations.

Drisko's high-energy formula for the second-
order cross section is'

on= (5mqg/2' + 0. 295)oeK, (3. 1)

I» is of a slightly different form than Eq. (2. 23).
It is evaluated analytically in the Appendix.

This completes the demonstration that the sec-
ond-order Born terms can be analytically reduced
from six-dimensional to three-dimensional inte-
grals. No approximations were made concerning
the relative masses of the three particles. How-
ever, as a convenience to the proton-hydrogen
problem, m, =~, was freely used. In Sec. III some
numerical results are presented.

III. NUMERICAL RESULTS

demonstration that VSGpV3 is smaller than all the
other first- and second-order terms at high energy,
these considerations show that the proton-proton
interaction V3 is unimportant in calculating the
rearrangement cross section to second order for
forward-scattering angles. However, in the exact
calculation, the imaginary parts of all the second-
order terms are important, frequently being
larger (by order of magnitude in some cases) than
the real parts. The over-all sign of the real parts
of the terms V, Gp V3 and V3Gp Va varies as a func-
tion of the scattering angle. With increasing en-
ergy the real parts of these terms become in-
creasingly negative as is required to cancel the
positive term V~. Finally, the doubly repulsive
term V3GpV3 is of the same order of magnitude as
the other second-order terms in this energy re-
gion although its role slowly decreases with in-
creasing energy.

In Fig. 1, the cross sections given in Table I
are shown as a function of E~ for E units of 100

TA HLE I. Proton-hydrogen electron-transfer total
cross sections in atomic units. The approximations are
those used by Brinkman-Kramers (Ref. 4) (BK), Jack-
son-Schiff (Ref. 6) (JS), Drisko (Ref. 10) (D), and the
present calculation (II).

where v is the velocity of the incident proton and
veK is given in Eq. (2. 14). The first term in Eq.
(3. 1) is about 10% of the second term at 2 MeV.
Several of the results of Drisko's high-energy
analysis are violated in the energy region con-
sidered here. His results show that the terms
V& Gp V~ and V3Gp V& have negligible imaginary parts,
and that the sum of these two terms exactly can-
cels the first-order term V, . Together with his

E
(MeV)

0.1
0.5
1.0
1.5
2.0
2. 5

BK

1.26
1.03x
2.50x
2.56 x
4.92 x
1.35 x

sections in a.u.Cross
Js

0.231
10- 3.16 x
10-5 9.23x
10 1.04 x
]0 ~ 2.12x
10- 6.Q9 x

D

0.381
3 ~ 22 x
7.98x
8.31 x
1.62x
$, 5Q x

10-'
10-'
10 6

10"
10-8

0.360
10-' 2. 96 x10-'
1Q" 6.58 x 1Q"

10 6.74x 10 7

3.0-' 1.43 x10-'
10-8 4. 20 x 10-8
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APPENDIX

The integrals I

I= p

sa, I&3, I
1

» are each of tha e form

w'(x, +zF 7 w'' '
1

~ |+W ~ X ~+~ w ' ', + 2w 0 + w') '

(A1)
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where X„Xa, 0» and Va are independent of W.
Using the Feynman integral formula"

&o = 1+ 2[X( Va+ Xa Vs —(Xi+ Xa)V Va]/(Xt —Xa)

a b „'o [aX+ b(1 —X)], =2I dx (A2)

Equation (Al) becomes

1=4~f'dXX f"dW f,'ds (W'+2WVaz+Xa)-',

(A3)
where

&p = —&4/2Xa .
Defining

1
~n dy nn 3 yn(~ ya+ ~ y+ ~ )a/a

the final result can be expressed as

(A7)

(A8)

Va = X77&+ (1 —X)ga and Xa ——X&X+ (1 —X)Xa .
(A4)

(A5)

1
~

& gy ++y ++y+Q4
2 (X, —X,)'

~

ya(o', ya+ o.',y+ n,)"a
(Ae)

where

n, = —2(7, —Va) /(Xg —Xa)

oa = 3+ 2[(2' + Xa) Va+ 3Xa Vg

—2(Xg+ 2Xa)fg Va]/(X, —Xp)

o'a = —2Va —3Xa —2Xa[3Xp Vg+ (4' —Xa) Va

—(4X, + 2Xa)V, Va]/(Xg —Xa)

o'4 ——2Xa (Xyfa
—Xafg) /(Xy —Xa)

The integrals over 5'and z can be done in a
straightforward manner to give

m
~ d X(3Xa —2 Va)

X (Xa V )~~a '

The transformation y = X(X, —Xa)+ Xa changes Eq.
(A5) to

1f=
2 (X X.a (»~ i+ oa~o+ os~i+ ~4~a)
2 Xg —X2j y~xp

(AQ)
The integrals J'„can be done analytically.

The quantity Xa+ 2W Va+ Wa in Eq. (Al) actually
represents the free-particle Green's function Go.
This can have a simple pole within the range of
integration. However, the final result [Eq. (A9)]
will automatically produce the correct imaginary
part for the second-order Born terms.

The special cases X, =Xa with or without 7, =Vs
can occur and are best treated by returning to Eq.
(A5) and then simplifying the expressions X, and
'V3 at that step.

The form of the integral Iaa differs from Eq. (Al)
only in that both factors in the denominator are
raised to the first power. Use of the appropriate
Feynman formula and the same transformation
leads to a much simpler result

" (X, —X,) (- n,)'" y(o,'-4n, n, )&&a) '- 2

(Ala)
where the n's were defined in Eq. (A7).
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