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The four second-order terms in the Born series for the proton-hydrogen electron-transfer

problem are analytically reduced from six-dimensional to three-dimensional integrals.

mass approximations are made.
cross section to second order.

No

This permits an accurate numerical calculation of the total
Numerical results are given from 0.1 to 2.5 MeV. The com-

plete second-order cross section reduces the first-order results by 30% from 1 to 2.5 MeV.
The various first- and second-order Born approximations for this problem are discussed.

I. INTRODUCTION

One of the most basic and widely studied three-
body rearrangement processes is that of resonant
proton-hydrogen electron-transfer collisions.! In
an early classical analysis of the problem,
Thomas? described the collision process as a two-
step interaction and found that the total cross sec-
tion behaved as E-5-° at high energy, where E is
the energy of the incident proton. At about the
same time, Oppenheimer® and Brinkman and Kra-
mers* performed a quantum-mechanical calcula-
tion leading to a cross section sharply peaked in
the forward direction (“pickup” process) with a
high-energy behavior of E-%, They used an ab-
breviated form of the first-order Born approxi-
mation which neglected the proton-proton inter-
action. This neglect is justified in the expected
high-energy region of validity of the first-order
Born approximation by the large proton-electron
mass ratio which allows a classical description of
the internuclear motion.

The neglect of the proton-proton interaction was
disputed by Bates and Dalgarno® and by Jackson
and Schiff.® The latter have shown that inclusion
of this interaction for forward-scattering angles
reduces the Brinkman-Kramers cross section at
all energies and, in the high-energy limit, by a
factor of 0.661. In this approximation, the energy
dependence of the cross section remains as E-5,

Mapleton” has pointed out that Jackson and

Schiff erred in neglecting the contribution to the
proton-proton interaction from backward-scat-
tering angles (“knockout” process). Including
this, he shows that for resonant systems at high
energy the total cross section behaves as E-3,
However, due to the small coefficient of the E-
term, the Jackson-Schiff cross section is not in
error until around 50 MeV, and the E-% behavior
is not approached until well over 100 MeV, a re-
gion where relativistic corrections must be con-
sidered.® It is interesting to note that for the
resonant positron-positronium system the E-® be-
havior is readily apparent at an energy of only
200 eV.°

The four second-order terms of the Born approx-
imation were first investigated by Drisko in the
high-energy limit. !* For forward-scattering
angles, he found that the first-order proton-pro-
ton interaction was cancelled by some of the sec-
ond-order terms. The total cross section then
behaved as E-%% at high energy as predicted clas-
sically by Thomas. However, he did not consider
backward scattering, and his arguments need
modification in that region. Also, the coefficients
of the second-order terms are such that they do
not dominate the first-order terms at forward-
scattering angles until 50-100 MeV.

The question of the convergence of the Born
series for rearrangement collisions has been
raised by Aaron et al.'! Their proof of noncon-
vergence dealt with a divergence of the Green’s-
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function series for rearrangement collisions, and
no rigorous conclusion can be drawn about the
Born series itself. Indeed, a one-dimensional
counter example has been given by Dettmann and
Liebfried. The latter!® have also carefully ex-
amined the asymptotic behavior of the various
terms in the Born series and have concluded that
for resonant systems the first-order repulsive in-
teraction does eventually dominate the cross
section because of backward scattering. At for-
ward angles, they agree with Drisko’s results.
For nonresonant systems, they conclude that both
the first- and second-order Born terms are needed
even at high energies.

The purpose of this paper is to investigate the
role of the second-order Born terms at inter-
mediate energies (100 keV to a few MeV). In this
region the various asymptotic expressions that
have been used to examine the high-energy be-
havior are not completely valid. In Sec. II, the
analytic reduction of the four second-order Born
terms from six-dimensional to three-dimensional
integrals is given. This permits an accurate
numerical calculation of the second-order terms
to be done by computer. The results are dis-
cussed in Secs. IIT and IV.

II. EVALUATION OF MATRIX ELEMENTS

We consider the rearrangement process in which
particle 1 (proton) is incident on a bound state of

particles 2 (proton) and 3 (electron):
1+(2,3)-(1,3)+2 . (2.1)

After the collision, particle 2 is ejected. The
first- and second-order Born-series terms for
this process are, respectively,

Tiu=(H¥ | vVi+Vs| o) ,
Ti=(®82 | ViGoVy+ VG Vs +V3GoVy

(2. 2a)

+V3GoVy|@ Py , (2.2b)

where &2 represents the final three-body state
with particle 2 free; ®{!’ represents the initial
three-body state with particle 1 free, V, is the
potential between particles 2 and 3, etc.; and G,
is the Green’s function for three free particles
given by

Go=(S—-Hy™? . (2.3)

Here S is the three-body center-of-mass energy
with positive imaginary part, and H is the Hamil-
tonian for three free particles.

The coordinate system used to evaluate the
matrix elements in Eq. (2. 2) describes three par-
ticles with charges Z;, masses m;, and momenta
k; (i=1,2,3). Interms of these, we define the
relative momenta

KRAMER 6
- k, Kk
Kjp =My (;’y:j_ - mkk ) (2.4)
- K, +k 1 - :
Pi= “'i (m) - == (Z,],k CYC]-IC) ’ (2- 5)
where
_m(m; +m,) __mm,
Ha My +my+m, and - Ky my;+my” (2.6)
The three sets of P, ,Y{,k are related by
Pi== (/M) By + Ky 2.7

kjk == (Mjk/“’j).ﬁj - ('J'jk/mk)r{ki (iyjy k CyC].iC) .
(2. 8)
In this coordinate system, the matrix element for

the process [Eq. (2.1)] can be written
(2) My _ 5 dk 31 dk 23
(22| M| @) = 64mn J'(Kz s A

+k§1)2
X(Dakey | M|Pike) , (2.9)

where P and pj are the initial and final momenta,
respectively, for the free proton (with the scat-
tering angle 9 given by p{ p4=—cosf); M is any of
the operators in Eq. (2.2); and where the two-
body bound states in Eq. (2.1) were taken to be
the ground state of hydrogen with X = pye®=aj! as
the reciprocal Bohr radius. The differential cross
section to second order in the Born series is
given by
b4
I8 BE Er ITheT e (2.10)

A. First-Order Terms

The first-order terms have been extensively
referred to in the literature and are given for
reference in the present notation. Using the
Coulomb potential

6(B; =P 1)ZxZs€"

P . o B .
2172 Ikik_kjk I (2 11)

(B | V4B K ) =

the matrix element evaluated by Brinkman and
Kramers is

@P|v,|8{0) =~ 32mte?/ (% + 4%, @.12)
where
K=5!+(1g/m3)P3. 2.13)

To first order in the electron-proton mass ratio,
Eq. (2.12)leads to the cross section® (in units of

2 .
ag)

0sx=40.2/EQ1+E), 2.14)

where E is the proton energy in the lab system in
units of 100 keV.

The matrix element of V; has been evaluated by
Jackson and Schiff and may be written as®
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5® w -(‘P(Z)IVI‘I’“) |:(3B2 B A) (Bz-'B’-K)”2
BA(B+ B2 - \Y) + B AQ2(B- A - 22%)- (Bz+x2)2] 2. 15)
N B-B-R+22%) ’ .
|
where where
B=B} las/ms+D3. 2. 16) B = = (g /13)B L = s,

In deriving Egs. (2.12) and (2. 15), m,=m, was
used, but no approximations were made,

In evaluating Eq. (2.15) for the scattering angle
6=180°, a limit must be taken, The limiting form
is

(2) I V3| @ 1)) ( <¢ 2) l Vl l¢§1)>/24x4)

x (152%+ 10A2B%+3B*) (6=180° only). (2.17)

Neglecting backward scattering and keeping only
the leading energy dependence, Jackson and Schiff
have given an analytic formula for the first-order
total cross section oyg.

B. Second-Order Terms

The first of the four second-order matrix ele-
ments from Egs. (2.2b) and (2. 9) is

dk. dk,
2P IVG V|2 =64 | 7 | o B
x(P 3Ky | V100V2|§;E23> . (2.18)

The integrand can be expanded by introducing the
>l1y 17
complete set of basis vectors |p, kg, ):

<p2k31| ViGo Vs, Ip 1k23>
[y LB G 7

S—13"%/215 - k31%/ 21, ’
where the Green’s function was defined in Eq.

(2.19)

Kt =(kg/m)P 1~ (V-al/ms)Ezs .

Similarly evaluating the matrix element for V, and
utilizing the two & functions, Eq. (2.19) can be

written
iR ViGow [FiRg - 228E Ly
xm [S 2:12( tu 5;1‘1-{23 )2
2;1131<1'(’31 I:;; Kpg — %ﬁ)z ]-1 . (2.21)

Equation (2. 21) may now be inserted into Eq
(2.18). Finally, the change of variables K =Kp+B
and K, =Kj, - A leaves Eq. (2.18) in the form

5P| V,G,V, |8 V)= 32“31212223@ 0

7T
dk1 I,
_2_ [)\2+ (k - B) ] ’ (2- 22)
where
1= &y 0* + (Ky - BY + 2k, - [A (1gy/mg) £ +k2}1
27) e 2+ (i + AN
(2.23)

In a similar manner, the matrix elements of
V1GyV; and V3G, V, can be reduced to this form.
The results are

(2.3). Using Egs. (2.7), (2.8), and (2.11) the o a5
matrix element of V, becomes 52| V,G,V, | 8y == 32#2351 Z3Z3e\
<-.”*”|V2|p1k23> <*” :;”Valpé"f{’“ _d_E_L I
25 (1 >110 X kz [7\2+(k¥ +A=)2]2 9 (224)
_2123¢% (D —Ps") (2. 20) 1 1
2n® 1Ky - Kap 12 ) where
|
diy [ = 21558 + (Ky + AP+ (gs/1hg) P 3% = 2hbpsks * (Ky/my+ B/ ligg) + K5
& 23 1 23/ Pa 23Kz * K/ 23
I“_j k3 %+ (K- k- 3)2] ’ (. 25)
- 324,222, Z.e™\° dk I
5@ e 31212323 &4 %
| VsGoVa| 1) = m [+ (ky+ BY] (2.26)
where
_(diy [—205yS+ (K, + B+ (Lgy/11)p B+ 20y Ky - (By/mg+ B/ pgy) + BE]! (2. 27
132= 2 2 g iz 2 12 ° )
ks X +(kz+k1+x) ]
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The three integrals I,,, I3, and I3, are all of the
same form and can be done analytically. The de-
tails are given in the Appendix. This reduces
three of the second-order Born terms to a single
vector integral,
The last second-order term is V3G,V5 which
contains the proton-proton interaction twice. For
this term, the analog of Eq. (2.19) is

<§£E31| VSGOV3 lﬁ;EZS > zj'db;sdk’la

B 3Ky | V3 1By Kip (B3 Ky | V515 1 Kay)
2 2 .
S"Pa/zus- Ri2/2015

The 6 functions derived from evaluating the two

(2.28)

dR [ Ky,
Isszs‘?“[ 2N 4 (K, -
1 LHa

I3 is cf a slightly different form than Eq. (2.23).
It is evaluated analytically in the Appendix.

This completes the demonstration that the sec-
ond-order Born terms can be analytically reduced
from six-dimensional to three-dimensional inte-
grals. No approximations were made concerning
the relative masses of the three particles. How-
ever, as a convenience to the proton-hydrogen
problem, m,=m, was freely used, In Sec. III some
numerical results are presented.

III. NUMERICAL RESULTS

The three-dimensional integrals representing
the second-order Born terms, Eqgs. (2.22), (2.24),
(2.26), and (2.29) were evaluated numerically for
several energies from 0.1 to 2.5 MeV. In Table I
the cross sections calculated in the various ap-
proximations discussed in Sec. I are compared.

In this energy region, backward scattering is com-
pletely negligible and the Jackson-Schiff cross
section represents the correct first-order Born
approximation. Above 0.5 MeV, the exact second-
order cross section is smaller than the other ap-
proximations.

Drisko’s high-energy formula for the second-
order cross section is'®

op= (5710 /2"%+0. 295) 05 , (3.1)

where v is the velocity of the incident proton and
Opx i8S given in Eq. (2.14). The first term in Eq.
(3.1) is about 10% of the second term at 2 MeV.
Several of the results of Drisko’s high-energy
analysis are violated in the energy region con-
sidered here. His results show that the terms
ViGeVs and V,G,V, have negligible imaginary parts,
and that the sum of these two terms exactly can-
cels the first-order term V,. Together with his

’ - -1
P1 P: kj 2 Ty
]+2“12k1 (ml mz—m1) k ] /(k1 K .

KRAMER 6

potentials in Eq. (2.28) make it more convenient
to eliminate the variables K,, and K, in terms of

the set p; and Ky, in the complete matrix element,
Eq. (2.9). Then, the change of variables

M
m

)

E—E1z+§é and Ez=§3+5;+55

leads to

- 32, 23225

773

CHANVANALIUE

J‘dkzw——g]z‘ , (2.29)

where

-

(2.30)

demonstration that V;G,V; is smaller than all the
other first- and second-order terms at high energy,
these considerations show that the proton-proton
interaction V; is unimportant in calculating the
rearrangement cross section to second order for
forward-scattering angles. However, in the exact
calculation, the imaginary parts of all the second-
order terms are important, frequently being
larger (by order of magnitude in some cases) than
the real parts. The over-all sign of the real parts
of the terms V,GyV; and V3G, V, varies as a func-
tion of the scattering angle., With increasing en-
ergy the real parts of these terms become in-
creasingly negative as is required to cancel the
positive term V5, Finally, the doubly repulsive
term V;G,V; is of the same order of magnitude as
the other second-order terms in this energy re-
gion although its role slowly decreases with in-
creasing energy.

In Fig. 1, the cross sections given in Table I
are shown as a function of E for E units of 100

TABLE I. Proton-hydrogen electron-transfer total
cross sections in atomic units. The approximations are
those used by Brinkman—Kramers (Ref. 4) (BK), Jack-
son-Schiff (Ref. 6) {(JS), Drisko (Ref. 10) (D), and the
present calculation (II).

E Cross sections in a.u.
(MeV) BK Js D I
0.1 1.26 0.231 0.381 0.360
0.5 1.03x10°% 3.16x10"% 3.22x10" 2,96 x10"¢
1.0  2.50x10°% 9,23x10"® 7.98x10® 6.58x 1078
1.5 2.56x107% 1.04x10"% 8,21 x10"" 3,74%x 1077
2.0 4.92x10°7 2.12x10°T  1,62x10"7 1.43 x10"
2.5 1.35x10"7 6.09x10-% 4,50x10% 4.20x 108
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keV. Asymptotically, oygE*® approaches 40. 2
[Eq. (2.14)], while 0,E*® approaches 0. 661 of this
value. Drisko’s result is still approximating an
E-% behavior, since the first term in Eq. (3.1) has
not yet dominated the second. At very much higher
energies (~100 MeV), Eq. (3.1) will begin to dis-
play an E-*5 behavior and at still larger energies
(~1000 MeV) o, will become greater than ogg.
However, at these energies backward scattering
invalidates Eq. (3.1). At higher energies than
those considered here (say, 10-50 MeV), the exact
second-order calculation should follow o, through
its region of validity and then display the dominant
E"® behavior of the correct first-order cross section.
An additional feature of adding in the second-
order terms is shown in Fig., 2. The first-order
differential cross section of Jackson and Schiff
dips to zero at some small scattering angle which
is slightly energy dependent. This is due to can-
cellation between the matrix elements of V; and
Vs which are always of opposite sign. The tail of
the first-order differential cross section contrib-
utes from 5% to 10% of the total cross section.
The complete second-order differential cross sec-
tion is monotonic in behavior and decreases more
rapidly at larger scattering angles than the first-
order curve,

1IV. CONCLUSIONS

The basic question of the role of the proton-pro-
ton interaction in the Born series for proton-hy-
drogen electron-transfer collisions has been set-
tled at very high energies by the dominant role of

40

20

® o

o (a2) x (10E)°
o

»

| 1 1 |
00 04 0.8 1.2 1.6 2.0 24 28

E (MeV)

FIG. 1. Proton-hydrogen electron-transfer total cross
section in atomic units multiplied by (10E)® for E in MeV
as a function of energy. The various approximations are
described in Table I.

10? = ! | ' I ! l 3
o P+H—H+P ]
i 4 E = | MeV ]
10 &= p
oo | ]
o
g IE =
© - 3
~ — —
b — .
b= — —
107
|o‘2 1 1 L 1 1 Il
(o] 0.02 0.04 0.06

SCATTERING ANGLE © (deg)

FIG. 2. Proton-hydrogen electron-transfer differen-
tial cross section in atomic units as a function of the
center-of-mass scattering angle in degrees. The lab
energy is 1 MeV. The approximations are described in
Table I.

the first-order repulsive term V;. At intermedi-
ate energies, such as those considered here, all

of the first- and second-order terms are important,
In fact, the higher-order terms may well play a
significant role.!® However, if these terms con-
tribute an energy dependence no greater than E=,
then Drisko’s cross section could be useful at en-
ergies up to an order of magnitude higher than the
energies investigated here.

A useful test of the various approximations would
be comparison with experiment. Unfortunately,
the various experiments'! are not always in good
agreement and extend up to only 100 or 200 keV.

It is necessary to include the effects of capture
into excited states when making a comparison with
experiment. Finally, the calculation of the cross
section in the higher MeV ranges requires the ad-
dition of relativistic effects.
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APPENDIX
The integrals Ij,, I3, I3; are each of the form

(w1 1
) WE (i 2W -V + WP (O + 2W -V, + WE)

I
(A1)
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where X;, X,, V,, and V, are independent of W.
Using the Feynman integral formula'®

1 1 X
e zjo dX—————[a X200 -9F * (A2)

Equation (A1) becomes

I=47rf01 dXXf;dWﬁ dz (W2+2WV,az+ X,)8

where (43)
V3=le+ (1 —X)Vz and X3:X1X+ (1 —X)Xz .
(A4)
The integrals over W and z can be done in a
straightforward manner to give
2 (1 2
_mt X@Xx, -2V3)

The transformation y = X(X; — X,)+ X, changes Eq.
(A5) to

1=ﬁ 1 fxldy %+ )P+ agy + 0y
2 (- Xz)z_,x TP (a5 + agy+ ag)¥E
: (46)

where
@ == 2V, - V)2 /(X - X,)% ,
o, =3+2[(2X, + X,)Vi+3X,V2
-20x;+2%,)V,- V, )/ (X,- Xp)? ,
0y==2VE:-3X,-2X,[3X,Vi+ (4X, - X,) V3
- (@x,+2%,)V,-V,)/ (X, - X,)?,
0, =2X, (X, V, - XV, )2/ (X% - X%,

KRAMER 6
Q5= %al s
o=1+2[X V3+ X Vi- (X + X)V- Vol /(X - %)%,
a7=—" a4/2Xz . (A7)
Defining
1
= A
Iy jdy y"(asvz+ gy + a,,)3’z s (A8)
the final result can be expressed as
‘ﬂz 1 y=X.
1=y T = 37 (da+ Galo+ Qi+ Qg Tt
(A9)

The integrals J, can be done analytically.

The quantity X,+2W.V,+ W2 in Eq. (A1) actually
represents the free-particle Green’s function G,.
This can have a simple pole within the range of
integration. However, the final result [Eq. (A9)]
will automatically produce the correct imaginary
part for the second-order Born terms.

The special cases X; =X, with or without v, =V,
can occur and are best treated by returning to Eq.
(A5) and then simplifying the expressions X; and
V, at that step.

The form of the integral I ; differs from Eq. (A1)
only in that both factors in the denominator are
raised to the first power. Use of the appropriate
Feynman formula and the same transformation
leads to a much simpler result

LT 1 [gintf— 2V +2% T
BT - Xp) (- ap)'? (3’ (05— 40[5&7)”2)] y=X, ’
(A10)

where the @’s were defined in Eq. (A7).
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