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Calculations have been made on the elastic scattering of low-energy electrons by helium us-
ing a variational procedure which takes polarization and correlation effects into account by
means of continuum Bethe-Goldstone equations. The convergence of the results is examined
using two methods to obtain a complete set of basis functions. Results for the s, p, d, and f
waves are presented. The width of the 28 closed-channel resonance below the n =2 threshold
is found to be 0.015 eV, in comparison with the 0.015-0.020-eV estimates of Andrick and Ehr-
hardt from experiment and the 0.01-eV estimate of simpson and Pano.

I. INTRODUCTION

Interest in the application of variational methods
to scattering problems has recently been revived
by Harris and collaborators' and Nesbet. The ad-
vantage of the algebraic expansion method lies in
the ease with which polarization and correlation
effects can be taken into account. However, as
the approach is based mainly on representing the
trial wave function as a linear expansion over
basis functions, it is important to check that these
functions form a complete set and that the results
are convergent. The problem has been investi-
gated by Schwartz' in his pioneering work on elec-
tron-hydrogen collision, using the Hylleraas type
of function for H to describe the closed- channel
part of the scattering. The choice is indeed very
good as might be anticipated, because it is well
known that the corresponding Hylleraas function of
He gives a good description of the correlation ef-
fect. For atomic systems with more than two
electrons it is much more difficult to obtain the
wave functions with the Hylleraas method and it is
usually better to use the configuration-interaction
method. However, it has long been recognized
that, to obtain the same degree of accuracy with
the configuration-interaction method, many more
terms are needed in the expansion over basis func-
tions. It is therefore important that, if the vari-
ational approach is to be applied to the study of
electron scattering by targets other than hydrogen,
the problem of convergence should be further in-
vestigated.

The aim of the present work is twofold: first,
to study the convergence of the calculations using
two methods to obtain a complete set of basis func-
tions; and second, to examine the contributi. on of
polarization and correlation effects in electron-
atom scattering using the Bethe-Goldstone method
to describe these interactions. The plan of this
paper is as follows. In Sec. II we discuss briefly
the theory of electron-atom scattering using the

, va~iational approach. Section III describes an in-

vestigation of the convergence of the calculations
using two methods to choose sets of basis func-
tions. The results of the calculations on electron-
helium scattering are given in Sec. IV, and we
summarize our conclusions in Sec. V. The present
work extends variationa1. calculations previously
reported by Michels et al. '

by carrying the orbital
expansion to practical completeness and by includ-
ing f-wave results.

II. THEORY

The scattering of an electron by an N-electron
atom is described by a stationary-state wave func-
tion

4=Z Ceqgq+5 C~c„.

Here 6~ is a normalized N-electron wave function
for the electronic stationary state of the target
atom corresponding to scattering channel P; g~ is
the one-electron channel wave function for an open
channel with angular momentum l~ and wave-vector
magnitude k~ (kinetic energy —,'k~ in Hartree atomic
units); I „is one of an assumed orthonormal set of
(N+ l)-particle Slater determinants that constitute
the Hilbert-space component of 4. The operator 8
antisymmetrizes 8~/~ and includes the factor
(%+1) ' ' required to give the antisymmetrized
function the same relative normalization as an
(X+ 1)-electron Slater determinant.

The Slater determinants, defined in terms of an
N-electron reference-state determinant 4(l, are
exemplified by

C =dety, (i) ~ ~ ~ y (f) ~ ~ y (j)" y (X)y (m+ l)
4', =detg, (l) ~ P, (i) P~(j ) ~ ~ ~ P„(N)y, (N+ l), (2)

4;)'——det&f), (l) ~ P,(f) ~ ~ ~ P~(j ) &jb~(N)Q, (N+ l),
where an assumed denumerable set of one-electron
orbital functions is subdivided into orbitals P„
P&, .. . occupied in Co, and orbitals P„P~, .. .
that are orthogonal to the occupied set; det means
antisymmetrization and normalization appropriate
to the number of. electrons. The orbitals are
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quadratically integrable functions of space and spin
variables, normalized to unity. An assumed Hil-
bert space of orbitals and assumed reference state
4o generate a uniquely defined (N+1)-electron
Hilbert space {4„)through Eq. (2) if indices are
ordered by the convention

i&j& ~ ~ ~ & N&a&b ~ ~ ~ .
The general computational procedure of successive
variational calculations using nested subspaces in
a lattice decomposition of the Hilbert space (Q„)
has been described elsewhere. ' The computational
procedure is equivalent to variational solution of a
hierarchy of continuum Bethe-Goldstone equations. '
The use of the Bethe-Goldstone formalism in elec-
tron-atom scattering was originally proposed by
Mittleman.

The channel wave function is of the form

4~ =f~(r)Y,p'~(8, (f&)n,~,

where f~ satisfies the usual bound-state boundary
condition at r = 0, is orthogonal (by construction)
to all radial functions for Hilbert-space orbitals
(Q, ; P,j with the same angular and spin quantum
numbers, and has the asymptotic form

f~(x) -k~'~or 'sin(kp —
2 l~v + 6—~) . (5)

Here Y, is a normalized spherical harmonic and v

is an elementary spin function. Equation (5) can
be written in the form

~n = &AS&+ nu, Cn

where

S~ k~' r 'sin(kp'- —,'l~m),

C k'~ox -' cos(kp' —,
'

l~v)-.

(8)

The functions are constructed to satisfy the same
boundary and orthogonality conditions as f~.

The target-atom wave function e~ is expressed as

e, =P,c.c'. , (8)

where each 4, is a normalized N-electron Slater
determinant constructed from the orbital functions

The coefficients c~ are obtained as a
normalized eigenvector of the N-electron configu-
ration interaction matrix H„., corresponding to
energy eigenvalue E~. If E is the total energy of
the system, an open-channel k value is defined by

2gkp-—E- Ep,

for energies in Hartree atomic units, if E- E~ is
non-negative. The operator H is the nonrelativistic
Schrodinger Hamiltonian, either for X or for N+1
electrons, according to context here.

In the present procedure both the target wave
functions and the closed-channel part of the con-
tinuum functions with the same symmetry are con-
structed from the same sets of basis orbitals.

Let us consider, for example, the d-wave elastic
scattering of electrons by helium, which is de-
scribed in the calculation by sets of s, p, d, and f
orbitals. In the static-exchange calculation the
channel taken into account is 1s2d, where the tilde
indicates the continuum function. In the Bethe-
Goldstone calculation with the virtual excitation of
one electron from the ground state, the following
additional channels are included:

Is2p ~, Isp -, lsds, etc,

where the bar over the character denotes a pseudo-
state. In this way, not only excited states of the
target are allowed for, but polarization can be
taken into account too by including the correspond-
ing pseudostates in the sets of basis orbitals.
Moreover, as the coefficients in the expansion on
the trial wave function over basis orbitals are
energy dependent [see Eqs. (8)-(12)], the procedure
describes polarization and correlation in a dynamic
form.

The linearity of the Schrodinger equation makes
it possible to express Eq. (1) in the form

e=Z Zn„~Ze,"e'.~ Z e„c'g), (&0)
I p I e

where the coefficients mr~, with I= 0, 1, are defined
in Eq. ('7), and the coefficients c~ are the target-
state eigenvector coefficients of Eq. (8). The
coefficients c~ of Eq. (1), which are to be deter-
mined by the variational scattering calculation,
are expanded as '

c~ = (~poc~+o'uc~).OP 1P

The unnormalized (N+1)-electron Siater deter-
minants C~~ are defined by

(12)

It is convenient to define the (N+ 1)-electron un-
normalized functions as

el& Q @Itch (13)

These definitions make it possible to apply the
multichannel variational method to the general
wave function given by Eq. (1) or (10). The pres-
ent calculations use a modified version of the mul-
tichannel Kohn variational method, to be described
in detail elsewhere. ' This modified method is re-
ferred to as the "optimized anomaly-free" (OAF)
method. The asymptotic normalization indicated
in Eq. (5) is appropriate to this method. The
principal computational step in this method is con-
struction of the auxiliary matrix m~&&, from which
K-matrix elements are determined. This matrix
is defined by
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where i =I, j=tw'ith values 0, 1 as in Eq. (10),
and P, q are open-channel indices. Here M denotes
II- E, where II is the (N+1)-electron Hamiltonian.
The matrices combined in Eq. (14) are the bound-
bound matrix (Hermitian)

convergence is examined by increasing the number
of the basis functions used for different I states at
the same time. Moreover, we choose functions
that have maximum values at the same R0 defined

by

II~, = (C „, IIC, ),
the bound-free matrix (Hermitian)

and the free-free matrix (non-Hermitian)

MPc (elP (II E)eA')

(i7)

III. CHOICE OF BASIS FUNCTIONS

A serious shortcoming of the variational proce-
dure is that the approach does not satisfy minimum

principles ' and this may lead to serious difficul-
ties. There is no rigorous way for choosing the
set of basis functions used for linear expansion of
the trial wave function except by trying different
sets to find the stationary value of the phase shift.
Consequently, care must be taken to ensure that
the basis functions used form a complete set and
that the results are convergent. Moreover, it is
important to check that anomalous or completely
erroneous results are not obtained. '

We now describe the procedure we have adopted
in choosing the set of basis functions and consider
the e +He s-wave elastic scattering as a test case.
Let the one-electron orbital be represented in the
form

To test the convergence of the results, we have
tried tmo methods of choosing the set of basis
functions: (a) a sequence of exponents n decreasing
in geometric progression for a fixed order n,
together with a, sequence of exponents z inn"easing

in arithmetic progression for the same order n;
(b) a. sequence of exponents n increasing in geo-
metric progression for a fixed order n, together
with a sequence of a constant exponent n with in-
c~easing higher orders of n.

It has been shown by Muntz that a set of basis
functions with only the exponents a in "'ncreasing
geometric progression for a fixed order n does
not form a complete set. For this reason, we
have chosen the methods mentioned above to choose
the basis functions' and it can be shown that both
methods mould give a complete set. The results
are first checked that they converge with the geo-
metric sequence before superimposing the arith-
metic sequence in the case (a), or the sequence of
higher powers of n in the case (b). The rate of

3.018- k =0.1

3.017 -- —.
4~.

3
3.016-

3,4

3.015 I I I I I I I I

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Arithmetic Difference

FIG. 1. Variation of the phase shift for s-wave scat, —

tering with the number of terms used in the arithmeti
sequence of given arithmetic difference &. The number
of terms is indicated on the graphs. The geometric
sequence included is given in text.

for different values of the quantum number l. The
target states of the He atom are taken into account
to the zeroth order by adding to the set (a) or (b)
the orbitals n= 1, n = 2. 0, for the ground state;
n = 2, z = 0. 5 for the 2s state; n = 2, e = 0. 5, 2. 0
for the 2P and the pseudostate 2P; and n=3, a=2. 0
for the pseudostate 3P. It should be noted also
that if, when adding the basis functions, the values
are close to those of the target states, they are
replaced by the corresponding exponents in the
next-higher power of n. It is to be noted that all
basis orbitals of given l are combined in each
computed function.

Several geometric ratios have been tried to de-
termine the one which gives the best convergence
for the geometric sequence. An extremely small
ratio is usually avoided, because it would give no
effect at all because of the incompleteness of the
geometric sequence. For method (a), the ratio is
found to be 0. 5 and the series for the s orbitals is
n= 1, n= 1.0, 0. 5, 0. 25, 0. 125, 0.0625; for
the P orbital n=2, @ =1.0, 0. 25, 0. 125, 0.0625
and n=3, +=0.75. (Since for n=2, n=0. 5 is al-
ready used to describe the target 2P state, we
take the term into account by including the corre-
sponding term in the SP state. ) For the arithmetic
sequence, we have used several arithmetic differ-
ences A.. For example, for A. =Q. 6, the arithmetic
series for the s orbita, ls is n = 1, n = Q. 7, 1.3,
2. 7, . . . , and n = 2, n = 2. 0. |The orbital n = 1,
n = 2. 0 is already included, so me use the corre-
sponding value of n =- 2 and o. = 4. 0. ) The corre-
sponding arithmetic sequence for the P orbital is
n=2, a=1.4, 2. 6, 4. 0, 5.4, . .. . We show in
Figs. 1 and 2 the s-wave results for k = Q. 1 and
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FIG. 2. Variation of the phase shift for s-wave scat-
tering with the number of terms used in the arithmetic
sequence of given arithmetic difference X. The number
of terms is indicated on the graphs. The geometric
sequence included is given in text.

FIG. 4. Variation of the phase shift for s-wave scat-
tering with the number of terms used in the P sequence
with a fixed exponent ~. The number of terms used is
indicated on the graphs, starting with n = 2 for both s and

p orbitals. The arithmetic sequence included is given in
text.

0. 7, respectively. It is seen that the phase shifts
are quite stationary as a function of X. However,
for k =0. 7 anomalous results occur for X&0.9.

For method (b), the geometric ratio used is 2. 0
and the geometric sequence for the s orbital is
n= 1, o. =0.9, 3.6, 7. 2, and n= 2, n= 3.6 (thefunc-
tion n= 1, n = 1.8 is replaced by the corresponding
n = 2, n = 3, 6 because the ground- state term n = 1,
n= 2. 0 is already used); and for the P orbital the
sequence is n = 2, n = 7. 2, 14. 4, and n= 3, a = 2. V.

The results converge rapidly since large exponents
are used, i. e. , very-short-range functions. To
complete the set of basis functions, we use a se-
quence of a constant exponent o/ with increasing
higher powers of n with n = 3, 4, 5, . .. for both s
and P orbitals. We show in Figs. 3 and 4 the con-
vergence of the calculations with the same number
of terms used in the sequence for s and p orbitals.
A comparison of the results indicates that although
the "stationary" values of the phase shifts obtained

with methods (a) and (b) agree to the third signifi-
cant figure, the first method gives more consistent
results, and it is the method we have adopted for
choosing the basis functions in the subsequent cal-
culations.

IV. RESULTS

A. Elastic Scattering from the Ground-State Atom

Extensive calculations have been made on the
elastic scattering of low-energy electrons by heli-
um for the s, p, d, and f waves. Table 1 shows
the sets of basis functions used, and Table II the
results of the calculations.

We compare in Fig. 5 our results for the s wave
with previous calculations. Our results for the
static-exchange calculations agree quite well with
those of Burke, Cooper, and Ormonde, ' whosolved

TABLE I. Basis sets of orbitals of given / used for the
different partial-wave scattering. Every orbital is of the
form P& =Nr"e "F&m(r).

I I I I I i & I I I I I I I I I I

0, 1.0, 0. 5, 0.125, 0.0625, 1.3, 2.5, 3.7;
o

s n=1,
n=2

Q =2m

~ =0.
~ =0.
Q =2

s wave
3.020-

= 0.1
5, 2. 0, 1.0, 0. 25, 0.125, 0.0625, 2. 6, 5.0, 7.4;
0, 0.75

p n=2,

m 3.016—

3.014-
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5
o ~ 2e

0, 0.
333,
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(y =0.
n =-0.

0 =2e
~ -0.
(y =0.

p wave s
n 2 j
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pz 3s
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/
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/
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3.010
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5

Pz =1,
7z —21

n =2%

Q =2+

fz, =0.
d wave s

n =0.5, 2.0, 1.0, 0.25, 0.125, 0.7, 1.4;
fl = 2. 0n=2,

pz =3,
n=4,
n=4,

l. 5, 0, 1875, 1.05, 2.1;333
5
0, l.FIG. 3. Variation of the phase shift for s-wave scat-

tering with the number of terms used in the P sequence
with a fixed exponent e. The number of terms used is
indicated on the graphs, starting with n = 2 for both s and

p orbitals. The arithmetic sequence included is given in
text.

0, 0. 5, 0.25, 0.125

n=1,
n =2,
n.=3,
n =4i
7Z=O,

f wave s
p
d

f

0, 1.
o, 2.

1.
333
125;

0, 0.
0, 1.
5, 0.
2. 0,
pz

'- 6,

77=2, 0 =Oeo
0, 0.25, 0.125, 0.062o; n — 3,
75, 0. 1875, 0. 09375; n =- 4,
1.0, 0.5, 0.25, 0.125; n — 5,
~ =0, 125

Q =2+

~ =0.
n =0.
(y

.=0.
n =0.

~ -.= 2.0
=0.5
~ =-0. 333
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TABLE II. Partial phase shifts for s-, p-, d-, and f-wave scattering.

k(a. u. )

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

2. 9936
2.8473
2. 7037
2. 5675
2.4325
2.3107
2.1963
2.0956
1.9808
1.8900
1.8055

3.0164
2.8822
2.7459
2. 6142
2. 4836
2.3638
2. 2518
2.1338
2.0426
1.9550
1.8765

0.0061
0.0035
0.0108
0.0239
0.0426
0.0671
0.0947
0.1248
0.1552
0.1844
0.2103

0.0032
0.0129
0.0297
0.0539
0.0847
0.1200
0.1567
0.1947
0.2311
0.2646
0.2927

0.29-4"
0.60-4
0.15-3
0.41-3
0.0010
0.0021
0.0040
0.0066
0.0101
0.0143
0.0191

0.42-3~
0.0016
0.0036
0.0064
0.0097
0.0141
0.0197
0.0258
0.0322
0.0393
0.0473

0.13-8"
0.10-6
0.12-5
0.70-5
0.28-4
0.86-4
0.21-3
0.45-3
0.84-3
0.0014
0.0022

'q3

0.13-3"
0.31-3
0.52-3
0.95-3
0.0015
0.0023
0.0032
0.0043
0.0057
0.0076
0.0098

~(i) Static-exchange results. (ii) Results of static exchange with Bethe-Goldstone virtual excitation from the. 1s state.
Zhe final signed integer indicates the power of ten by which the number must be multiplied.

the close-coupling equations using only the target
states n = 1 and n = 2 of He, and also with those of
Burke and Robb, "who used the R-matrix method
with the n=1 target state only. %hen polarization
and correlation effects are taken into account by
the inclusion of the virtual excitation from the 1s
state using the Bethe-Goldstone method, we find
that the phase shifts are increased by about 3%.
Our results then agree exactly with those of
Cal'away et al. ,

' who used the extended polarized
orbital method. It might be of interest to point
out that, if the assumed target states of helium had
been exact, the calculations of Burke, Cooper,
and Ormonde would satisfy the minimum principles
and their results would be lower bounds. This
would not be the case in the work of Callaway
et al. , since only the first- or second-order terms

mere retained in the effective potentials. "
Figures 6 and '7 show the results for the P and d

waves. Again, our static- exchange results are in
close agreement with those of Burke and Robb, and
our Bethe-Goldstone results with those of Callaway
et al. To show the importance of the l =3 partial
wave in the d-wave scattering, we display in Fig.
8 our results for static-exchange calculations and
our Bethe-Goldstone calculations with and without
the f orbitals. It will be seen that the inclusion of
the f orbitals increases the phase shift appreciably.
This results from the external closed-channel
orbital of l = 3 symmetry, required to represent the
virtual polarization of the open-channel d wave, as
a contribution to the dipole polarization potential.
Figure 9 shows the results for the f-wave scatter-
ing, and finally Fig. 10 compares our total scatter-
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t S.E.

way et al. (EPOM)
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0
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FIG. 5. s-wave phase shift. FIG. 6. p-wave phase shift.
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FIG. 9. f-wave phase shift.
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FIG. 7. d-wave phase shift.

ing cross sections with previous calculations and
with the experiment of Golden and Handel. '6

Calculations have recently been made by Duxler,
Poe, and LaBahn'~ using the polarized-orbital
method (POM). Their results are in agreement
with ours for the s wave, and are not shown in
Fig. 5. Their results for the P and d waves are
shown in Figs. 6 and 7. They are greater by up to
4%%uq for the P wave at 0 = 1.1 a. u. , and by about 10%
for the d wave at k = 1.1 a. u.

0.04-

B. 2S Resonance

The search procedure for resonances' has been
used to locate the resonance below the n= 2 level
of helium. The set of basis functions used is given
in Table I.

Our calculation shows a resonance at the energy
of 19.4 eV with a width of 0. 015 eV, while the
close-coupling calculations of Burke, Ormonde,
and Cooper'~ predict the resonance at 19.33 eV
with a width of 0.039 eV. The exact width of the
resonance has never been determined. Simpson
and Fano' give an estimate of 0. 01 eV, and
Andrick and Ehrhardta give the estimates of 0.015-
0. 020 eV from their experiment, while Gibson and

olderas and Golden and Zecca have both mea-
sured the width to be 0. 008 eV. Our calculation is
in closer agreement with the experiment of Andrick
and Ehrhardt. Our work is also in quite good
agreement with the recent calculation of Temkin
et al. using the projection-operator formalism
of Feshbach. They obtain a width of 0.0144 eV.

0.03-

0.02-

I

25-I
I

20

I I I I I I I

Present
o Callaway et al.

Burke, Cooper and Orrnonde
j Expt —Golden and Bandel
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Ofa0)

15

0 I

0.2 0.4 0.6 0.8 1.0 1.2
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FjG. 8. d-wave phase shift for static-exchange calcu-
lations, and the Bethe-Goldstone calculations with and
without the f orbitals.

10-
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E(eV)

FIG. 10. Total elastic cross section.
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I I 1 I echo of the 1s2s2 resonance. "
C. Momentum-Transfer Cross Section

The momentum- transfer cross section has been
computed from our phase shifts (l= 0, 1, 2, 3).
Comparison with recent experimental data,
shown in Fig. 11, indicates excellent agreement.
The small remaining discrepancy may be due to
neglect of target-atom electronic correlation in
our calculations.

V. CONCLUSION

0.1 0.2 0.5 1.0
E(eV)

2.0
I I I I

5.0
I I

10.0

FIG. 11. Momentum-transfer cross section.

The fact that our calculation indicates the posi-
tion of the resonance to be 19.4 eV rather than the
experimental value of 19.3 eV is to be attributed
to target correlation effects, which are not cal-

'
culated correctly here. It should not be considered
as evidence for a second resonance displaced from
19.3 eV. It has been suggested recently by Golden
and Zecca that there may be further structures
in this energy region. The essential result of our
calculations is that there is a unique resonance, of
S symmetry, below the n= 2 level. A search for

resonances in other partial-wave channels shows
none below the S threshold, and furthermore, the
calculations using a fine mesh in this energy re-
gion fail to indicate any structure apart from the
S resonance. A similar conclusion has also been

reached by Temkin et al. In the opinion of Sanche
and Schulz ' the "observed" structure around 19.5
eV is a spurious one, and they believe it is "an

It is found that the two methods of choosing the
basis functions to obtain a complete set give the
same stationary values for the phase shifts, but
with the first method faster convergence is ob-
tained.

The results for the elastic scattering of electrons
by helium indicate that polarization and correlation
effects can be taken into account by the use of the
Bethe-Goldstone virtual excitation of a single elec-
tron from the ground state. With the inclusion of
these effects in the calculations, there is better
agreement between theory and experiment for the
width of the S resonance below the n= 2 level of
helium. Finally, it is of interest to note that the
present calculation is entirely an ab initio work,
while the calculations of Callaway et al. and
Duxler et al. use an empirical value of the ground-
state polarizability of helium.
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The four second-order terms in the Born series for the proton-hydrogen electron-transfer
problem are analytically reduced from six-dimensional to three-dimensional integrals. No

mass approximations are made. This permits an accurate numerical calculation of the total
cross section to second order. Numerical results are given from 0.1 to 2. 5 MeV. The com-
plete second-order cross section reduces the first-order results by 30k from 1 to 2. 5 MeV.
The various first- and second-order Born approximations for this problem are discussed.

I. INTRODUCTION

One of the most basic and widely studied three-
body rearrangement processes is that of resonant
proton-hydrogen elec tron-transf er collisions. ~ In
an early classical analysis of the problem,
Thomas described the collision process as a two-
step interaction and found that the total cross sec-
tion behaved as E "at high energy, where E is
the energy of the incident proton. At about the
same time, Oppenheimers and Brinkman and Kra-
mers performed a quantum-mechanical calcula-
tion leading to a cross section sharply peaked in
the forward direction ("pickup" process) with a
high-energy behavior of E . They used an ab-
breviated form of the first-order Born approxi-
mation which neglected the proton-proton inter-
action. This neglect is justified in the expected
high-energy region of validity of the first-order
Born approximation by the large proton-electron
mass ratio which allows a classical description of
the internuclear motion.

The neglect of the proton-proton interaction was
disputed by Bates and Dalgarno and by Jackson
and Schiff. The latter have shown that inclusion
of this interaction for forward-scattering angles
reduces the Brinkman-Kramers cross section at
all energies and, in the high-energy limit, by a
factor of 0. 661. In this approximation, the energy
dependence of the cross section remains as E 6.

Mapletonv has pointed out that Jackson and

Schiff erred in neglecting the contribution to the

proton-proton interaction from backward-scat-
tering angles ("knockout" process). Including
this, he shows that for resonant systems at high

energy the total cross section behaves as E '.
However, due to the small coefficient of the E 3

term, the Jackson-Schiff cross section is not in

error until around 50 MeV, and the E behavior
is not approached until well over 100 MeV, a re-
gion where relativistic corrections must be con-
sidered. It is interesting to note that for the
resonant positron-positronium system the E 3 be-
havior is readily apparent at an energy of only
200 eV.

The four second-order terms of the Born approx-
imation were first investigated by Drisko in the

high-energy limit. 'o For forward-scattering
angles, he found that the first-order proton-pro-
ton interaction was cancelled by some of the sec-
ond-order terms. The total cross section then
behaved as E ' at high energy as predicted clas-
sically by Thomas. However, he did not consider
backward scattering, and his arguments need
modification in that region. Also, the coefficients
of the second-order terms are such that they do
not dominate the first-order terms at forward-
scattering angles until 50-100 MeV.

The question of the convergence of the Born
series for rearrangement collisions has been
raised by Aaron et al. ~~ Their proof of noncon-
vergence dealt with a divergence of the Green's-


