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For a nonrelativistic quantal particle moving with the angular momentum l' =0 in a spher-
ically symmetric, smooth potential well, which in the neighborhood of the center of force
gives rise to an attractive Coulomb force, a formula for the probability density of the par-
ticle at the center of force is derived by means of certain phase-integral approximations of
an arbitrary order. From this formula, which is expected to be very accurate, the non-
relativistic approximation of the Fermi-Segre formula for the probability density of finding
an s electron at the nucleus of an atom or ion is obtained. The limits of validity of the
Fermi-Segrh formula in the nonrelativistic approximation are clarified by this derivation.

I. INTRODUCTION

The Fermi-Segre formula, which gives a
remarkably simple expression for the probability
density of finding an atomic or ionic s electron at
the position of the nucleus, is of importance for
the interpretation of hyperfine structure splittings,
isotope shifts of spectral lines, Knight-shift data,
and chemical shifts of Mossbauer lines. Impressed
by the simplicity and elegance of the Fermi-
Segre formula, Foldy undertook the task of im-
proving the derivation of the Fermi-Segre formula
in the nonrelativistie approximation. He was able
to give a more rigorous derivation of the formula,
but as regards the question of the accuracy of the
formula, no substantial progress was achieved.
In the present paper we shall derive the Fermi-
Segre formula in the nonrelativistic approximation
by means of the theory of certain phase-integral
approximations, which has been developed pre-
viously by the present authors. 7 This derivation
gives information on the accuracy of the Fermi-
Segre formula when relativistic effects, exchange
effects, and configuration inter actions are neglected.

As in Foldy's treatment, we consider a non-
relativistic s electron which moves in a local po-
tential. The normalized wave function of the elec-
tron can thus be written

l u(r, E„)
r (47r I"um(r, E„)dr)~~3

where u(r, E„) is the real, unnormalized, bound-
state solution corresponding to the eigenvalue E„
of the radial Schrodinger equation

du
~ +Q (r, E)u=0

with Q (r, E), in obvious notations, defined by

The integral appearing in (l) can be expressed

in a convenient form by means of an elegant meth-
od which has been devised by Furry. ' Furry's
general result for the normalization integral of
the real wave function for a bound state in a one-
dimensional potential well was recently formally
simplified by Yngve, who noticed that Furry's
expression for the normalization integral [Eqs.
(43) and (44) in Ref. 8] can, apart from a certain
constant factor, be written as the derivative with
respect to the energy of a certain Wronskian [see
Eqs. (6) and (2) in Ref. 9]. The general formula
given by Furry, written in this simplified way
and adapted to the present situation, is

fl OO

8 eu2
u (r, E„)dr=-,'aoe

(4)
where ao=h2/(mern) is the Bohr radius and e is
the electron charge. Formula (4) is an exact re-
lation provided u, and u2 are exact solutions of
(2) which, for any value of E, have the properties
that u&-0 when r-0 and u3-0 when r-~, and
that, furthermore, u&

—-um=u(r, E„)when E =E„.
It should be noted that the right-hand member of
(4) is independent of r, since the Wronskian of u,
and u~ is known to be independent of x.

To obtain useful approximate expressions for
the radial wave functions u„u~, and u which ap-
pear in (4) and (l), we shall use the previously
mentioned phase-integral approximations. of an
arbitrary order 2N+1. For the first order, i.e. ,
for N= 0, these approximations reduce to the first-
order JWKB approximation. For the higher or-
ders, i.e. , for N & 0, they are closely related to,
but not identical with, the higher-order JWKB
approximations. The difference has been explained
in detail in Ref. 7. According to Ref. 7 and the
references given in that paper, one can, under
certain conditions, which are in general fulfilled
in physical applications, to a very high degree of
accuracy, write the solutions of the radial Schro-
dinger equation (2) as linear combinations of the
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phase-integral functions

q ~~2(r, E)exp[+if q(r, E)dr]

where q(r, E) is a truncated series and hence de-
pends on the order 2K+1 of the phase-integral
approximation used. Our choice of phase of q
which agrees with that of Q, is shown in Fig. 1.
Denoting the contributions to q(r, E) pertaining to
the successive orders of the phase-integral ap-
proximations by q'~" (r, E), n = 0, 1, 2, .. . , we

may write, for the (2N+1)-order approximation,

q(r, E)=Zq(~"(r, E)
n=o

We remark that q("(r, E) = Q(r, E). As regards
the higher-order contributions to q(r, E), up to the
9th-order approximation, we refer to Ref. V and
to references given in that paper. We also men-
tion that Campbell, using a symbolic manipula-
tion computer program, has calculated the ex-
pressions for q' "' '

up to the 21st-order phase-
integral approximation.

For the sake of simplicity we shall, in Sec. II,
perform the derivation of an approximate formula
for g(0) using only the first-order phase-integral
functions, i. e. , the usual JWKB functions. This
means that we can write the occurring integrals
over q(r, Z} as definite integrals along the real
axis, while, in the general case of arbitrary or-
der phase-integral approximations, certain con-
tour integrals in the complex r plane will occur.
We emphasize, however, that apart from such
minor changes, the formula for (3(0) which will be
derived in Sec. II is valid for an arbitrary order
of the phase-integral approximations. Thus, by
a simple generalization we shall, in Sec. III, ob-
tain a formula for tg(0) which is valid for any or-
der 2N+1 of the phase-integral approximations.
If the order of the phase-integral approximations
used is chosen conveniently, one may in general
expect this formula to be much more accurate
than that corresponding to the first-order approxi-
mation. In Sec. IV we finally arrive at the Fermi-
Segre formula by introducing certain approxi-
mations in the formula for $„(0) given in Sec. III.

II. APPROXIMATE FORMULA FOR THE PROBABILITY
DENSITY AT THE CENTER OF FORCE

We assume that the potential V(r) is attractive
and reasonably smooth. The only detailed assump-
tion to be made about the analytic form of V(r) is
that, in the neighborhood of r = 0, V(r) is approxi-
mately equal to the potential of a point charge
situated at x = 0 and having the charge number g.
As r tends to zero, the potential V(r) thus behaves
as —ZeI/r, and hence Q (r) behaves as 2mZe3/

(5 r) = 2Z/(aor) According t.o the results obtained
on pp. V4-V9 in Ref. 5, particularized to the case

1 1

g~- Igl~ Q~-expI- iiTil /Qf
i ~

I

pIG. 1. Upper part of the figure shows the qualitative

behavior of V(y)-E for an attractive potential V(r) with

a Coulomb singularity at r =0. Lower part of the figure,
which refers to the complex r plane, gives the phase of

Q (r) on the part of the real axis to the right of the

classical turning point t and on the upper lip of the cut

(the heavy line) between 0 and t. The contour of inte-

gration I' is also shown.

l=0, the
equation
x=0 and
x-0, is
with l =0

solution u~(r, E) of the radial Schrodinger

(2), which for any value of E is zero for
normalized such that u, (r, E)/r- 1 as
approximately [cf. in particular Eq. (V. 28)
in Ref. 8]

when 0& x & t, where t is the classical turning point

shown in Fig. 1. Using one of the well-known

connection formulas of the JWKB approximation,

namely Eq. (8. 21) in Ref. 5, we find that the solu-

tion u3(r, E) of the radial Schrodinger equation (2),
which for any value E [& V(~)] tends to zero as
r-+~, is approximately (with a so far undeter-
mined r independent fac-tor C)

u, (r, E)=CQ "'(r, E)cos[f Q(r, E)dr ,'v], ——
(8)

when 0& r & t. The requirement that the functions

u, (r, E) and u~(r, E) shall be equal for E = E„gives,
by means of (I) and (8), the quantization condition
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f Q(r, E„)dr=nv, n=1, 2, 3, . . .
and the condition that

(9) point t. In this way we get as a generalization of
(9) the quantization condition

C=(- 1)" '(./2 Z)"', (Io)

~t

u, '-u~ '=(-1)"; ' sin Q(r, E)dr
Bx Br 2gg „0

11
and when this expression is inserted in (4) and
use is made of (9), we get

a'e' f 8
u (r, E„)dr=

~

— Q(r, E)dr
4wg ( BE„0 E=E„+'0

(12)
Inserting now (12) into (1), and recalling that
u(r, E„)/r = u~(r, E„)/r-1 as r-0, we arrive at
the formula

~„'(0)=, . ~

— Q(, E)d.z (e
ape~ ( BE,0

III. GENERALIZATION TO HIGHER-ORDER PHASE-
INTEGRAL APPROXIMATIONS

In the derivation of formulas (9) and (13) given
in Sec. D we can at every step use the phase-
integral functions (5) of a convenient order instead
of the first-order JWKB functions. The only com-
plication is that, instead of integrals in which x= 0
or r= t appearing as constant limits of integration,
there appear certain loop integrals. The general-
ization of (7) has not been discussed previously,
while the generalization of the connection formulas
of the JWKB approximation, one of which was
used to obtain (8), has been discussed in Ref. 7.
In order to generalize the final formulas (9) and
(13) given in Sec. II. to apply to the phase-integral
approximation of an arbitrary convenient order
2iV+ 1, we simply replace the integral f~'Q(r, E)dr
by a contour integral L(E) defined by

L(E)= ,'fr q(r, E)—dr, (14)

where q(r, E) is the truncated series (6) and I",
as shown in Fig. 1, is a closed contour in the
complex r plane encircling, in the negative sense,
both the origin (r = 0) and the classical turning

when E=E„. In the present paper we have a
smooth function Q (r, E) with a first-order pole
and a first-order zero, and therefore the quantiza-
tion condition (9) differs from the Bohr-Sommer-
feld (half-integer) quantization condition, which

applies to the case of a smooth function Q~(r, E)
with two zeros.

The approximate solutions u~ and u2 given by
(7) and (8) satisfy the conditions required for the
approximate validity of (4) if the conditions (9)
and (10) are fulfilled, and hence we can obtain an
approximate expression for the normalization inte-
gral appearing in (1). In fact, from (7), (8), and

(10) it follows tha. t

L(E„)=nv, n= 1, 2, . . . ,

and as a generalization of (13) the following for-
mula for the probability density at the center of
force is

ape BE ~ z
(16)

This formula can be expected to possess the same
accuracy as does the phase-integral approximation
of the order 2N+1 at the optimal point, which we
can choose to evaluate the Wronskian on the right-
hand side of (4) by means of the phase-integral
approximation of the actual order.

For a hydrogen atom or a hydrogenlike ion with
the electron in an s state the formulas (15) and
(16) are exact for any order of the phase-integral
approximations.

We may get sortie further information on the
accuracy of (15) and (16) by applying these formu-
las to the particular potential

V(r) = —~Ze'/(e"" —1), (17)

where K is a constant which can be given any posi-
tive value. This potential fulfills the condition
the. t V(r) behaves as —Ze /r in the neighborhood
of x = 0, which was assumed in the derivation of
formulas (15) and (16). The exact eigenvalues
and eigenfunctions for the potential (17) were
obtained in analytical form by IIulthen. ~' Utilizing
his results, we can also obtain an exact expres-
sion for (2(0). Calculating, then, for the potential
(17), E„according to (15) and g~(0) according to
(16), we obtain exact agreement with the corre-
sponding exact expressions for all orders of the
phase- integral approximations.

Upper bounds for the errors of formulas (15)
and (16) can be obtained from the results given in
our previous papers. ' ' Since, however, we may
apply these formulas to situations in which the
detailed shape of the potential is not assumed to
be known, it is preferable to judge the accuracy
of (15) and (16) in a more qualitative way. As
mentioned above, formulas (15) and (16) are exact
in all orders of approximation, both for the un-
screened-Coulomb potential and for the potential
(17), which has essentially the character of a
screened-Coulomb potential. Hence, for the gen-
eral case of an ion-core potential, which is smooth
except for the Coulomb singularity at r= 0, it is
reasonable to expect that (15) and (16) are good
already in the first-order approximation and that
the higher-order approximations, in accordance
with our general experience in working with the
phase-integral approximations, yield considerable
improvements. Thus, if we imagine the optimal
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Z dF„""=.aaes d.
"

0
(16)

where dE„/dn is to be obtained by means of spectro-
scopic data.

Like formulas (15) and (16), also the nonrela-
tivistic Fermi-Segre formula (18) is exact in the
particular cases of the attractive, pure-Coulomb
potential and of the potential (17).

order of the phase-integral approximations to be
used in the definition (14) of L(E), we may expect
formulas (15) and (16) to be very accurate.

IV. FERMI-SEGRE FORMULA

In accordance with the quantization condition
(15) we now replace [(8/8E)L(E)]s s by v(dn/dE„),
i.e. , by s/(dE„/dn). In this way we obtain from
(16) the nonrelativistic Fermi-Segre formula

Recalling what was said at the end of Sec. III
about the accuracy of formulas (15) and (16), we

. may draw the following conclusion as to the ac-
curacy and applicability of the nonrelativistic
Fermi-Segrh formula (16). If the idealized model

used in the present paper were physically realistic,
i.e. , if it were completely justified to use the

one-particle model with a nonrelativistic s elec-
tron moving in a local potential, which in a cer-
tain region around r = 0 is approximately a Cou-
lomb potential due to a point-shaped nucleus of

charge number Z, then the essential limitation
for the accuracy of the nonrelativistic Fermi-
Segre formula should be connected to the possibili-
ty of calculating de„/dn by interpolation from the

spectroscopic term values. For unperturbed
terms this calculation. has been discussed by
Crawford and Schawlow on p. 1312 in Ref. 3.
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The bremsstrahlung emitted from a tungsten anode in an x-ray tube has been used for con-
tinuous analysis of krypton snd xenon absorption spectra between 8 and 0.8 keV (1.5 to 15 A}.
Attenuation coefficients were determined every 0.05 A between 1.5 and 8 A (in steps of energy
varying from 150 to 10 eV) and every 0.1 )( between 8 snd 15k (20 to 5 eV). Results obtained
are compared with previously determined experimental values and with semiempirical and
theoretical determinations. Tabulated data of McMaster et al. and calculations of McGuire
are shown to be in good agreement with the experimental results, generally within 10%. Mul-
tiply excited and ionized states have been observed in krypton, owing to simultaneous inter-
action of incident radiation with 2P and 4p (and 4s) electrons, and anonhydrogenic behavior of
the xenon 3p-subshell photoionization cross section has been revealed. Krypton and xenon L
and xenon Mzzz absorption jump ratios have been determined. Finally, continuous oscillator
strengths of krypton and xenon L shells and the xenon M shell have been evaluated.

. I. INTRODUCTION

Until about 1960 all x-ray attenuation-coeff icient
measurements were performed using x-ray char-
acteristic lines as radiation sources. The various

semiempirical methods elaborated for attenuation-
coefficient determinations (Jonsson, ' Victoreen, a

Henke et al. , Leroux, and Heinrich ) were thus
based on a few discrete data points for each ele-
ment. Using synchroton radiation has made possi-


