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The problem of the Fourier transform of the response to a w/2 pulse of a single nucleus of
spin & interacting with a strong rf field is examined theoretically using the density-matrix
master equation. In this experiment the nuclear spins are polarized in the rotating frame
along a direction different from the laboratory z axis. It is shown that the resulting Fourier-
transform spectrum differs in intensities from the steady-state double-resonance spectrum-
in contrast with the usual single-resonance case. This phenomenon is understood physically
in terms of a rotating-frame model.

In recent times the Fourier-transform technique
has become the most popular way of obtaining NMR
spectra in view of its several advantages over con-
ventional steady-state techniques. The basic
principle involved in this method, in its simplest
form, uses the fact that the NMR line shape and
the response (free-induction signal) of the spin sys-
tem to a s/2 pulse form a Fourier-transform
pair. ' This method has been applied with success
for several single-resonance problems, ' i.e.,
the only magnetic field that is present besides the
pulsing radio-frequency (rf) field is the static field

Though this method has been applied to double-
resonance situations as in proton decoupled C
Fourier NMR spectra, the situation is still quite
similar to that of a single-resonance p. oblem since
the C nuclei are still polarized along the labora-
tory z axis. In this paper we have considered a
more general situation where the nuclear spins
under study are polarized in the rotating frame
along an effective field direction, different from the
laboratory z axis. Such a situation can easily be
realized by applying a strong rf field 2K& cos~~ t
along the x axis in the laboratory frame, as is
usually done in the steady-state double-resonance
experiments. In the following we shall outline the
theory for obtaining the Fourier-transform spec-
trum, and apply it in particular to the single-spin-
~ problem.

We shall consider the most simple experimental
situation where the rf field ll, itself is pulsed. The
signals would be most conveniently detected by
referencing the detector at », using a detection
system as described by Redfield and Gupta. W'e
first allow the nuclear spin system to interact with
the static magnetic field Hck and Bs, and attain a
steady state. In the rotating frame at angular fre-
quency ~ the steady state is described by the spin
density matrix (os+ X), where X describes the de-
viation from the thermal equilibrium density matrix
ec caused by lIs. (In this paper a tilde denotes
quantities in the rotating frame. ) The density ma-
trix can be calculated using a set of simultaneous

ri(0) = exp(- iyH vZ&i, (i))

x(, X) ~(yH, ~i,()) -(...X), (2)

where t is chosen to be zero at the end of the pulse.
The density matrix rl(t) satisfies the Redfield equa-
tion 0

& LK y Q]ao'+~ ~otot'sl' ~M' &

where the basis set n, P is chosen so that H" is
diagonal. In Eq. (3),

H =2m(ZA, I,(i)+ Z J',.&I(i) ~ I(j))+(Da, +De ),

where A; = vc, + (&us/2s ), Da, = s g; va; I,(i), and the
magnetic field strengths v~,. are expressed in Hz
by' v~;= —y, H~/2s, k=0, 2. Solution of Eq. (3) in

conjunction with the trace relation, Try = 0, de-
termines o(t).

The magnetization in the laboratory frame is
proportional to Tr[o(t)I,], and is the sum of a
steady-state signal due to (oo+X) and a free-induc-
tion signal due to ft(t). The steady-state signal
will produce a 5-function response at ~ = ~z in the
Fourier transform (as well as in the steady-state
experiment), and should be subtracted from the
total signal before carrying out the Fourier trans-
formation. Assuming that this subtraction has
been done, the Fourier spectrum is given by

S(&o) =KJ Tr[ri(t)I ]e'"'dt . (4)

equations. After the steady state is reached, Rs
is simultaneously pulsed to an amplitude K~ and

phase shifted by v/2 for a pulse duration v, where

H~ is much larger than all other fields in the rotat-
ing frame and ~ is much shorter than the relaxation
times. At the end of the pulse, lla returns to its
original amplitude and phase.

The time evolution of the density matrix o(t) is
conveniently described by fi(t), defined by

o(t) = os+ x+ n(t)
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(8)

fhq(0) = [(2wqvo) m(A —v2)/(Eq —Eo)] —ReX,E,

'il»(0) = —[(2oqvo) ~(A+ u&)/(E& —E,)] —ReX» .

Now as a further simplification, we assume that
the irradiation strength is strong enough to satisf y the
Bloch approximation ' ( I E, —E2» T2') Under.
this condition, Eqs. (7) simplify to 7h, (0) = —Qq2(0)
= (2a.qvo) (cos28)/2.

We now obtain the Fourier-transform spectrum
S(&u) by evaluating Eq. (4). The imaginary part
of Eq. (4) is usually identified with the steady-state
NMR absorption spectrum, and is given by

S" ((g) = K~(1+ cos2)8f (ur -(g, +,E- E)

—Kp (1 —cos28) f (~ —ur2 —E&+Eo)

-2Kp, sin28f (~ —eo), (8)

where f (~) = (2vqno) cos28 T2/(1+ Too ~3) and K~ = K/8.
The cos28 term in f (~) corresponds to the popula-
tion difference between levels 1 and 2. The real
part of (4) maybe obtained from (8) by replacing
f(&) with@(~&)= —(2&qvo) cos28Tz&/(1 To+r& ) .
The Fourier-transform signal given by Eq. (8) cor-
responds to three resonances. The feature at
i~=» corresponds to resonance absorption pro-
duced by H~. In addition, there occur two features
inverted with respect to each other; S, at w = ~2
+E2-E& and S at ~=~&-E,+E, , The intensity
ratio of these features is given by

S, /SFT = —(1+cos28)/(1 —cos28) . (9)

Equations (8) and (9) are to be compared with the

Single-Spin-& Problem

We shall consider the response to a, v/2 pulse.
Further, we shall assume that the relaxation is
through external isotropic random fields. ' H
is diagonal in the basis I I) = n cos8+ Psin8, 12)
= Pcos8 —o, sin8, with eigenvalues E, =w(A +v, )'
and E2 = —n (A'+ n, )' ', where tan28 = vo/A. In this
basis,

1 (Rtrqvo)w

(
4 —

vol~Oo=
2 Eg —E~ —p~ -A )

and the matrix elements of y are y™&z=y&2=0, Rey»
= —(2pqeo) (trent) Tp(Eg —Ep)/[1+ Tp(Eg —E2) ], and

ImX» = —(2o q~o) (m ~3) To/[I + T,(E& —E,) ], whe~e
q=h/2kT, Tp =2fT„ f is the mean-square ampli-
tude of the random fields, and 7, is the correlation
time. Solving Eq. (3) for isotropic random fields
and evaluating q(0) from Eq. (2) for a v/2 pulse we
get

steady -state double -resonance absorption-mode
spectrum detected at the exciting frequency co&,

which is given under the Bloch approximation as

S (&ug) =Ks (1+cos28) f ((d1 —(oo+Eg —Eo)

—Ks (1 —cos28) f (~, —~3 —E~+Eo), (10)

where K~ is a constant. The Fourier-transform
spectrum in Eq. (8) differs from the steady-state
double-resonance spectrum in Eq. (10) in several
respects. There is a new Lorentzian absorption
shape at ~~ in the Fourier spectrum which is ab-
sent in Eq. (10). Furthermore, the features at
&, = +o + (Eo —E,) in the steady-state spectrum have

the intensity ratio

Soo/S~ = —(1+cos28) /(1 —cos28)

Therefore, the Fourier-transform spectrum. of a
single spin —,

' in the presence of a strong rf field
is not proportional to the steady-state double-
resonance spectrum.

The differences are explained by viewing the mo-
tion of the magnetization M in the rotating frame.
Before the pulse, M is stationary in the rotating
frame. 4 6 If the Bloch approximation is valid M
is aligned along the effective field II„where H,
is oriented in the xz plane at an angle 26 with re-
spect to the z axis. The v/2 pulse rotates M

away from its steady-state orientation. As M re-
laxes back to its steady state, it precesses about
8, with a frequency E, —E2. The signal which is
detected is due to the projection of M onto the
laboratory xy plane. The projection yields two
counter rotating components producing signals
proportional to —,(cos28 + 1) cos (v2 —E, + E2) f and

,(cos28 —1) cos(ur2+E& —Eo)t. In addition, the re-
covering component of M along H, produces a sig.—

nal proportional to sin28 cosmist. This explains
the intensity ratio in Eq. (9) as well as the I o-
rentzian shape at z~.

In steady-state double resonance, the weak ob-
serving rf field H& is decomposed' into two counter-
rotating fields proportional to —,'(cos28 + 1) (cos~ t i,

I
w sin& tj,), where & = » —coo and i, and j, a.re unit
vectors defining the plane normal to H„and fixed
in the rotating frame. The signals giving rise to
S, and S therefore already have amplitudes pro-
portional to (1+cos28) and (1 —cos28) before theirpro-
jection onto thelaboratory xy plane. Thisprojection
as described inprevious paragraph, results in signals
givenin Eq. (10)and the intensit; ratio in Eq. (11).

It is thus seen that the Fourier spectrum for a
spin system interacting with a strong rf field is not
proportional to the steady-state double-resonance
spectrum if the nuclei under study are not polarized
along the laboratory z axis. It is also interesting
to note that by this technique one can observe the
signals that are very close to and at the irradiating
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frequency. This is difficult with conventional
steady-state double-resonance experiments because

of the presence of a strong beat pattern near the
irradiation.
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Analytic Hartree —Fock-Boothaan calculations have been carried out for the states arising
from the 3d "4s configurations for neutral transition-metal atoms and from the 3d" configura-

tions for the doubly ionized ions. The atomic orbitals have been expanded in terms of linear
combinations of Slater-type functions, 21 of them for the neutral atoms and 18 for the doubly

ionized ions.

A little more than a decade ago Watson'~ per-
formed a rather large number of analytic restrict-
ed Hartree-Fock calculations on atoms and ions
belonging to the first transition series. He ob-
tained analytic self-consistent-field (SCF) wave
functions for the various states arising from the
electronic configurations that he studied. Sub-
sequently other investigators (e. g. , see Refs. 3-7)
have reported results of similar calculations based
on the selection of various basis sets of different
sizes. The primary purpose of the present paper
is to present additional refinements of the pre-
vious calculations with a basis set of reasonable
size. Specifically the computations carried out
here are for the various term energies for states
arising from the Sd" 4s configurations for neutral
atoms (I) and from the 3d" configurations for the
doubly ionized ions (III). The actual calculations
were performed in double precision on an IBM
360/67. The atomic SCF program is a modifica-
tion of the scheme set forthby Roothaan and Bagus.

The initial or primitive basis set employed con-
sists of the usual Slater-type functions (STD's) of

the form

State

4g
4y

4P
21

2H

2Q

2E
2D
2P
2$

Beoptimiz ation
neglected

—1149.7224
—1149.6264
—1149.6876
—1149.7007
—1149.6626
—1149.6164
—1149,5511
—1149.6099
—1149.5131
—1149.4121
—1149.5593

Reoptimiz ation
done

—1149, 7226-1149.6271
—1149.6880
—1149.V010
—1149.6631
—1149.6171
—1149,5518
—1149.6106
—1149.5137
—1149.4125
-1149.5596

TABLE I. Comparison of excited-state energies
(in a. u. ) of Mn obtained from orbital exponents optimized
for the ground state with those from reoptimized orbital
exponents.


