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Relation between the Isotope or Isomer Shift and the Nuclear-Charge Distribution~
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It is shown, for a model in which the nuclear-charge distribution is that of a uniformly
charged sphere of radius R, that the isotope or isomer shift is proportional to R~ where

& +p &2z

The isotope and the isomer shift measure the
change in the interaction energy between nuclear
charge and electrons because of finite nuclear
size. ~'2 If the electronic charge distribution sees
a nuclear Coulomb potential V& from a finite nu-
cleus and V& from a point nucleus, then first-or-
der perturbation theory gives the shift as

where ((x) is the electronic wave function obtained
for the zero order -(point nucleus) potential, and
&V= V& —V~. For a model in which the nucleus
is a uniformly charged sphere of radius R, the
perturbation potential is

Ze' '3 I ~ l' Ze'&V=- + r&R
R 2 2 R)

=0, r&R . (2)
If g(r) is constant over the nuclear volume, as is
true for light atoms, Eq. (I) then gives

«=-, 2z 'e'RIe(0)I'. (3)

f(r), g(~) =Nr" (4)

where Nis anormalizationconstant, &x= (I —n Z )
and & is the fine-structure constant. Integration
of Eq. (I) then gives

AE=CR

where C is a function of 0 and the nonrelativistic

Thus with these various approximations, the iso-
tope or isomer shift measures the square pf the
nuclear radius. For more general nuclear-charge
distributions, one can show that the mean-square
nuclear-charge radius (r~) (i. e. , the second mo-

ment of the nuclear-charge distribution) is mea-
sured, and Eq. (3) is valid if we take (r ) =-,' R~.

The assumption of constant g(r) is valid only in
the nonrelativistic limit. For high Z atoms, we
must obtain the wave functions by a solution of the
Dirac equation. This gives )((r) i~„= (f(r) i~

+ ~g(r) I, where the large and small parts of the
radial wave function, f(r) and g(r), are not con-
stant over the nuclear volume. For s electrons
in the field of a point nucleus, both f and g vary
near the origin as

value )$(0) I', and

k = 2(l —n'Z')'~'

Thus when relativistic effects are considered, it
would appear that the shift measures a moment
of the nuclear-charge distribution which gives
substantial deviation from the nonrelativistie val-
ue of k = 2 for high Z (see Fig. I).

It has been previously recognized ' that this
result is not correct. Since one always has o & 1,
the wave functions in Eq. (4) are singular at the

origin, and thus are not suitable for use in a per-
turbation-theory calculation. Wu and Wilets have
used an expansion of I g(r) t~„, to order of o.~z~ra

to show that an expression of the form of Eq. (5)
is correct if we take

k= 2 —0. 354aaZ~ .
As seen in Fig. 1, this gives a departure from
the nonrelativistic value of 0 = 2 which is consider-
ably less than that of the relativistic first-order
perturbation-theory result. However, no attempt
has been made to assess the validity of the vari-
ous approximations involved in the Wu-Wilets
calculation. It is the purpose of the present paper
to show that a straightforward calculation which
does not suffer from the inconsistency of the per-
turbation-theory approach or the approximate
form of the Wu-Wilets result can show explicitly
what moment of the nuclear-charge distribution
is measured by the isotope or isomer shift.

In an important paper, Broch~ has shown the
following result: The energy shift &E due to a
change of potential ~V= V~ —Va is given by

«= f,"n.V(u,u, +v,v,)dr/f (u,uz+v, va)dr

where u = rf, v = rg, and the subscripts I and 2 de-
note the wave functions obtained by solutions of

the Dirac equation for the potentials V~ and V»
respectively. This is an exact result, obtained

by combining the Dirac equations for the two po-
tentials and doing a single integration. It thus
does not suffer from the shortcomings of perturba-
tion theory, and in fact has been used several
timesv to discuss corrections to the perturba-
tion-theory calculation of the absolute value of
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when one has a finite nucleus, u2 and v~, we again
consider a uniformly charged sphere. Near the

origin, one may take a power series for both u~

and 5p
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FIG. 1. Variation of k and 2 as obtained from first-
order perturbation theory (dot-dashed line), the approxi-
mation of Wu and Wilets (dashed line), and the present
result (solid line).

Thus for this problem we have

R
o 6 V(QiM 3 + 0 gV ~) d V (10)

where 4V is given by Eq. (2). The wave functions
in the presence of a point nucleus, u, and v~, can
be obtained from Eq. (4). For the wave functions,

the isotope shift. Since &V=O for r &R in the iso-
tope-shift problem, Broch points out that one
makes only a very small error by taking

00 I' p p

0
(uiua+UgVI) dK- f (Qg+Vg) d'Y= 1

0

where the expansion coefficients a„show no ex-
plicit dependence on R. Rose has shown" that
such a series converges for this potential, so
solutions to any desired degree of accuracy may be
obtained. With these results, integration of Eq.
(10) then gives

(i2)

The factor I' contains numerical constants, in-

cluding a sum over the a„, but no dependence on

B. Equations (12) and (13) are valid to all orders
of the expansion of Eq. (11), and hence constitute

an essentially exact result. One notes that for
small Z, this gives the proper R behavior. Equa-

tion (13) is compared with the perturbation-theory
result and the Wu-Wilets expression in Fig. 1.
The latter is seen to underestimate the decrease
from k=2 for heavy atoms, however, the depen-
dence of Eq. (13) on Z is still rather weak. In the
vicinity of Z =90 one sees that the isotope or iso-
mer shift measures the k=1. 7 moment of the nu-
clear- charge distribution.
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