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The Harris-Nesbet algebraic close-coupling method is used to calculate the S-wave phase
shift and positronium-formation cross section for various types of close-coupling expansions
of the total wave function. The positronium channels are included explicitly, and polarization
effects, in both the hydrogen and positronium atoms, are incorporated by pseudostates that
give the correct static polarizabilities.

I. INTRODUCTION

This paper presents the results of a study of
low-energy positron-hydrogen collisions by the
close-coupling scheme for energies up to the sec-
ond-excitation threshold of hydrogen. The main
purpose of this work was to include explicitly the
positronium channels as well as polarization ef-
fec ts. Only the zero-total-angular- rnornentum
states of the system are considered.

Positronium formation by positron-hydrogen im-
pact is a model three-body rearrangement-colli-
sion problem. Because of the unavailability of a
low-energy positron source as well as an atomic
hydrogen gas, there are as yet no experimental
data available. However, various theories have
been applied to this problem giving an amazingly
inconsistent set of results.

The Born approximation was first applied to this
problem by Massey and Mohr' yielding a peak of
4. 5'~~ for the formation cross section at -14 ev.
This maximum is ten times smaller than that cal-
culated later by Cheshire using the impulse approx-
imation. However, these approximations are
known to be poorly defined for rearrangement col-
lisions. Also it is well established that the Born
approximation breaks down for low energies since
one cannot assume a plane-wave form for the
scattered-particle wave function.

Two major works have appeared that dealt with
the low-energy aspect of this problem. Chen and
Mittleman' have shown that a geometric rearrange-
ment of the coordinates normally chosen leads to
an approximate set of coupled ordinary differential
equations for which solutions are relatively easy
to calculate. The geometric rearrangement corre-
sponds basically to labeling specifically the coordi-
nate of the outgoing positron in the positronium
channel rather than the center of mass of the posi-
tronium atom as is usually done. Fels and Mittle-
man applied the above approximation using trial
phenomenological potentials to describe polariza-
tion in both the hydrogen and positronium atoms.
They obtained a positronium-formation cross sec-

tion which is 40 times below that of the Born ap-
proximation. Bransden and Jundi did a nonvari-
ational calculation using a projection-operator
formalism. The method of polarized orbitals was
employed to incorporate the polarization effects.
Their positronium-formation results are drasti-
cally different from those of Fels and Mittleman;
however, both of the above works have particularly
emphasized the dominance of the polarization
forces on the crass section.

More recently, Majumdar and Rajagopal solved
the problem using equations of three-particle
scattering which in principle leads to Faddeev
equations. Their cross section showed a peak
which is 25% higher than that of given by the Born

approximation but drops below the Born results at
high energies.

In a very recent pair of articles, ~' Dirks and
Hahn have carried on what seems to be the first
fairly rigorous work on the positron-hydrogen
problem for low energies. The generalized vari-
ational-bounds method of Hahn, which correctly
treats the nonorthogonality problem of the rear-
rangement channels, was applied in a two-channel
approximation for energies between the positroni-
'um-formation threshold and the n = 2 threshold of
hydrogen. Their positronium-formation cross
section is about a factor of m less than that of Fels
and Mittleman while both are considerably smaller
than that found by Bransden and Jundi. '

For the elastic-scattering case (i.e. , incident
energies below the 1s threshold of positronium)
Schwartz' and more recently Bhatia et a/. "have
done the most rigorous calculations to date.
Schwartz used an elaborate Hylleraas trial wave
function while Bhatia et al. employed a similar
trial wave function with added flexibility in the non-
linear parameters. The resulting calculations
were very tedious and yielded phase shifts which
are generally assumed to be exact.

The most workable method to date for low-energy
inelastic processes is the close-coupling method
advanced by Burke and his followers. ' The cal-
culations reported in this paper have been done
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A direct application of the close-coupling method
to positron-hydrogen scattering with the inclusion
of the yositronium channels leads to a system of
coupled integrodifferential equations. The inte-
gral terms contain nonanalytical kernels times the
undetermined scattered functions. Since it is
very hard if not impossible to solve these equa-
tions by the usual iterative methods for more than
two channels, we have resorted to the algebraic
close-couyling method of Callaway et gE. , ' a de-
rivative of the Harris —Nesbet variational princi-
ple. Consider the reaction

e'+H- (e', e )+H' . (2. 1)

The Hamiltonian operator for the Schrodinger
equation has two equivalent forms: before calli-
slonr

t3 3 I 3 e e e
(2.2)2m & 2m 2 w~ x2 lr~ -r2I

and after collision,

2g e eII—— V'p — ~p-
m P ta- z P~ I~+z

(2. 2}
where r, is the coordinate of the orbital electron,
r2 that of the incident positron, and

p= lr3 —ral H= 3(r3+r3) ~ (2.4)

The wave function for the above reaction is written
in the standard close-coupling expansion form as

within the framework of this method using the re-
cent algebraic techniques advanced by Harris'3 and
Nesbet' to solve the resuMing equations. The de-
tails of the close-couyling method and algebraic
solutions are sketched in Sec. H. Section IH dis-
cusses the various apyroximations used to repre-
sent the effects-of virtual transitions to closed
channels not explicitly included in the trial wave
function. In Sec. Vf the elastic phase shifts and
inelastic cross sections are yresented.

K THEORY

x Y,, ;(p)Y,, ;(&), (2. Sb)

in which c is a Clebsch-Gordan coefficient.
The essence of the algebraic close-coupling

method is an expansion of the functions E«~,3(+3)
and G„, (R) in terms of a bound part and a free
part (see Refs. 14 and 16 for a complete treat-
ment):

+p(3 3) (xQp Aop(3 3) + a» A»(~3)+ @~(rg, (2. &a)

p =t3l~l3 denotes a hydrogenic channel;

a, (lt) = o~A~(H)+~'„A', ,(H)+g(lt), (2. Vb)

q -= p,q, q2 denotes a positronium channel; where the
free yarts are given by A»(33) and A', (B), i = (0, 1),

A3, (~3) n, f, {k~3.3-),

A33(r3) = k~(1 e- ) '3"s,3(k3r3),

Ag, {R)=~2k,j, (kaIt),

A», (R)=~2k, (1 —e "")~3"3' (kQ) ~

(2. 8a)

(2. 8b}

and are the asymytotic solutions of the Schrodinger
equation. The j, and n, are syherical Bessel and
Neumalm functions and p, y are arbitrary pararn-
eters introduced so that the shielding factors
(1 —e ~3) '3' and (1 —e "")@3"make the Neumann
functions I, (k~3 3) and n, (k,R) behave as 3"33 and Ila3,
resyectively, at the origin. Also E=E„+k~~
=S +-'k2.

q IO

The bound parts are to be expanded over any
complete set of square-integral basis functions.
It has been found convenient to use a Slater-orbital
basis set which is given by

yP(r3) =Z, C,)3,3),.(3"3), (2. Qa)

couyling functions and are given by

Yxr333(3.3 r3) = Z e(l3, l3, I., mz, nZ3MZ. )
fit/ 'fyl2

x Y...,(» )Y...,(» ), (2.6a)

Y, , {p.It)= L c{q,q„ I., m'„'„M )1'2

+'{1 2}= & m3, (~i)&«,i,(~3) Y~i,i,(~~ ~3)
el yl2

+ Z y„„(p)O„„„(It)Y"~..(p. It), (2. 5)
Wegap

y,'(ll) =X„e,'„,3i„,(B), (2. 9i )

where yg, p, are the principal quantum numbers of
the hydrogen and positronium atoms, respectively;
l» q, specify the orbital angular momentum of the
two respective atoms' E2 9'2 are th respectiv
orbital momentum of the scattered positron and the
center of mass of the positronium; u„»(3 ~} are the
radial hydrogenic eigenstates and the @„„(p)are
their corresponding positronium eigenstates; the
I"'s and 6's are the scattered-particles amplitudes
of the respective positron and the positronium cen-
ter of mass; the F's are the angular-momentum

(2+ )2l3+3 ) 1/2

Rt3.a(3'3) =
1 (2l 2) ]I +3 3c ' 3, (2. 10a)2+

(2 )3a3+3 ) 1l2
q, ,, (It ) = '

l
It'3 e-'3" . (2. 10b)

The set of z, s and zb s are chosen over a wide
range and their number is determined by the conver-
gence of the scattering parameters calculated. The
computational problem involved proceeds as follows.

The Hamiltonian 0 is diagonalized on the short-
range bound functions given by Eqs. (2. 10a) and
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(2. 10b) leading to a set of eigenvectors p, and cor-
responding eigenvalues E .

The set of bound-free integrals is then defined
as follows:

Z«c& IH El p)& + Z« c& IH El g'» if v is a hydrogenic channel,
all p all q

(2. iia)

2« c,„lH —El g)& + 2&& c,'„ IH —El+)& if v is a positronium channel,
all y al l q

(2, lib)

where

c,„=u„(r,)A~„(ro) Y,» (r, . r", ),
1 2

c,'„= 4„(p )A,'„(R ) Y, , (p ~ R ),

(2. 12a)

(2. 12b)

and the double ket implies a double space integra-
tion. The free-free integrals are given by

( «c,„l H-El c,„.» if v, v'=P,

«csvl H —El cs~'&& if v, v'= q,

(2. isa)

(2. 13b)

R„„=—(k„k„.) ~ (Moo + Z,y„,Mio ), (2. iS)

where y„, is a solution of the inhomogeneous linear
system:

Q, Mii' y„,=- M",o". (2. is)
Hence the partial cross section for transition from
channel v to v is calculated from

I( R 2

VV p2
(2. 17)

In the case of elastic scattering, the tangent of the
phase shift is given (Kohn method) byio

f„=—(Mio/Mii) —det(M)/kMii, (2. iS)

and the cotangent of the phase shift (inverse Kohn's
method) isi4

c~ = —(Moi/Moo)+ det(M)/kMoo, (2. 19)
where

det(M) =MooMii MioMoi. (2. 20)

The inverse Kohn cross sections are calculated

VV'

!
«cIPIH-Elcy, && if v=q and v'=P

(2. 13c)
((c,„lH —El c&„.)) if v=p and v'=q,

(2. 13d}
where p, q are hydrogenic and positronium chan-
nels, respectively. The explicit means by which
these matrix elements were calculated is given in
the Appendix. If one defines

Mq~
——Nq~ + Xg B(„(E—E ) B"~, (2. 14)

then it follows that the R matrix is given by

where

M".„=(0,'IH-EIP;),
M, 'g = (0,

I
H —E I,A, , or!A,',),

(2. 22)

(2. 23)

a, bbeing basis indices. P, q stand for channel in-
dices and

or

8.'= v.(ri)n."(ro)Yl",(...(r"i, ro) (2. 24)

O."=y.(p)n."(R)Y.";„,(p, R),

depending, respectively, on whether v is a hydro-
genic- or a positronium-channel index.

For the inelastic case, the eigenphases and
coupling parameters are calculated by diagonaliz-
ing the reactance matrix given by Eq. (2. 15). The
eigenvalues of this matrix are tan&~ and tan&2,
where 5~, &2 are the eigenphases. The coupling

parameter & is given in terms of the elements of
the orthogonal matrix U which diagonalizes the R
matrix as

(2. 26)

cos~ sin~'

(,—sinE cos&,

III. SUMMARY OF APPROXIMATION USED FOR TRIAL
O'AVE FUNCTION

The major objective of the present work is to in-
vestigate the relative importance of different con-
tributions to the scattering parameters, namely,
those of positronium formation and polarization ef-
fects. To this end, the following approximations
to the trial wave function (2. 5) are studied .

from the R ' matrix. Details for calculating the
Kohn and inverse Kohn parameters are given in
Eq. (26), page 62, of Ref. 14. The matrix-inver-
sion technique is found necessary for energies close
to threshold where a cluster of eigenvalues E
around the total energy E would cause numerical
inaccuracy in the matrix elements given by Eq.
(2. 14) because of the extremely small energy de-
nominators (E-E,). In this case, Eq. (2. 14) is
replaced by

M"" =N'" -ZZM". "(M )"'M'" (2. 21)
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(a) Positronium formation is completely ignored.
The total wave function is expanded in terms of 1s,
2s, 2p hydrogenic states. To avoid lengthy expres-
sions we write the resulting wave function (2. 5)
symbolical. I.y as

pi(l, 2)=1s(H)+2p(H)+1s(Ps)+2p(Ps). (3. 7)

All the above approximations were solved for the
elastic- scattering r egion. However, only approxi-
mations (b) and (e) were calculated in the inelastic
region.

g (1, 2)= ls(H)+2s(H)+2P(H) (3. 1)
IV. RESULTS

uz~(r, ) = —(32/129)' (r, + ,r, )e "~—(3. 5)

while in a similar fashion, we have constructed the
pseudostate for a positronium as perturbed by an
incident proton:

(3.8)

Hence, the approximation used for Eq. (2. 5) is

to denote a 1s, 2s, 2P hydrogenic expansion.
(b) The ls positronium (Ps) channel is now in-

cluded and the total wave function is expanded in
terms of only 1s hydrogenic and 1s positronium
channels. This is called the coupled static approxi-
mation,

g (1, 2)= ls(H)+ls(Ps).

(c) Since the 2p hydrogenic state includes 88% of
the atomic polarizability of hydrogen, the following
expansion is tried which incorporates a significant
amount of hydrogenic polarization together with
explicit positronium formation:

gi(1, 2) = ls(H)+ 2s(H)+ 2p(H)+ ls(Ps). (3.3)

(d) To include a significant portion of the polar-
ization of both the hydrogen and positronium atoms
and also explicit positronium formation, the follow-
ing six-channel expansion is used:

g (1, 2) = ls(H)+2s(H)+2P(H)

+ 1s(Ps)+ 2p(Ps)+ 2p(Ps) . (3. 4)

(e) In order to bypass non-necessary complex ex-
pansions and to include the full ground-state polar-
izabilities of both the hydrogen and positronium
atoms, it is very convenient to use pseudostates.
These pseudostates were constructed by Damburg
and Karule' for e -H scattering and were later
used by Burke, Gallaher, and Geltman. ' They are
fictitious states; they are normalized and orthog-
onalized to the other states included in the close-
coupling expansion and are essentially the long-
range part of the multipole components of the per-
turbed orbital which is a solution of the perturba-
tion equation for a hydrogen atom perturbed by an
incident electron. In essence, they reproduce the
full ground-state polarizabilities of the hydrogen
atom. The pseudostates used in this work are
equivalent to the dipole 2P state given by Damburg
and Karule. ' For the case of a positron incident
on a hydrogen atom, the pseudostate used is the
negative of that given by Ref. 17:

There does not exist a rigorous criterion for
choosing either the coefficients of the Slater-orbitals
basis or the number of these orbitals. The proce-
dure followed here is to calculate the scattering
parameters versus an increasing number of Slater
orbitals as well as a wide range of their coeffi-
cients. Adequate convergence to at least three
significant figures was obtained with a maximum of
25 Slater orbitals per channel in the most difficult
case [approximation (e)].

For approximation (b), numerical calculations by

Dirks and Hahn are available for direct compari-
son. In this case, our calculations converged with

15 Slater orbitals per channel. The 15 z param-
eters [Etis. (2. 10)] used in the coupled static case
were z„a~=0.001, 0. 005, 0.008, 0.01, 0. 02,
0. 05, 0.08, 0. 15, P. 4, P. 5, P. 7, 1.1, l. 5, 2, and

3. The additional ten parameters used in approxi-
mation (e) were e„a~=0.0001, 0.0005, 0. 0002,
0. 003, 0. 006, 0. 009, 0. 2, 0.9, 2. 5, and 5.

A. Elastic Scattering below the Positronium Threshold

The Kohn and inverse Kohn variational proce-
dures as described in Ref. 14 were used to calcu-
late the elastic phase shifts for the five approxima-
tions discussed in Sec. III. Phase shifts calculated
by both procedures agree to at least four significant
figures. Table I lists the results corresponding to
the five approximations, and columns (a') and (b') list
results of approximations (a) and (b) as calculated by

different methods. There is no previous work

done via approximations (c)-(e) to use for compari-
son. Figure 1 displays the corresponding phase-
shift curves in comparison with results of

Schwartz.
Our resultsfor approximation(a) agreequite well

with those of Burke and Smith" who used the ordi-
nary close-coupling method. For approximation(b),
Cody et al. ' used four different methods to solve
the resulting integrodifferential coupled equations.
Their first three methods utilized a Green's-func-
tion approach and their corresponding results, al-
though being in disagreement, seemed to converge
from above to the results of their fourth method
[listed in column (b')] in which they expanded the
potentials and the positronium's wave function in
terms of Legendre's polynomials. Our results
listed under column (b) are about 2%%uo lower than those
of their fourth method. In all elastic phase-shift
calculations, the results were found to be essen-
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TABLE I. 8-wave elastic phase shifts in radians calculated by the five approximations (a), (b), (c), (d), {e), discussed
in Sec. III. (a') represents results of approximation (a) in the ordinary close-coupling method (Ref. 12). {b ) corre-
sponds to phase shifts of approximation (b) (from Ref. 19). (f) represents the results of Schwartz (Hef. 10).

0.1
0.2
0.3
0.4
0.5
0.6
0.7

E(Ry)

—0.99
—0.96
—0.91
—0.84
—0.75
—0.64
—0.51

{a)

—0.0050
—0.0426
—0.0935
—0.1476
—0.1997
-0.2469
-0.2919

(a')

—0.0054
—0.0426
—0.0931
—0.1472
—0.1990
—0.2461

—0.0191
—0.0472
—0.0874
—0.1365
—0.1894
-0.2415
—0.2901

(b')

—0.0188
—0.0465
-0.0858
—0.1339
—0.1861
—0.2379
—0.2864

(c)

+0.0324
+0.0204
+0.0189
—0.0696
-0.1259
—0.1831
-0.2362

(d)

+ 0.0491
+ 0.0321
+0.0055
—0.0500
—0.1150
—0.1773
—0.2260

(e)

+0.0646
+0.0597
+0.0198
—0.0352
—0.0943
—0.1517
—0.2048

+0.151
+0.188
+0.168
+0.120
+0.062
+0.007
—0.054

I I I

(f)~~
O. I5-

L
G. lo - // (e)

0.20—

0.05
CO

0.00

—0.05
47

o -0.IO

0
-O. I5

-0.20
CJ

td -0.25

.-0.30
I I I I I I

0.0 O. I 0.2 0.5 0.4 0.5 0.6 0.7

FIG. 1. 8-wave elastic phase shifts for the five ap-
proximations (a)-(e) discussed Sec. III. (f): Schwartz:
{g): Drachman.

tially independent of the parameter P [Eq. (2. 8a)]
so long as the 15 or more Slater orbitals were
used per channel. A convenient choice of P= 2 was
used in aQ calculations reported here.

Taking into consideration the bound property on
the phase shifts, the results of approximations (c),
(d), and (e) show the improvement on the phase shift
due to inclusion of polarization and virtual posi-
tronium formation. It also illustrates that posi-
tronium polarization is not as important as the
hydrogen polarization.

The Nesbet procedure is a resonance formalism.
The set of negative eigenvalues obtained by diago-
nalizing the Hamiltonian on the short-range bound
functions may represent bound states for the sys-
tem. An eigenvalue whose position does not change
by varying the internal basis set and which is not
an eigenvalue of the unperturbed system but close
to it, is likely to be a resonance. ' No such eigen-

values are observed below the positronium thr esh-
old. This is in disagreement with Bransden and
Jundi' who reported on the existence of such a
resonance using a nonvariational polarized- orbital
method. However, our observation is consistent
with that of Dirks and Hahn and Bhatia et al. '

Also, for the five approximations discussed above
and for as many as 27 Slater orbitals per channel,
none of the eigenvalues were less than —1 Ry, the
ground-state energy of hydrogen. This supports
the contention that there does not exist a positron-
hydrogen bound state.

B. Inelastic Scattering below @=2Threshold of Hydrogen

In this case, only approximations (b), Eq. (8. 2),
and (e), Eq. ($.7) are calculated. Results of approx-
imation b serve as a good comparison with previous
work done on the same approximation, namely,
that of Bransden and Jundi, and Dirks and Hahn.
Close agreement for the cross sections is obtained
between present calculations and both Refs. 5 and

7. However, our reactance matrix shows more
symmetry, and Table II lists its elements versus
those of Dirks and Hahn. The best values of P and

y [Eqs. (2. 8a) and (2. 8b)] that are used are those
that would give the best possible short-range repre-
sentation of the scattered functions, namely, P=k~,
y=u .

Tables III and IV list correspondingly the R-
matrix elements, eigenphases, coupling param-
eters and inelastic cross sections for approxima-
tion (e) which incorporates polarization. Figures 2

and 3 display the elastic- and positronium-forma-
tion cross sections, respectively. Substantial
changes from the coupled static case are observed
for all cross sections. As many as 25 Slater or-
bitals per channel were needed to span adequately
the bound part of the wave function. The values
for P, y used are the same for approximation (b),
namely, P = k~, y = k, .

The formation cross section as can be seen from
Fig. 3 is about four orders of magnitude lower than
that of the Horn approximation and Bransden and

Jundi, while it is about one order of magnitude
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TAB Elements of the rea t „
ppro»mation 0). H

~ c ance matrix R for
~ ow a .is present res

sents results of Di k
suits and 5 repre-
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CV ~a

4.0-k Ep(&y)

0.7154 —0.488 15 g

11 R2g R)12 22

—0.3062 —0.0009 —0 0009 —0.4735

—0.3109 —0.0017 —0.0016 —0— . 016 -0.7501
02 —0.002 —0.750

—0.3231 —0.0052 —0.00.00 — .4860.0052 —1
5 —0.006 —1.485
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—0.359 +0
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—0
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.367 +0.104 +0 106
36 + 10.192

+10.290
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0.775 —0 399 375

b

0.800 —0.3600
b I

2,0
CA

LLI

cs r FM

0.825 —0.319375
b

LLI

I.O—
I

M

—0.302 775
b

0.835

DH

BJ
I I

0.7 0.8 0.9

0.850 —0.2775
b

I I

0.0 0.1.I 0.2 0.3 0.4 0.5 0.6
I I

K{ao )

FIG. 2. S-w ave elastic cross sect'
1

ct . p

tleman: BJ:B
e .FM: Fels and Mit-

ransden and Jundi; DH:
CS: coupled stati

irks and Hahn;
s a ic result of approximation

calculation approximation (e)

including terms in th '

Second th
in e1r trial wavve function.

e pseudostates used h

tially the lon-
ed here are essen-

e ong-range part of the di ole c

f 11

or ital. To include
ig 1n principle use hi he
e e orm of the ertur

the case of Dr
p r urbed orbital as in

o rachman's~' work which ave
suits. Unf or tunatel

1c gave good re-

comings could be tak
una e y, none of the aboveve two short-

h p te en care of within t
'

g o o putational compl 't'

s for the inelastic- tt
ex1 1es.

tronium-formation cr

' -sca ering case , the posi-
a ion cross section is small

though Bransden and J d' '
n an Jundi by a factor of 10 . Al-

~ ~

a,n undi incorporated
t1on in essentiall the

polariza-
y e same way, the reason for

V. CONCLUSIONS

For the elastic-scatterin case
bt thn e present phase shifts ani s and the esults o

a. ia ef; al. could robp o y
e o lowing reasons.

In this work, the short-ran e co-range correlation that
vir ual excitations into the clos

l ' l ly ignored. S
'mpl1c1tly incorporated close-

et al.
e c ose-range correlation by

lower '.han Fells-Mittleman4 and Di
off-diagonal R-m

an Dirks-Habn. The
-matrix elements under o

in sign between k = 0. 72
n ergo a change

25 and 0 '7

ey must pass throu h zer
ing zero in thin e formation (and de

g zero with a result-

io (o2, an cr,2). No such be
predicted b

c behavior has been
e y any other calculations

be an artif ti ac of our method I
1ons and this may

we have only calculated the 8-w
n any event s', since

the total cross section, higher ar '
e e 8-wave contribution t

o e ormation cross section w

likely not vanish at the same en
combine to givegive a nonzero result.

Rfi R12 =R21

TABLEE III. Elements of th e reactance matrix R ei~&, eigenphases, and coupl'
ca culated by the Kohn th d fn met od for 25 bases.

ing parameters for appro
' tpproximation (e) as

k z(a )

0.7154
0.725
0.750
0.775
0.80
0.825
0.835
G. 850

—0.488 15
—0.474 375
—0.437 5
—0.399 375
—G, 36
—0, 319375
—0.302 775
—0.277 5

—0.215
-0.220
—0.233
-0.245
-0.257
—G. 268
—G. 273
—G. 280

+0.0006
+G.0005
-0.0007
—0.0021
—0.0051
-0.0111
—0.0153
—0.0256

+0.119
—0.121
—G. 586
—1.050
—1.642
—2. 574
—3.152
—4.489

—G. 212
—0.217-G. 229
-0.240
-0.251
-0.262
-0.266
-0.272

+0.118
-0.121
—0.530
-0.810
—l.024
—l. 200
—1.264
—1.352

0.0019
0.0041
0.0020
0.0026
0.0037
0.0048
0.0053
0.0061
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TABLE IV. Cross sections in units of ao for
approximation (e) . O.OI- I I I l I I I I

0.7154
0.725
0.750
0.775
0.80
0.825
0.835
0.85

-0.48815
—0.474 375
—0.437 5
—0.399 375
—Q. 36
—0.319375
—0.302 775
—0.277 5

l.089
1.109
1.150
1.187
1.215
1.240
l. 248
1.259

0.00001 0.000 2
o.000004 0.00004
0.000 008 0.000 03
0.000 04 0.0001
0. 00012 0.0003
0.000 27 0.000 5
0.000 36 0.000'6
0. 000 50 0.000 8

&22

7.407
3.555

25. 68
32.74
32.73
30.22
28. 94
26. 90

(B)g~(l, 2) = ls(H)+ Is(ps)+2p(Ps).

They thus correspond to first [(A)] adding the hy-

their high cross section is probably due to their
nonvariational appr oach.

The Harris- Nesbet variational method seems
promising for treating such rearrangement colli-
sion problems. It avoids the computational diffi-
culties of evaluating complex kernels and iterating
coupled integrodiff erential equations. However,
its only drawback is the numerical evaluation of
matrix elements. The number of these matrix
elements (except for the free-free) depends upon

the number of short-range Slater orbitals used.
There is no criterion we know of for choosing
these orbitals except the convergence of the cross
sections. Other experience (Ref. 16 and our cal-
culations via approximation (a) of Sec. III and Ref.
22) has shown that when the calculations by the
Harris-Nesbet method converge, they converge to
the same results as an e xact (numerical) solution
of the same set of equations. %e thus consider
our results reported here as accurate to the sig-
nificant figures quoted.

In regard to the application of the Harris-Nesbet
method to e -H inelastic scattering, problems
were previously noted due to the long-range cou-
pling between degenerate channels. ' This was
taken care of by including energy-dependent trig-
onometric functions i.n the short-range basis set.
There is a possibility that this coupling is removed

by the inclusion of the positronium channels in

which case one might avoid evaluating and dia.g-
onalizing the bound-bound matrices for every
energy. Such a situation would enable us to solve
the positronium problem for energies up to the

n =3 threshold of hydrogen.
Note added in proof. In the course of checking

the calculations in this work two additional approx-
imations were examined which help to elucidate
the results. Using the convention of Sec. III, the

two additional approximations for the trial wave

function may be represented symbolically as

g (1, 2) = ls (H) + Is(&s) + 2p(H) (A)

04 o0

Z
O
I-
CP

O.OOI +~

V)

O
IL
D

J

K CS
O +

I

1

~ 0.0001 ~c) g I

L
X
2
K
O
K

CO
O
tL I:I'

0.7 0.8

FM~~.I
xlO

DH

0.9
K &0.-I)

Bxlo

BJx IO

I

I.O

drogen pseudo p state to the ground hydrogen and

positronium states and second [(B)]adding just the

positronium pseudo p state. The most extensive
calculation in Sec. III included both pseudo states
together [approximation (e)]. In all cases, only S-
wave scattering (L = 0) has been considered.

The results of the current approximations, (A)
and (B), are given in Table V for the elastic phase
shifts, in Table VI for the R-matrix elements,
eigenphase shifts, and coupling parameters, and in

Figs. 4 and 5 for the elastic- and positronium-for-
mation cross sections, respectively. Also plotted
in Figs. 4 and 5 are our coupled static (CS) and ap-
proximation e(P) calculations and the generalized
variational-bounds (GVB) calculations of Dirks and

Hahn. The CS approximation corresponds to just
coupling to ground hydrogen and positronium states
[i.e., ls(H)+ ls'(&s)].

TABLE V. Elastic g-wave phase shifts in radians for
the present approximations (A) and (B).

0.1
0. 2
0.3
0, 4
0. 5
0.6
0. 7

(A)

0. 0556
0.0457
0. 0037-0.0516

—0.1102
-0.1667
—0, 2185

0.0015
—0.0131
—0.0459
—0. 0903
-0, 1396
—0.1890
-0.2361

FIG. 3. Positronium-formation cross section in units
of a20. FM: Fels and Mittlemen; BJ:Bransden and Jundi;
DH: Dirks and Hahn; CS: coupled static result of approxi-
mation (b); P: present calculation of approximation (e).
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the eigenphase shifts, which here is simply,

Z6 = 6g+ 52,

then one obtains

Z 5' &Z5"&Z6'&Z6 "&Z5'

for k& 0. 80 with $5s and g5 "interchanged for
k& 0. 80. According to this comparison, our ap-
proximation (e) is better over-all than the GVBcal-
culations of Dirks and Hahn and approximation (B)is
slightly better than DH at higher energies. How-
ever, as noted by Dirks and Hahn, their GVB cal-
culations were only preliminary tests of their
method and further effort could undoubtedly extend
their results to be superior over-all. Extension
of our calculations would entail inclusion of more
states in the eigenstate expansion which is straight-
forward in principle but exceedingly trying on com-
puting resources.

APPENDIX: MATRIX ELEMENTS

OI

Q 2
IO

Z
O

Q
I-
4J
M

V)
M0~ IO—
K
O

X
O -4

IO

X
2
K
O
KI-
Vl
O -5

IO

CS

The matrix elements required in Sec. II are of
three kinds: bound-bound, bound-free, and free-
free. In any of these it is fairly simple to evaluate
analytical expressions for the matrix elements of
the Hamiltonian between two respective hydrogenic
states or two respective positronium states. In the
former, one uses the "before collision" form of
the Hamiltonian operator (2. 2), while in the latter,
the "after collision" Hamiltonian (2. 3) is used.
However, the major difficulty in this work comes
about in evaluating the matrix elements between a
hydrogenic and a positronium state as in the case,
for example, in the second term of (2. 11a) and the-

I

-6
IO 0.7 0.8

k (ao )

0.9

FIG. 5. S-wave positronium formation cross sections.
Labeling of the curves has the same meaning as in Fig. 4.

first terms of (2. lib), (2. 13c), and (2. 13d). These
integrals can be written in the following three
basic forms:

(i) bound-bound,

((u„,,(r,),"e '&"2r,"p,,(r-, r, ) I@Iy„„(p)R'~e-'~'r,",~„,(p R))); (Al)

(ii)bound-free,
k,j, (k, R)

or

((u„,,(r, )r,"e ""~1'~p,,(r", r, )IH- E"I y„„(p)R'2
k,(l-e "")"2' n, (k, R)

k~j, (kqr2)
„„(p)R'2e '«'r,"„„(pR ) I

a- z Iu„,,(r,),'

k (1 —e "2)"~" n( (k r, )

:;1...(p R)»~

l Fj~l p
(r1 r2

(A2)

(A8)

(iii) free-free,

„„(p)R'~YAP,„(p R )

k,j, (k,R)

(1 e-wR)2a2+1 n (k R)

'

k~j, (k~r, )

x Ilf- Elu. i,(ri)ra" 1'ii', i, (ri ra )
k~(1 —e ~&) '&" n) (k~r2)

~ (A4)
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To calculate these matrix elements, it is conve-
nient to use the following transformation: Referring
to Fig. 6, for a fixed distance ~2 between the posi-
tron and the proton define the spheroidal coordinates

t = (r&+ p)/rp, g = (r, —p)/r, ;

Q =the angle between the plane containing e', e, P,
and some arbitrary plane through e'P. These form
an orthogonal system with volume element

e+

d7'= ar~ ($ —rp)d(dgd&f&. (As) FIG. 6. Coordinates relations used in the calculations.

The variables that now appear in the above matrix
elements are written in terms of these coordinates
and ~2 where

2 r2($ 9) rg 2rp(( + n);

R= 4r2($ —+rP+8)q+8)'~~.

The angular terms, i. e. , 1'~p,. (r", ~ rz ) and~ - s Slyl2 1 2
Y'z",~, (p R ), have to be written in terms of their

corresponding angles which in turn can be evaluated
using analytical geometry, as functions of $, rl, P.
Once this is done, the integration over d rz and dP
can be carried out. As an example, consider the
simplest case where we are interested in evaluating
a bound-bound matrix element for S-wave scattering
between a 1s hydrogenic and a 1s positronium
state: Equation (8. 8) reduces to, in atomic units,

2 1 p/2
z 2e "e '&"~ ——

2 rz+ —+H„- — e ' e '&"
4v) r2 dr~ )r~- r2) v 2

(AV)

g"d$
Oy + 02+ Cl3+ 04 + 05

n, m being integers. This can be reduced to
quadrature by using the transformation

(a, + a, + a, (')'" = t + (a,'"

(A8)

(AO)

which, using the binomial theorem, leads to a set
of integrals of the form

+ e4/2a5
S/2 t"'dt

pm
(Q3+Q4+Q5) /

where

y((, n) = -'(&.n). —,
'

(& —n). —,'.,(&'.n'. 8&n. 8)'".
Now the integrals over $ are all of the form of a
basic integral

recursion relation

I' fn' df P'-1

j R (2m-n'-1)cR" '

dt
(m-n')b ~

f" '

(2m —n '- 1)c . R

df, (A10)+
(2 m —n '- 1)c l R

which reduces to integrals of the form f(f/R") df
and ddt/R" that can be done analytically.

We were not able to carry out the integration in
such a manner in the free-free matrix element Eq,
(A4), and the double integration instead was done
numerically using a 96-point Gaussian quadrature.
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Quantitative predictions for atomic-electron screening effects in low-energy pair pro-
duction follow from the knowledge that the small-distance shape of screened-electron and

positron continuum wave functions is close to that of point-Coulomb wave functions of shifted

energy. These predictions are verified by making exact numerical calculations in represent-
ative cases. The energy-shift normalization theory is then used in conjunction with the
point-Coulomb results of @verb/ to obtain predictions for atomic-pair-production energy
distributions and total cross sections for photon energies from threshold to 5 MeV. Atomic-
electron screening effects cause appreciable modifications of the total cross sections for
photon energies below 1.5 MeV and continue to have a major effect on some portions of the

energy distribution at higher photon energies. Results are also compared with Bethe-Heitler
predictions and with experiments.

With the continuing improvements in computers
it is becoming feasible to make fairly accurate
theoretical calculations of atomic-pair-production
cross sections in the low-energy region where the
Bethe-Maximon~ high-energy results and Born
approximation (the well-known Bethe —Heitler
formula) need not be valid. Relativistic calcula-
tions of pair production in a point-Coulomb-poten-
tial model have now been reported by Qhrerbg

Mork, and Olsen (QlMO); more extensive results
have been given by (|)verbg'. This use of a point-
Coulomb model relies on the expectation, based
on form-factor estimates, 4 that the effects of
atomic-electron screening would be unimportant
in this energy region. Such an estimate is obtained
because the maximum impact parameter r ~ dis-
cussed by Heitler, 5 equal to q~, with q &, = k' —P,
—p, is of the order of the electron Compton wave-
length and is quite small compared to the radius

of the atom. However, we subsequently performed
the lengthy relativistic calculations~ of pair-pro-
duction cross sections in screened potentials and

found that, near threshold, atomic-electron screen-
ing effects are important. At electron-Compton-
wavelength distances an electron sees a point-
Coulomb potential corresponding to the nuclear
charge Z. The electron wave function has a hy-

drogenlike shape; the only effect of atomic-elec-
tron screening, as described by a central potential
V deviating from the point-Coulomb form, is to

modify the normalization. For a very-low-energy
continuum wave function (but not for higher ener-
gies) this normalization is indeed sensitive to the

screening. We showed in fact that we could roughly
obtain screened pair-production cross sections
from point-Coulomb cross sections simply by using
a multiplicative normalization factor.

We have recently examined~ in greater detail the


