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%he spectralmomentsof ir and Raman bands of diatomic molecules in inert solutions are
calculated by the help of recent stochastic theories of ir- and Raman-band profiles. Both
vibrational and rotational motions are considered. It is found that for ir and rotational Raman

bands, the stochastic theories produce expressions for the band moments which closely
parallel the corresponding thermodynamic expressions. New expressions are proposed for
the moments of isotropic and of vibrational-rotational anisotropic Raman bands.

I. INTRODUCTION

Spectral moments (&u„)„.of ir and rotational
Raman (It) bands of liquids formed by linear mole-
cules have been calculated, for low n, by the help
of full thermodynamic theories implying the totality
of SN degrees of freedom of the liquid state. ~

The purpose of this communication is to show that,
using widely diff erent mathematical techniques,
the stochastic theories" produce expressions for
(&„)„,which closely parallel the corresponding
thermodynamic expressions. The simplicity of the

procedure makes it easy to determine the spectral
moments of isotropic and of vibrational-rotational
anisotropic R bands which have not yet been cal-
culated in any other way.

II. THEORY

G(n &(o)

G(O)
(ia)

quantum mechanics; the rotations are describable
by means of classical mechanics. The conditions
of validity of semiclassical theories have been dis-
cussed, e. g. , in the Ref. '7.

The spectral moments (~„), and the correlation
function G(t) of the band under study are simply
related. Putting

6n i~t
( t)n (cia&t)

Ctt

and integrating by parts gives

JI((u)& "d(u fd(u c'u" [f"„G(t)e'"'dt]
fI(&u) d~ Jd&a [f"„G(t) e '"'dt]

The system being investigated is formed by an
active molecule and a large number of nonactive
solvent molecules. The following four basic hy-
potheses are introduced: (a) The active molecule
executes anharmonic vibrations modulated by a
stochastic potential V,(r, t) because of the solvent.
(b) The active molecule executes stochastic re-
orientations describable by means of the variable
8(t); this variable represents the angle between two
successive directions u(0), u(t) of the molecular
axis. (c) The correlation between vibrations and

rotations is taken to be small and is neglected.
(d) The vibrations are describable by the help of

n

= Z (- 1)~ g~ ((u„~),(u'~, (&b)
P=O

where I(&u) is the band intensity at the frequency
~ and C~ are the binomial coefficients. Thus cal-
culating band moments essentially reduces to the

differentiation of correlation functions. ' ' The
results are most simply expressible by introducing
unique symbol p to designate either M, n, or P.
where M is the length of the dipole moment vector
M of the active molecule, n its mean polarizability,
and P its magnitude of anisotropy. The calculation
is indicated in Secs. III-V. '
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III. INFRARED SPECTRA

The ir transitions are electric dipole transitions.
The absorption intensity I((') expected at the fre-
quency & of an ir absorption spectrum is thus given
by the fluctuation-dissipation theorem in the follow-
ing way'.

I(&u) - f (T„rp, M"(t)M"(0)) (.""'dt

= f (Trp() M"(t) M"(0))&u(t)u(0)) e'"'dt

= f G(t) e'"'dt .

In this formula M"(t) represents the Heisenberg
operator for M; () indicates the averaging over the
ensemble of the stochastic processes V, (r, t),
u(t); and po is the vibrational density matrix.
G(t) appears as a, product of two factors easily

identifiable as vibrational and rotational correla-
tion functions. Thus the spectral moments ((u„)„.
appear as combinations of pure vibrational and of
pure rotational spectral moments (w„}„,, (e„}.
The former are the moments that an ir band would have
if the vibrational relaxation mechanisms were only
present, and the latter are those that an ir band would

have if the rotational relaxation mechanisms were
operating alone. It is convenient, in what follows,
to treat (tu„)„, , (&u„)o separately from each other.

The purely vibrational spectral moments ((()„)
are calculable by applying Eqs. (la) and (lb) with the
vibrational correlation function (TrpoM"(t)M "(0)).
For the calculation of this function, see Ref. 5.
Knowing &TrpoM "(t)M"(0)), assuming the stochastic
function V, (x, t) to be stationary, and taking y, y"(t)
to represent M, M (t) gives

,t
t

(»»»'(&&»"(O)&=(I (ol»'(O&I~&l" ' "~~(-~ ((~l).(», »)l ~&-(ol »(», ~) 0&]a~I,
a 0

If(&u, )o =h&uo+ &hV&„-her =—(hV)„, (4a)

~'(,)'.. ..= [&(~V)'&, —(«),'],

~'(~s).,".= [&(«)'&, —2&(«)'&, «V), + 2«V)', ],

(4b)

(4c)

BhgI'( ):, .=(((«)'), -4((~»)'), (&v&,+()((&»)'),(&Bl-&(~»)',&+(
y

&i(oiy "(O)i ~&i'[&ni V, (~, 0)in&- (0i V, (r, 0) io&]")
(i &oi W "(o) i c(,'& i'&

(5a)

(i(0ir "(0)io) i'f(8/sf)l&ni v (&, f)ice) —«i v, (~, t) l0)]j",., )
&i &0i "(0)i ~& i') (5b)

Here, 0, & are vibrational quantum numbers and
~o represents the nonperturbed frequency of the
0- n transition. A considerable simplification
results by supposing M and V~{1,0) statisticaliy in-
dependent. In that case,

&(~V)"&.-&[&~~ V, (~, o)~ o& —
&0~ V, (~, 0) ~0&l"),

i. e. , the spectral moments (&„), simply reflect
the static distribution of the vapor-solution vibra-
tional energy shif ts.

The purely rotational classical spectral moments
(&u„)~0 can be determined by applying Eq. (la) with
the classical rotational correla, tion function
&u(f)u(0)&. For the calculation of this function,
see Ref. 5. The corresponding semiclassical ex-
pressions are obtainable by expanding f(t) = &u(t)u(0)&
into the Taylor series around the point t= Q„using
in f' "' (0) = (& ) 2/i o"the classical value for (~,„)ao

and building into this series the Schofield substitu-
tion f- t+ N/2''T. The results are

&u(t)u{0)) = {Reexp [—if,~ (t) dt)),

(~1)() = @/I,

(&u2) 0
= 2KT/I

sax» ).
((a~)»)

{Vdi

Expressions (Va)-(Vd) are correct up to the terms
linear in S.

Complete expressions for the vibrational-rotation-
al spectral moments (~„)„,are easily expressible
in terms of (~„)"„, (co„)0. It is sufficient to derive
't11e produc t correlation f1111ctloll G{t) of Eq. {2) allcl

to use (4), (5) ancl (7) wl'tll '&» =M. Tile results
are

(aa)
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(~2)~o+~~= (~2)~0+~~+(~a)o ~

(&a&3)„0,~„= ( S)„o,g„+ (+3)0 + 3(eg) (w2)„,g„, (8c)

(~4)., &.=(~4)'...&.+(~4);+4(~&)o( 3)'...~.
+6(&ua)0((u2)„, „.(8d)

All these moments, except the first, refer to the
shifted vibrational frequency

(8b)

R = (d o + 6&8 = M o + (IjII) (n V&&& .
IV. RAMAN SPECTRA

A Raman spectrum can conveniently be considered
as a superposition of two independent spectra: an
isotropic spectrum and an anisotropic spectrum.
They both result from modulation of the polarizabil-
ity tensor o& "(t) of the active molecule by molecular
motions in the liquid state. The isotropic spectra
are produced by the scattering through the trace of
o "(t) (trace scattering); thus the profiles are de-

termined by vibrational relaxation processes alone.
The anisotropic spectra are associated with the

anisotropic part P (t) of o. "(t); here, vibrational
and rotational relaxation mechanisms are both op-

erating. Experimentally, I&(e), I, (&d) are deducible

from the intensities I, (tu), I,(&u) measured at the
90' observation for VV and VH scattering geom-
etries; compare with Table I and Ref. 6

I„(&u) =A I;(&d) + B„I,(&d) —I;(&d) = C; I„(&u) +D; I,(~),
(9)

I (&&) =A I (&u)+B I,((u) I,((u) = C, I„(&d)+D,I ((u) .
(Io)

Qne concludes that, starting from measured values
of I~~(R) I,(w), it is possible to disentangle the-

vibrational and rotational relaxation effects. This
important possibility does not exist in ir spectros-
copy.

Isotropic spectra result from the orientation-
independent trace scattering. The key quantity is,
here, the mean polarizability &= 3 Tr Tc ~ Thus

designating by c&"(t), the Heisenberg operator for
o, the intensity I(~) of the Stokes component of
an isotropic spectrum is given by the fluctuation-
dissipation theorem in the following way:

I;(&d)-f (Trpoc&"(t)u"(0))e'"'dt= 1 G, (t)e'"'dt .
(II)

The moments (&u„)„.of an isotropic spectrum are
closely related to the purely vibrational ir spectral
moments (~„)„and ean be calculated much in the
same way, compare with Ref 6. It turns out that
the formulas (3)—(6) remain applicable to an iso-
tropic spectrum with p = &. This is a consequence
of the fact that the same mechanism of vibrational
modulation is operating in both cases. One should

not conclude, however, that purely vibrational ir
moments (&u„)„., necessarily coincide with those
of an isotropic spectrum. This will happen only

TABLE I. The coefficients of the transformations [Eqs.
(9) and (10)] indicate how, at the 90' observation, the
isotropic and the anisotropic Raman components I&(~),
I,(&) can be separated from each other experimentally.
This makes a separate study of vibrational and rotational
relaxation effects possible, since I;(&) only depends on
vibrational relaxation mechanisms.

Polarized
light

Natural
light

A„1 B„~ C] 1
A~ 0 Bq ~(g C 0

A~~ 'f BI~ &)P Cj 21 2

Aj. 0 Bg )5 C~ 0

D)
D~ 15

D~
D 15

if o, M, and Vz(r, 0) are statistically independent;
not, ((&V)"& W ((&V)")„, and the moments may

differ to a certain extent.
Anisotropic spectra are produced by the scatter-

ing through the anisotropic part+ of n . Consider-
ing the cylindrical symmetry of a diatomic mole-
cule, the isotropy of a normal liquid, and applying
the fluctuation-dissipation theorem leads to the
following formula for the Stokes component of an
anisotropic spec trum:

I,(~)-f "&Trpo(~' p "(t) ~')(~' p "(O) ~'))e'"'dt

= f (Trp, P"(t)P"(O)& &-,
' (Iu(t)u(0)]'- ,'}I&e'"'dt-

= f G,(t)e'"'dt (12)

In this formula P "(t) is the Heisenberg operator
associated with P and P"(t) is that associated with
the magnitude of anisotropy P, e~andX~ indicate the
directions of the vectors E, E of the incident and
scattered radiation; all other symbols have their
usual meaning. G,(t) once again appears as a
product of a vibrational and of a rotational factor:
Both vibrational and rotational motions modulate
an anisotropic spectrum. It is thus convenient,
as before, to define pure vibrational and pure
rotational spectral moments (&„)v~, (& '„)so associated
with these two factors. (cu„),, (&u„)0 are treated
separately.

Not very much is to be said about the calculation
of the purely vibrational spectral moments (&d„) ..
The discussion parallels word by word that given
in Sec. III (compare with the Ref. 6). The results
are once again expressible by means of Eqs. (3)-
(6) with y= p. If n, p, M, and V~(r, o) are statisti-
cally independent, the vibrational spectral moments
in ir and in anisotropic spectra coincide with the
moments in an isotropic spectrum. Purely rota-
tional Raman spectral moments (&u„)0 are obtainable
by manipulating the function

g(t) = (-,
'

$)u(t) u(0)] —P&

in a way similar to that described in Sec. III. The
moments (e„)0 correct up to the terms of the first
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ord'er in N are

(-', ([u(t)u(0) ]~ —3)) = —,
' (Re exp [- 2i J, (u(t) d t]) + —,

'
(13)

(14a)((ui)o ——%/I

(~,),'= 6ZT/I,

( )
48lfKT Sf ((B(o) )

"((')')(
)„96K T2

g2

(14b)

(14c)

(14d)

p A ( h(p)B
A+a(p)B ""'+A+g(p)B ("~)~' (16)

In this formula p is the depolarization factor,
h(p) = 45p/3 —4p for a linearly polarized incident
light, and h(p) = 45p/6 —Vp for a nonpolarized
natural light. A represents either A, or A ~; 8
represents either B, or 8„. All limiting cases are
correctly reproduced by this equation. If the band
is totally polarized, p= k(p) =0 and (~„)"„.= (&u„)'.;
if the band is strongly depolarized, p- —,

' (or v),
h(p)- ~, and ((u„)„".-((u„)'„, .

V. DISCUSSION

The following conclusions can be reached by
comparing stochastic and full thermodynamic

Complete expressions for the vibrational-rota-
tional moments of an anisotropic spectrum are
given by Eqs. (Ba)-(8d), where (&u„} ., (~„)o satisfy
to Eqs. (3)-(5) and (14) with y=P. Inprinciple,
all moments of an anisotropic spectrum differ from
the corresponding moments of an ir spectrum; the
rotational contributions (~„)0 are not equal in the
two cases. This difference is less pronounced, how-
ever, if the vibrational relaxationprocesses strongly
predominate over the rotational relaxation processes.

According to Eqs. (9), the total intensity I(&u) of
a Raman spectrum is a weighted sum, with coef-
ficients A„B„A)) B)) of the intensities I&((u),

I,(&u) associated with the isotropic and anisotropic
spectra. Thus the correlation function G(t) can be
written

G(t) = A „G;(t)+B„G,(t) (VV geometry), (15a)

G(t) = A, G;(t) +B,G,(t) (VII geometry). (15b)

The spectral moments (&u„)„.of a Raman spectrum
can be easily calculated by the help of Eqs. (1),
(4), (14), and (15). There is no obvious way, how-
ever, in interpreting the results obtained in this
manner. In general, the moments can not be writ-
ten as simple linear combinations of the corre-
sponding moments of isotropic and anisotropic spec-
tra. The situation is simpler, however, in the
important case where o'. , P, and V~(4", 0) can be con-
sidered to be statistically independent. If so,
(& „)~,, (&u„)„',, (~„)'„,depend linearly on each other:

formulas for (&u„)„",. If the vibrational modulation
is slow &„y„»1, ~ the time dependence in Vz(x, t)
can be suppressed and ((Bb V/Bt))„-0. In that case
the stochastic expressions (3)-(5) for the vibrational
spectral moments coincide in their essential factures
with the corresponding thermodynamic expressions;
the average over the stochastic process V~(r, 0) is
replaced by the quantum-mechanical average over
the external states. If the vibrational modulation
is moderately fast, the time dependence in V~(4', t)
can no more be completely neglected and new terms
appear. It is remarkable, that the fourth-order
vibrational moment is the first one to be affected
by this process. The dynamic effects are obviously
inefficient over a very short time interval. It is
concluded that the Born —Qppenheimer approxima-
tion used in the full thermodynamic theory and the
slow modulation condition &„7„»1 applied in the
stochastic theory play an essentially equivalent
role in the present context. The term ((BAV/Bt)~)„
illustrates the effect of constraints built into the
thermodynamic theory if the Born-Qppenheimer
approximation is used.

The rotational moments (&„)0 given by the two
theories under discussion agree in terms of the
zero and of the first order in h. The following
formulas are used in this identification3:

$ $

(17b)
1 B V,

sin ~ By

The proof is similar to that given in the Ref. 10.
If V$ = 0, the intermolecular torques are absent,
((B&u/Bt) ) =0 and the rotational frequency &u remains
constant. According to the classical mechanics
the moments higher or equal to (~4)0 are affected
by intermolecular dynamic effects; this statement
applies to (&us)0 if the rotation is semiclassical.

Some secondary terms entering into the thermo-
dynamic expression for the rotational-vibrational
moment (~4)„.are missing in the corresponding
stochastic formula. This is a consequence of the
fact that, in the present theory, V~(4, t) is a classi-
cal stochastic process and vibrations and rotations
are taken to be uncorrelated. For example, the
term (EVMo(3)) —(hV) (Mo(3)) [ Eq. (39b) of
Ref. 3] vanishes if 4V and Mo(3) are independent
processes. These terms are small, however, and

it can safely be concluded that the results of both
theories closely parallel each other in a majority
of cases of practical interest.

In the case of purely rotational R spectra, the
only case where the full thermodynamic calculations
have been made, stochastic and thermodynamic
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formulas coincide in term up to the first order in
O'. Formulas (1Va) and (17b) are once again used
in this identification.

The spectral moments of the isotropic R and of
the vibrational-rotational anisotropic R spectra
are similar in many respects, to the corresponding
ir spectra. It must be stressed, however, that
the vibrational moments extracted from these three
sorts of spectra are not necessarily identical.
This only happens if M, o, p, and Vs(r, f) are

statistically independent. If they are not, definite
although probably small differences exist.

A last comment may be of interest. Stochastic
theories are often useful in describing irreversible
processes, but they generally need justification in
terms of intrinsically more complete thermody-
namic theories. ' It is therefore satisfactory that
the spectral moments, when available, are found
to be basically equivalent in the two theories under
study.
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The hyperfine structure (hfs) of the J=6 member of t eh4f"6 ~ sEYground multiplet of 4' 49Sm

has been measured by the atomic-beam magnetic-resonance technique, and that of the J
=1-5 states has been remeasured. The magnetic-dipole and electric-quadrupole hyperfine-
interaction constants obtained, after correction for second-order hfs, are found to be consis-
tent to a very high order with the three-parameter formulation of the Sandars —Beck effective-
operator theory of hfs and with the Conway-Wybourne eigenvectors for the J=1-6 & states
of Sm. The earlier apparent failure of these eigenvectors to be consistent with the magnetic
dipole hfs of the 'I' states with J=1-5 is now resolved.

I. INTRODUCTION

The hyperfine structure (hfs) of the 4fs6s ~F

ground term of the samarium atom has been in-
vestigated in detail by Woodgate' and by Robertson,
Waddington, and Summers-Gills with the atomic-
beam magnetic resonance technique. The multi-
plet comprises seven states with J values of

0, 1, . . . , 6. The 'I"
0 level lies lowest and is the

atomic ground state; the excitation energy of the
others increases with J, and the highest level.
(J = 6) lies at 4021 cm

Because samar um is relatively volatile, the
highest usable temperature for an atomic beam
from a normal oven is l.ow, only about 850'C. At
this temperature, the Boltzmann factors for the
states with J= 4, 5, and 6 are extremely small,
and the very small population of individual mag-
netic subl. evels of these states makes observation

of transitions between them very difficult. In

1961, Pichanick and Woodgate' measured the elec-
tron g factor g~ for all six Jw0 states by observing
transitions in the abundant even-even isotopes
(which have no hfs), and in 1966 Woodgate' was
able to measure the hfs of ' " Sm in the states
with J=1, 2, 3, and 4. Robertson et al. in 1968
had sufficient sensitivity to extend the hfs work to
the J=5 level but were unable to make the corre-
sponding measurements for the final state, 'E, .

The 'E multiplet of Sm r has been studied theoret-
ically by Judd and Lindgrens and by Conway and

Wybourne. 7 Both studies obtained eigenvectors
for each of the states in terms of the appropriate
Russell-Saunders basis states. In addition to
yielding excellent fits to the known excitation en-
ergies, the eigenvectors (particularly the more
recent ones of Conway and Wybourne) were re-
markably consistent with the g~ values measured


