
PHYSICAL REVIEW A VOLUME 6, NUMB ER 5 NOVEMBER 1972

Scattering of Phonons by Charge Carriers in Superfluid Helium:
The Zero-Velocity Limit

K. W. Schwarz
I:epartment ofPhysics and The JamesI xanckInstitute, The University ofChicago, Chicago, I/Einois 60637

(Received 14 March 1972)

The problem of phonon scattering by charge carriers in superfluid helium is considered,
with the aim of interpreting recent measurements of charge-carrier mobilities below 1'K.
The calculations are done in the hydrodynamic approximation, and explicitly include the effect
of the electrostrictive variations in the fluid surrounding the core structures of the carriers.
For the positive carrier, the necessary core properties are calculated, and in particular it is
found that the core does not act like a hard sphere. The theoretically predicted phonon-limited

mobility for positives is found to be in excellent agreement with experiment, provided a liquid-
solid surface energy of order 0.1 erg cm 2 for the core is assumed. In the case of the nega-
tives, results are similar to those of previous workers. The mobility of the electron bubble is
substantially explained by resonance scattering of phonons, but a significant discrepancy re-
mains which probably arises from the use of the idealized bubble model. The changes in the

theoretical mobility curves that can be produced by varying the bubble parameters a and V&

are of the order of this systematic discrepancy, so that the best values of these parameters
cannot be determined from the data. Values of a less than 15 A can, however, be ruled out

with some confidence. The roton contribution to the scattering is determined by subtracting
the phonon part, and turns out to have some unexpected features. For the positives, e/p,
=-1.34& 10 T ~ e " . The temperature dependence of e/p is not as clearly established,
but the prefaotor lies between To and T ' . The ratio of e/p to e/p, is found to have a sur-
prisingly small value of about l.5, perhaps indicating that electrostrictive variations in the

fluid surrounding the positive core scatter rotons strongly. No present theory of roton scat-
tering explains the observed features.

I. INTRODUCTION

It has long been realized' that at temperatures
below -0.6'K the movement of charge carriers
through superfluid helium is limited mainly by
their interaction with thermally excited phonons.
Recently, detailed experimental studies of the
equilibrium drift velocities attained by charge car-
riers under the influence of a weak electric field
have been carried out in this temperature region.
To interpret such observations one must know how

phonons are scattered by the structures associated
with the charge carriers in the liquid. Several
features of this problem serve to make a simple
yet adequate treatment possible. At the low tem-
peratures under consideration, those phonons im-
portant to the transport properties of the carriers
have wavelengths of several interatomic spacings.
They can therefore be described to a reasonable
approximation in terms of continuum sound waves.
Second, the excess charges are known to be asso-
ciated with microscopically large structures in the
liquid. The negative carrier' consists of a deform-
able electron bubble with a radius of about 15 A,
whereas the positive carrier apparently features
a solid central core with a radius of about 6 A plus
appreciable local density and pressure gradients
in the surrounding liquid. These accepted theo-
retical models for the carrier structures are con-
tinuum models which average over any detailed ef-

fects arising from the microscopic discreteness
of the liquid. Again this cannot be such a bad ap-
proximation because of the large sizes of the
structures involved, and in fact good agreement
with experiment is usually found.

If a continuum picture can reasonably be applied
to both the phonons and the charge carriers, then

it is proper to treat their interaction as a problem
in fluid dynamics. Not only is such an approach
entirely self-consistent as regards the kind of ap-
proximations made throughout, but it has the nec-
essary virtue of being simple enough to permit de-
tailed computations and comparison with experi-
ment. It has already been successfully applied by
Baym et al. ' to explain the motion of the electron
bubble in the phonon-limited regime, and the work
described below is mainly an attempt to achieve a
similar success for the positive carrier. The new

elements in our treatment include a somewhat
more coherent approach to the hydrodynamic prob-
lem, an approach which can readily be generalized
to include other cases of physical interest. The
effect of the electrostrictive density variations in
the fluid on the phonon scattering is explicitely
considered and shown to be of major importance
for the positive carrier. Detailed comparisons
with experiment are made, and good agreement is
obtained in the phonon-limited region. The scat-
tering due to rotons is then derived by subtracting
the phonon contribution from the experimental data.
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II. BASIC EQUATIONS

The equations of motion of an ideal fluid at T = 0
are

av
p —+ (v ~ V) v = —VP+ (P ~ V) E,at

cussion of such problems as the nonlinear varia-
tion of the average drift velocity of the carriers
with the electric field. Here we shall limit our-
selves to the relatively simple situations where
the carriers are stationary. The more complex
behavior arising from the motion of the carriers
will be considered in a la,ter paper.

p—+ V ~ (pv) =0,
at

(2) III. ELECTROSTRICTIVE EQUILIBRIUM

where Eq. (1) includes the local electrostrictive
body force arising from the presence of an excess
charge. Here p is the density, v is the fluid ve-
locity, p is the pressure, P is the polarization per
unit volume, and E is the electric field. We as-
sume that to a sufficient approximation one can
write P = PNno M ~ E = PPE where N is Avogadro's
number, no is the atomic polarizability, and M is
the molecular weight, so that P equals the polar-
izability per unit mass. Then Eq. (1) takes the
simpler form

Sv - - Vp p Da
+(V ~ V)v= ——+2 V

( )a

where D is the electric displacement field which
depends on the instantaneous position ro(f) of the
charge according to

D=e[r-ro(f)j/lr-ro«)l . (4)

To complete the required set of equations we note
thai below 1'K the equation of state of the liquid
is

A1(P Po) +&a(p Po) +&a(p Po)

where p, =0. 14513, A&= 5. 68x10', A, = i. 110x10',
A3=7. 41x10, all in cgs units.

There are several distinct problems associated
with this set of equations, each having its own par-
ticular physical interest. Most simply there is the
case of the stationary charge carrier when no
sound waves are present. The resulting equations
determine the equilibrium density and pressure
distributions in the liquid, as has been discussed
by Atkins. One may also investigate the more
complicated case where the charge carrier is es-
sentially stationary but a sound field is present.
This is, of course, the phonon-scattering problem
in the continuum approximation and is of consider-
able interest because, as Baym et al. ~ have shown,
the calculated scattering cross sections can be
directly related to the zero-field mobilities of the
carriers. A third problem is the calculation of the
velocity field of a moving carrier, which relates
particularly to the interpretation of experiments
that measure the effective mass of the charge
carriers. Finally there is the question of how
a moving carrier, with its associated velocity
field, scatters sound waves. An understanding of
these processes is essential for the intelligent dis-

A very complete discussion of this aspect has
been given by Atkins, and our main purpose here
is to briefly review his work and to establish some
results which will later prove useful. When all
velocities are set equal to zero, Eqs. (2) and (8)
reduce to the condition for mechanical equilibrium:

VP ~aPD

p (I+4w P p)
(8)

Using Eqs. (4) and (5), this can then be integrated
to yield

IV. SOUND SCATTERING

We denote the electrostrictive equilibrium solu-
tions by a zero subscript, and find the form of the
equations governing the sound fields. The similar
problem of sound propagating through a nonuni-
form atmosphere in mechanical equilibrium under
a gravitational field is discussed by Lamb. '
Writing v=v, , p=Po+p„p= po+p, in Eqs. (2) and
(8) and linearizing, one obtains

sv, /p
I, po

1 ap +V ~ (povq)=0,
co at

where we have used p, = (sp/sp)op, = p, /co' to elimi-
nate p, . In deriving Eqs. (8) and (9), some small

Bg ln —+ Ba ( pa —pg) + Ba( pa —pg)
pi

1p a 1p a

a — a a (&)r a(1+ 4mPpa) a' ~(1+ 4 HAPP))

where B,=A, —2poAa+3poA, , B~=2A& —6poA3, and2

Ba=-', Aa. Given the density p, at x&, Eq. ('7) de-
termines the density p~ at any other radius xz. The
corresponding pressures are of course derived
from Eq. (5). In Figs. 1 and 2 we show the cal-
culated variation with distance from the excess
charge of the density and pressure in the surround-
ing liquid, for various limiting values of the pres-
sure (and hence the density) at infinity. Figures
1 and 2 apply to both negative and positive charges
provided we limit their application to radii greater
than those of the appropriate core structure. The
nature of the core structures will be reviewed
later as the need arises.



.220 That is, the respmanner of Celli etgl.
the core surf

(14).200-
E
O
I

.180—
Q ptm

a(~)=~+~ "~ 'l
ressure field &P(~) = ~to the a,cting exc -

d ve ls chara. cter( g)
'
sIng from tilethe»und wave

coeff j.cient» r:ized by the resyonse o
Q ptm

.160—
C3

Q ptm

140—

I

10 155
0

Radius (&)

f f]ujd densi"y with
' tive variation o

1 'dh 1' b 1distance from a
1 s th pressure at infinx y.1.O'K, for various va ues t presoft epre

gg, -X, &pt

condi-then obtains the boF,om E& (].O) one
tion

d &~ -y, p, (a)c'0 (~)dr

at r=~
into a differential13 canbe converte lnFquation

hase shift qt, us "gartial-wave p asation for the P
ev and Ke er11the meth«due

and
1 8 p&'p + &(»po) &d —p

(1O)

in these equations the reader should
1 b t th lo 1 o drem y po

1 is a strong function o
the excess charge. sdistance from e

ations in theser si nificant varia '1d2, h, g
onfined to the imme i
At large distances,e g. g

al e uations or s(12) become the usual
tion in a uniform medium.

ted by Eels. (11)roblem represen eThe scattering pr
' htf rward par-and (12) can be dealt wit y'th b straig o

%e writetial-wave analysis. %e

P, (cos8) e '"'A, — „
e uation is thenand the associated radial eq

1 d (lnpa)d R, d(1 pp) ndMi e„
dr dr dr co r

l(l + 1)

velocity of sound in the bulk liquidHere c„ is the veloci y o
ditions at thec„. The boundary con i ion

t are treated in theradius g o* f the core structure are

the localrise from the dependence of the
tant on p, have been n

s are typically on e og
percent of the retained terms, an

db = o ththe velocity potential g define y v=
obtains

'(kr) cos7i, —rII(kr) sining,'=k r
dr

3a'[,()o-()sin k'r' 11 —
z

(17)x [j,(kr) cosrl, —n, (kr) sining,

80—

I I I

60—
E

CD

40-
Ch
CD

CL

20—

0—
5 10

0
Radius IAj

2Q atm

IQ atm

0 atIn

15

trictive variation of fluid pressure
li 'dh 1' b—

th ldf turves determining eAlso shown are curv
radius ~

ad' as discussed in the text.

are the spherical Besseel and Neu-
d the primes de-s respectively, an emann functions, r p

the arguments.s with respect to enote derivatives w'

r is to be interpre eted as the phaseThe f~n~t~~~ ~,(r i
uld result if one se po=p„shift which woul

if the scatteringrthanr; i. e., i e
t off at r. The quan i

ourse the limi ing v
large r. The boundary condition a
ture radius becomes



SCATTERING OF PHONONS BY C HARGE C ARRIERS IN. . .

j ', (ka) + y, kaj, (ka)
q, (a) = arctan, („(„ (18)

where, following the notation of Baym et al. , we
have written

yi= ~~pa(a) o /a ~
2 (19)

Equation (17) and (18) do not provide much di-
rect insight into what is going on, but they are
very well suited to quantitative numerical calcula-
tions. We are in any case forced to take a some-
what numerical approach in what follows for sev-
eral reasons: The phonon wavelengths of primary
interest are of order the size of the scatters so
thai many partial waves are necessary for con-
vergence; po(r) and co(r) which appear in Eq. (17)
are numerically specified functions which must be
obtained at each step of the integration by solving
Eq. (7); and finally, we are interested in making
quantitative numerical comparisons with experi-
ment.

The experimental data particularly germane to
our discussion are the recent measurements of
carrier mobilities below 1 'K. We recall that an
electric field 8 is applied to the charge carriers,
which then attain a mean drift velocity gD propor-
tiona1. to 8, if 8 is kept small enough. Convention-
ally one writes ma= p, S, where p, is the mobility.
It is easy to see that the average force exerted
by the excitation gas on the charge is then evv/p,
and that the amount of momentum exchanged per
cm of travel is just e/p. It has been shown by
Baym et al. ' that

The initial phase shifts given by Eq. (18) are those
which arise from the central-core structure alone,
and thus describe the scattering when the electro-
strictive effects in the surrounding Quid are ig-
nored.

V. MISCELLANEOUS REMARKS

phase shifts from Eqs. (17)-(19), and then use Eqs.
(20)-(22) to find e/p as a function of temperature.
The validity of our model for phonon scattering can
then be tested by comparing the calculated e/p with
the experimental data. Before plunging into detail,
some preliminary comments may prove of value.
First, we plot in Fig. 3 the thermal weight factor
k (Bn/Bk) for phonons at several temperatures and
zero pressure. Although the number of thermally
activated phonons increases with T, their impor-
tance relative to rotons rapidly becomes small
above T-0. 5'K. Therefore we can conclude from
Fig. 3 that typical wavelengths of interest are
greater than about 15 A. Since this is well within
the linear region of the excitation spectrum, the
use of Eq. (5) is justified. From Eq. (20) it is easy
to see that if or(k) goes as k", then e/p will exhib-
it a T" dependence on temperature, the T' term
arising from the variation of the thermal-weight
curve with temperature.

Another feature of general interest is the rela-
tive importance in the phonon-scattering process
of the electrostrictive variations in the fluid sur-
rounding the core structure of the charge carrier.
One may ask if the integration of Eq. (17) will re-
sult in only a minor adjustment of the phase shifts,
or whether it will in fact be the dominant effect.
To answer this question, we show in Fig. 4 the
first few q, (r)'s, calculated at & = 0. I x 108 for a
rigid immovable central core (y, =0) of radius 5. 5

A. It is immediately clear that for the positive
carrier the electrostrictive variations in the Quid
outside the core are a major factor in determining
the scattering. Our previous treatment in which
only the effect of the core in the long-wavelength
limit was considered is therefore oversimplified.
Turning to the negative carriers, one notes from
Fig. 4 that q(r) changes only slightly beyond 15 A.

k —or(k) dk, (2o)6p 8$

where n is the distribution function of the elemen-
tary excitations under consideration and or(k) is
the momentum-transfer cross section

o (k) = f (1 —cos8) o (k, 8) d 0, (21)
where, in our case,

o(k, 8) = k 5 (2l+ 1)P, (cos8) sing, e'"& . (22)
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Of the approximations which are made in deriving
Eq. (20) the most important is the neglect of recoil
effects, an approximation which is certainly valid
for phonon scattering but which becomes question-
able when applied to the roton-limited regime.

Our task in Secs. VI —VIII will be to pick a likely
model for the central-core structure, calculate the

O. I 0.2 0.3 0.4

Wave Number(IO cm j

0.5

FIG. 3. Thermal weight factor A4 (Bg/9k) for phonons in

liquid helium at temperatures of interest.
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FIG. 4. Result of a typical numerical phase-shift in-
tegration, including the effects of electrostriction in the
fluid surrounding the core. This example corresponds to
a phonon of @rave number 0.1 & 10 cm and an immovable,
hard core of radius of 5. 5 A.

where po is the pressure in the liquid, and v, and v,
are the molar volumes of the liquid and the solid,
respectively, at the melting pressure. The miss-
ing element in this prescription for determining a,
is o„, which is not a well-known quantity. Hom-

ever, recent measurements'4 '6 of e/p, .near the
melting pressure have yielded strong evidence that
o„ is nonzero and of order O. 1 ergcm . The val-
ue of a, corresponding to o„can easily be deter-
mined graphically, as in Fig. 2, by finding the in-
tersection of the pa(r) and the p„+ (2a „/r) v, (v,
—v, )

' curves. The second row of Table 1 gives
the values of a, corresponding to various 0„in the
range of interest.

In addition to the radius of the core, one also
needs to determine the response coefficients g, de-
fined by Eg. (15). The response of the core to the
sound-pressure field can be expected to be some-
what peculiar, since a local increase in pressure
causes the phase boundary to move outward. If a
small excess pressure 5p(8) is added to pa(a, ), the
new boundary of the core a(8) will be given by

P(~(8)]+5P(8)=P + 8—- (24)

Indeed, it has already been demonstrated by Baym
et al. ' that taking only the effect of the bubble into
account is sufficient to give good agreement with
experiment. In sum, Fig. 4 leads us to the quali-
tative expectation that for positive carriers vr(k)
should depend strongly on scattering from the Quid
surrounding the core. For negatives, on the other
hand, the boundary conditions at the bubble surface
will dominate ar(k), with a small but perhaps sig-
nificant correction arising from electrostrictive
effects.

VI. PHONON SCATTERING BY POSITIVE CHARGE
CARRIERS

We first consider the properties of the core sur-
rounding the positive charge. Because of the very
small distances involved, the description of the
core given below is valid only in an average and
approximate sense. On the other hand, a sound
wave really does sample the average properties
of the charge carrier, and one may expect that the
scattering process mill be sensitive only to the
gross features of the core.

It was suggested by Atkins in his original paper
that as the charge is approached and the electro-
strictive pressure in the liquid rises to the melting
pressure p, a liquid-solid phase transition oc-
curs, resulting in a solid core. More precisely,
if one includes a possible liquid-solid surface en-
ergy density 0„, the transition will occur at an av-
erage radius a, given by

(25)

to the expression in Ecl. (25). M, is the mass of
the core, a quantity which may be calculated ap-

TABLE I. Positive core parameters for various
values of g». The meanings of the various parameters
are discussed in the text.

~Is
a,
po(a, )

M,

~Z, g a,)'

erg cm"
(A)

(gem 3)

(He masses)
(10 '6 dyn ' cm )
(10" dy/ em )

0.00
6.66
0.172

47
6.29
4. 68

0.05
5.89
0.184

35
3.46
3.86

0. 10
5.3'7

0. 194
29

2. 24
3.23

0.15
5 00
0.204

24
1.59
2. 88

Expanding 5p(8) and a(8) in spherical harmonics as
before then immediately yields

-1
Po ls s

~ 0 2
r ~a 0+ V l

—Vs

(25)
The spa/sr term in Eq. (25) is easily evaluated,
e. g. , from Fig. 2, and the resulting values of X,
are given in the fifth rom of Table I.

Note that the / = 1 coefficient is explicitly omit-
ted from Ecl. (25). The 1= 1 partial-pressure wave
exerts a net force on the core, and the resulting
motion must be taken into account by adding a term
~X& of the well-known form'
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proximately from the electrostriction model as
follows. The equation of state of solid helium"'
may be written to sufficient accuracy as

Ps Pm+ D1 (P P&) + D2 (P Pgp) + D3(P Pgp)
(2'7)

where p+=0. 190, p =2. 53x10', Dy= l. 33x10,
Dq—- 1.52x10, D3 ——1.96x10 ', all in cgs units.
The equation determining the density as a function
of radius inside the core then has the same form
as Eq. (I) with, of course, different constants.
The initialdensity pat z= a, isgivenbythe require-
ment that in the solid at y = a, the pressure must be

po(a. )+ 2@„/a„and p2(x) is then found the same
way as before. Although p2(r) calculated in this
way diverges as x-0, it does so more slowly than
y and M, is well defined. The results of our cal-
culations of M, are given in the fourth row of Table
I, in terms of He masses. The corresponding
values of b~& are given in the sixth row. Since
ka, in the region of interest is of order 1 or less,
4A., is an important contribution to A,

Once the proper characterization of the core has
been established, one can apply the formalism of
Secs. IV and V. On the basis of previous experi-
ments we choose the core properties correspond-
ing to g„=0. 10 as the best initial guess. The im-
portance of the various refinements that have been
introduced here is illustrated in Fig. 5. Curve 1

is the calculated momentum-transfer cross section
for an immovable hard sphere (X, =0) of radius
a= 5. 37 A, without including any of the effects of
electrostriction in the fluid surrounding the core.

l.5

Curve 2 was calculated using the same boundary
conditions, but here the electrostrictive effects
were explicitly included by means of the formalism
of Sec. IV. As indicated by our earlier qualitative
discussion, the scattering is greatly altered, par-
ticularly in the region below & 0 2x 108 cm
where our main interest is concentrated. The re-
sults of the complete calculation including electro-
striction and the response parameters of Eqs. (25)
and (26) are given by curve 3. It is clear that the
"refinements" we have introduced in fact dominate

or(k), leading to a prediction e/p which is about
a factor of 5 larger than the hard-sphere value.

Once results such as curve 3 in Fig. 5 have been
obtained, it is a simple matter to calculate e/P, ,
as a function of T from Eq. (20). Figure 6 shows
the experimental values of e/p, (T), alo. ng with the
theoretical values predicted for the various 0„'s
of Table I. The agreement between experiment and
our calculations is seen to be very good indeed, in
that o„=0. 1 erg cm ', which was a rough value
derived from a quite different experiment, leads
to a predicted e/p, (T) within . 10% of the measured
values. A completely satisfactory fit is obtained
with o„= (Q. 135+0. 010) erg cm corresponding to
a core radius of (5. 1+0. 1) A; but in view of the
approximations made in deriving Eq. (11) this im-
provement is probably not too meaningful.

VII. PHONON SCATTERING BY NEGATIVE CHARGE
CARRIERS

The accepted picture of the central structure of
the negative carrier is that of an electron localized
in a bubble from which the He atoms are excluded.
The radius a of the bubble is determined by mini-
mizing the total energy,

4 s 1 (x —1) eE=E '4r +- PY -2 (28)
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FIG. 5. Momentum-transfer cross section az(k) for
phonons scattered by a core structure of radius 5.37A.
Curve 1: immovable hardcore with electrostrictive ef-
fects in the surrounding fluid neglected; curve 2: im-
movable hard core with electrostriction included; curve
3: immovable responsive core with electrostriction in-
cluded.

where E„is the energy of the electron localized in
the cavity, 0 is the surface energy density, p is
the pressure in the liquid, and z is the dielectric
constant. The last term arises from electrostric-
tion and represents only a very small correction.
An important assumption implicit in Eq. (28) is
that the surface of the bubble is sharply defined.
Actually, the average liquid-helium density must
vary smoothly with radius, going from zero to the
bulk value. The range in x over which this happens
has been estimated+ to be of order 1-2 A, i. e.,
=10% of the radius of the bubble. One therefore
expects that calculations of the scattering cross
section which are based on the idealized bubble
model and thus ignore the effects of the surface
transition region will be good to about 20/0. To
first order E„may be evaluated by assuming that
the liquid outside the bubble is dense enough so
that the wave function of the electron is zero at
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FIG. 6. Points are the experimental values of e/p, , in
the phonon-dominated temperature region, while the
curves give the theoretically predicted behavior using the
core parameters corresponding to various assumed
values of cr». The devi. ation for T '&2. 25 is due to
rotons.

r= a . In reality 4'„extends somewhat into the
fluid, and the more accurate evaluations of E„
are an exce ssively complicated problem: Both the
boundary conditions on the electron wave function
presented by the individual He atoms and the un-
known variation of the fluid density in the surface
transition region must be taken into account. A

rough estimate of the correction to E„due to the
first of these effects has been given by Springett,
Cohen, and Jortner, who find that in liquid heli-
um the penetration of the electron wave function
results in a decrease in a of about 5%.

A somewhat different approach is to character-
ize the decay of the electron wave function in the
liquid by a parameter V&, such that 4„n~ 'e
where K= 8 t [2m (V, —E„)]'~ . All of the detailed
complications of what happens near the surface of
the bubble are then roughly lumped into one un-
known number. Defined in this way, V& plays the
role of an effective well depth for the electron, but
the reader should note that V, is not necessarily
the energy required to inject any electron into a
delocalized state: The properties of the liquid
very near the surface of the bubble are probably
quite anomalous. If Vt is given, Eq. (2&) yields a
provided o is known. Since there are some diffi-
culties associated with the correct value of o to
use in Eq. (28), we will consider a and V& as vari
able parameters with which to fit the data.

Celli et al. have given a complete and elegant
discussion of sound scattering from an idealized
electron bubble characterized as described above
by the parameters a and V&. Their results were
applied successfully by Baym et al. ' to explain the
observed e/p (T) in the phonon-limited regime.
The results described in the remainder of this sec-
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FIG. 7. Momentum-transfer cross section Oz(k) for
phonons scattered by an electron bubble. The bubble
parameters in this example are a =16k, V, =0.6 eV.

tion are a simple extension of the work of these
authors.

We calculated e/p, (T) for a wide range of values
of a and V&, in order to see how sensitive the
agreement between theory and experiment is to
variations in these parameters. The y, 's of Eqs.
(18) and (1S) were determined according to the
method of Celli et al. ,

' and electrostrictive ef-
fects were initially neglected so that the resulting
phase shifts i7, (a) directly determined ar(k). A

typical calculated or(k) curve is shown in Fig. 7,
which nicely exhibits the various resonances in the
momentum-transfer cross section that arise from
the resonant modes of vibration of the bubble. The
fractional deviations between the experimental and

the calculated e/p, are shown in Figs. 8(a) and

8(b) for various values of a and Vt. These curves
show a complicated dependence on the parameters,
but they do lead to several interesting conclusions.
As was pointed out earlier by Baym et al. , the gen-
eral fit is quite good. However, it is noteworthy
that the measured e/p, is 20-30% higher than the
theoretical, for all values of a, Vz in the range
of interest. This probably arises from our use of
a somewhat idealized scattering model, no account
having been taken of the effect of the transition re-
gion at the bubble surface on the sound scattering.
Detailed calculations by the method used for posi-
tive ions show that the effect of electrostriction on

e/p produces changes of less than 1 or 2%%uq, and

hence this mechanism cannot account for the ex-
cess scattering that is observed.

One may also note that e/p varies only very
weakly with the parameters a and V&. The shape
of the or(k) curve depends rather strongly on these
parameters. However, one finds that the manner
in which or(k) tails off on the large-k side of the
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can be determined by subtracting from the mea-
sured values the putative phonon contribution in
the temperature region where the two overlap sig-
nificantly. For positives, the phonon contribution
(see Fig. 6) was calculated using the best-fit values
of the core parameters corresponding to o „=0. 135
erg cm . For negatives we took e/)t. (T) calculated
for a =17 A, V&=0. 7 eV and multiplied it by a cor-
rection factor which brings theory and experiment
into agreement at T=0. 5 K. To determine the
likely error introduced by this heuristic procedure,
the same process was carried out for several sets
of parameters a, V& within the reasonable range.
The resulting empirically corrected phonon curves
differed by less than 2% in the range 1.0 ~ T~ 0. 5
'K, and we take this as a reasonable error esti-
mate. From a fundamental point of view such a
procedure is not very satisfactory, but it is per-
haps the best to be done at present.

The contributions to e/IJ(T) from roton scatter-
ing are shown in Fig. 9. The dominant exponential
texnperature dependence arising from the roton
energy gap 4/k = (8. 65 + 0.04) 'K has been divided
out for convenience of representation. These data
exhibit two interesting qualitative features of roton
scattering. First, from the data for the positives
one sees that a considerable variation with tem-
perature remains when the exponential factor has
been eliminated. In fact, the simple expression

e/p, ,= 1.34x10 T ~ e

Q.2 — 0.5~
O. I
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FIG. 8. Fractional deviation [(8/p )»~t —(e/)L )a,]/
(e/p )&h as a function of inverse temperature for various
values of the bubble parameters a and V&.

gives a quite satisfactory fit to the data. Data for
the negatives are not good enough to provide such
detailed information on the temperature dependence
of the prefactor to the exponential, but it seems to
fall between T and T '~ . The approximate T
dependence of the prefactor observed for positives

dominant s-wave resonance depends only weakly
on ya. It is in this tailing-off region that the ther-
mal factor is concentrated, and, since the higher-
order partial waves are much less important, one
cannot affect e/p, very much by varying the y, 's;
hence the weak dependence on the bubble parame-
ters. As an unhappy consequence, not very much
can be learned about the electron bubble from e/p
in the phonon-limited region. One can conclude
that the best over-all fit between theory and exper-
iment is found for a in the range 16-19 A, with
the additional observation that the fit rapidly be-
comes very poor for a below 16 A. No definite
conclusions about V& can be drawn.

VIII. ROTON SCATTERING

Once an adequate theory of phonon scattering
has been established, the roton contribution to e/it

2.5—

C)
2.0—
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I I I I I I I I I I
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FIG. 9. Hoton contribution to e/p, for positive (circles)
and negative (triangles) carriers. The exponential tem-
perature dependence has been divided out. The curve
through the positive carrier data has the equation (e/p )
xe i =1 34x10" T" i
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(and perhaps for negatives) is surprising. The
roton number density goes as T' 8 ", and the
simplest kinetic-theory arguments' give a T' de-
pendence of the prefactor. A more serious treat-
ment ' which takes account of the very large ef-
fective masses of the charge carriers, yields a
temperature-independent prefactor, though even
here severe approximations have been made, in-
cluding the neglect of recoil effects and the neglect
of the variation of or(k) near the roton minimum.

The second interesting feature of Fig. 9 is the
relatively small difference between e/p for nega-
tive and positive carriers. Kith core-structure

0 0
radii of -1V A for negatives and - 5 A for positives,
one might naively expect that e/p be a factor of
lo larger than e/p, In fact, the observed ratio is
about 1.5. One possible explanation is that, as in
phonon scattering, the electrostrictive density va-
riation in the fluid surrounding the positive core
contributes heavily to the roton scattering. Other
factors which may be important are the disparate
boundary conditions presented by the two core

structures, and the difference in the effective
masses of the two carriers.

It seems that the data shown in Fig. 9 require a
substantial modification of the simple theory based
on the formalism of Baym et al. Some interesting
attempts to calculate or(k) for roton scattering have

appeared recently, 3' but not in a form easily
tested against experiment. More work on this
problem is clearly required.

Note added in proof. As discussed in Sec. VII,
no set of y, 's derived from the bubble model with
reasonable values for a and V, gives complete
agreement with the experimentally observed be-
havior of the negative carriers. It has, however,
been pointed out to us by H. G. Barrera and
G. Baym that if the y, 's themselves "re treated as
free parameters, a perfect fit to experiment can
easily be obtained.
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