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In this paper we investigate the mathematical validity of Bogoliubov’s functional assumption.
For this purpose, we analyze a model for a system in which light particles scatter against

fixed centers.

We compare the exact solution for the one-body distribution function and two-

body correlation function with the results given by Bogoliubov’s method. We find that
Bogoliubov’s functional assumption is too restrictive to allow proper initialization for both

functions.
drastically from the exact solution.

As a consequence, the Bogoliubov result for the two~body correlation departs
The results obtained here are fully consistent with pre-

vious asymptotic analysis of the one~ and two-body equations of the Bogoliubov-Born-Green-

Kirkwood-Yvon hierarcy.

The development of nonequilibrium statistical
mechanics is based largely on methods and concepts
introduced by Bogoliubov.! The resulting theory
with various modifications®™ has been widely ac-
cepted as the correct approach in the study of gases
and stable plasmas.®® Moreover, the method has
been applied in a number of other areas. 012 1t
has become apparent that there are difficulties in
applying Bogoliubov’s method, but it has been the
general belief that the failures are in the nature of
technicalities rather than basic malfunctions. !

A higher-order theory is of critical importance
for the kinetic description of a dense gas, a dense
plasma, or, more generally, of a system in which
three-body collisions are important. It is believed
that Bogoliubov’s method gives correct lowest-order
results, even though attempts at a higher-order
theory are not fully satisfactory. A basic feature
which remains unsatisfactory in the Bogoliubov ex-
pansion to high order is the lack of a proper de-
scription of the approach to equilibrium. !* Higher-
order corrections result in an ill-defined H func-
tion so that the lowest-order Boltzmann H theorem
cannot provide the needed entropy theorem for a
dense system. A generally accepted interpretation
of the difficulties is that three-body collisions have
not been included properly in the calculations. If
this is so, then indeed this would be a calculational
problem which would eventually be overcome.
Several attempts have been made to include three-
body collisions with only limited success. %15:18

Green has noted that the leading-order correla-
tion function would be modified by three-body effects

8

and in fact should be damped.!? This is in contrast
with the Bogoliubov theory which gives an undamped
correlation. We agree with Green’s suggestions,
but we add that even without three-body effects a
definite damping occurs. The nature of this addi-
tional damping effect, we believe is made quite
clear with the aid of the solvable model discussed
in this paper.

An effective alternate method for the study of
transport properties is the “correlation function
method. ”*®~# This useful technique focuses on the
transport coefficients quite directly and bypasses a
detailed calculation of the velocity distribution func-
tion. It has been suggested that the correlation
function method [J. R. Dorfman (private communi-
cation)] eliminates the difficulties that occur when
Bogoliubov’s method is used. However, a method
that bypasses a description of the kinetic level is
incomplete and does not shed light directly on the
failings of the Bogoliubov method.

In recent work, we have shown by explicit calcu-
lation of the two-particle correlation function that
the difficulties in the Bogoliubov method are of a
fundamental nature and not, as originally presumed,
a technical problem. #~%* In a recent paper, Pomeau
confirms our results with a different calculational
method. ® As a consequence, the two-body correla-
tion function given by Bogoliubov’s expansion is
miscalculated in a definite region of phase space
even in lowest order. The purpose of this paper is
to determine the detailed mechanism of the pre-
viously demonstrated failure of Bogoliubov’s meth-
od. Toward this end we have constructed and
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6 FAILURE OF BOGOLIUBOV’S FUNCTIONAL ASSUMPTION

studied an exactly solvable model. For the pro-
posed model described below, we analyze in detail
a properly set initial boundary-value problem and
compare the exact solution with Bogoliubov’s re-
sults. In Appendix A, the motivation of our model
is discussed by studying the relationship between
the equations of the “Lorentz” gas and those of the
model. The model is designed to understand the
approximation methods that are used to solve the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy and not designed to give estimates of re-
laxation times or transport coefficients. The model
equations are formally similar (Appendix A) to the
equations of nonequilibrium statistical mechanics
that govern the evolution of the one-body distribu~
tion function and the two-body correlation function.
Because of this similarity, it is convenient to re-
tain the language appropriate for a Lorentz gas in
the description of the model and of its solution.
Thus, in our discussion, we refer to a system in
which light particles are scattered by fixed centers.
It should be emphasized though that we are working
with a model and that the main objective of this
paper is to check the mathematical applicability of
Bogoliubov’s approximation technique.

We consider the equations

¥ j XK@, 1), @
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where f corresponds to the nonequilibrium part of
the one-body velocity distribution function and g to
the nonequilibrium part of the two-body correlation
function [see Appendix A, Eqs. (A8) and (A9)]. We
interpret X and ¥ as the position and velocity vec-
tors of the light particle and I as an interaction
function generated by a fixed scattering center at
the origin. We consider the nonequilibrium evolu-
tion of the gas as an initial boundary-value problem.
The system has settled over a sufficiently long
period of time to thermodynamic equilibrium. At
t=0 the velocity distribution is disturbed without
changing the two-body correlation from its equilib-
rium value. The subsequent evolution of the sys-
tem is then studied.

We have obtained solutions for f and g, employing
a number of interaction functions, and found that the
basic features of the results are independent of the
nature of I(X). In particular, we have studied De-
bye, square-barrier, and 6-function interactions.
The analysis is most transparent with the choice of
the 6-function interaction and with a system in
which motion is restricted to one dimension. As
indicated in Appendix A, our choice of d-function in-
teraction is motivated by the fact that a square-
barrier potential results in a §-function force. For
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the 6-function interaction, Egs. (1) and (2) reduce
to

g]—;= —EI_, dxd(x —a)glx, #), ®3)
% E o), @

where a is a small positive constant introduced for
mathematical rigor which can be set equal to zero
at the end of the calculation. In our one-dimension-
al form of the equations for f and g, x is the com-
ponent of relative separation parallel to the relative
velocity, which for simplicity we set equal to +1 so
that the light particle moves to the right with unit
speed. We emphasize that an ensemble of systems
is considered. Each representative of the ensemble
can be thought of as a large box containing a single
heavy and a single light particle. Since we neglect
three-body interactions, only a single collision
contributes to the correlation. The location x of the
light particle at time ¢ is related to its location x,
at the time £=0 (i.e., when the gas is disturbed) by

x=xg+t. (5)

Since the location of the heavy particle is taken at
the origin, the position of the light particle, x, is
negative before collision and positive after colli-
sion.

The exact solutions for the nonequilibrium velocity
distribution function and correlation function (with
suitable normalization), in the limit ¢~ 0, are

fe)=e>*, (6)
glx, )=6Wet -x)e(t)e ", (")
where 6 is the Heaviside step function defined by
1, x>0
= ’ 8
o) {o, x<0 . ®)

The solution for g as given by Eq. (7) is plotted in
Fig. 1 as a function of x for a particular value of
¢.% Since the heavy particle is stationary, the posi-
tion of the light particle (i.e., x) represents at time
t the separation of the interacting particles. Note
that although we refer to a single light particle,
this particle is representative of an ensemble. The
behavior of the correlation is interpreted as follows.
x>¢: At the time of the disturbance, the light

particle is to the right of the heavy particle. From
Eq. (5), it follows that xy> 0 so that the collision
occurred before the gas was disturbed. Collisions
that occurred when the system was in equilibrium
do not contribute to the nonequilibrium correlation.

x=%: The collision occurs at the time the system
is disturbed (i.e., x,=0). These collisions provide
the maximum contribution to the nonequilibrium
correlation.

0<x<t: This range of x corresponds to light
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FIG. 1. Exact correlation as a function of x for a

given time £,

particles that are initially located between xy= ~ ¢
and xo=0. It is reasonable that the longer the delay
between the disturbance from equilibrium and the
occurrence of the collision, the smaller the contri-
bution is to the nonequilibrium correlation. This

is because the system has partially relaxed to
equilibrium.

x <0: The collision will occur at a time greater
than ¢ so that light particles with x < 0 make no con-
tribution to the nonequilibrium correlation at time
t.

The exact g(x, ¢) is plotted as a function of x with
¢ as a parameter in Fig. 2. Since g(x, #)=0 for ¢<0,
there is no contribution to the nonequilibrium cor-
relation prior to the time that the system is dis-
turbed. The location of the peak value of g is the
position at time ¢ of that light particle which collided
with the heavy one at #=0, i.e., at the instant the
gas was disturbed. Thus, in Fig. 2, we see that
the correlation function has a wavelike propagation.

The exact solution for g described above will now
be compared with the result for g that is obtained
using Bogoliubov’s adiabatic assumption; namely,

g depends on time only through f. In Appendix B,
we outline the procedure for deriving the Bogoliubov
series. The result of summing the entire Bogoliu-
bov series yields as a- 0

fB:e-Et 3 (9)

g5 =21 €"gi" = 0(x)e e (10)
n=0

Equation (10) shows that Bogoliubov’s method gives
a correlation that diverges exponentially with in-
creasing separation of the light and heavy particles.
Particles that collided long before the system is
disturbed from equilibrium yield exponentially
large contributions to the nonequilibrium correla-
tion. This is unacceptable since collisions that
occurred when the system was in equilibrium can-
not contribute to the nonequilibrium correlation.
Thus, Bogoliubov’s result for the correlation func-
tion is nonphysical.

In kinetic-theory analysis we can only compute
the first few terms of Bogoliubov’s series given in
Eq. (10). We thus examine the leading-order
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FIG. 2. Evolution of the two-body correlation as a
function of x with time as a parameter.

Bogoliubov approximation. This results in a veloc-
ity distribution function given by

fa= et (11)
and a correlation function given by
g2 (x, t)=0)el)e™" . (12)

The leading Bogoliubov result in Eq. (12) indicates
that at a given time particles which collided long
before, immediately after, and long after the sys-
tem was disturbed provide the same contribution
to the nonequilibrium correlation. The higher-
order terms in Bogoliubov’s series, rather than
improving the situation, make it worse. The re-
sults are compared in Fig. 3.

Note that Bogoliubov’s result is approximately
correct for small particle separation and fails for
large separation. It is this important characteristic
of Bogoliubov’s result which allowed him to obtain
a proper leading-order kinetic equation for stable
systems. Since the interaction potential vanishes
for large particle separation, the incorrect fea-
tures of the correlation function (as calculated by
Bogoliubov) do not contribute to the collision inte-
gral. The miscalculated lowest-order correlation,
however, seriously affects initially unstable sys-
tems as well as higher-order kinetic corrections.

In this paper, we have shown that the coupled
equations for f and ¢ [Eqgs. (3) and (4)] have well-
defined and meaningful solutions, provided that at
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FIG. 3. Comparison of the exact correlation function
with the results of Bogoliubov’s method. The area under
g(x,t) as a function of x is finite for all ¢ while the cor-
responding area diverges for the Bogoliubov results.
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t=0 both f and g are specified independently. In
contrast, the functional assumption does not allow
sufficient freedom to properly initialize both f and
g. Thus, the solution obtained for g based on
Bogoliubov’s assumption is very restricted. It is
not unreasonable, therefore, that Bogoliubov’s
solution does not describe a physically realizable
system. In fact, from inspection of Eq. (12), we
see that Bogoliubov’s correlation at = 0" grows
exponentially with separation, implying that inter-
actions which occur prior to the disturbance of the
system contribute to the nonequilibrium correla-
tion. Even worse, the contribution is larger the
earlier the interaction occurs.

It is a pleasure to thank Dr. A. Klimas and Dr. A.

Bennick for very useful discussions.
APPENDIX A: MOTIVATION OF THE MODEL EQUATIONS

A Lorentz gas is constituted by stationary cen-
ters that scatter light particles which do not inter-
act among themselves. The stationary centers can
be associated with massive particles. The equa-
tions of the BBGKY hierarchy for the Lorentz gas
can be written

9 s P > +
::‘ +V‘VFSZI%%ISFS (nTo)leo_[dxﬂllsqul:
(A1)
where the interaction operators are given by
> =y 900 > o il
I'.=Ii(x—-xl,):—a§(x—xi)-§, (A2)
$= s-1 3¢ N F)
I.= I.= - X . —= A3
¢ i1 0 1 9% (- X’) av (A3)

The function F° is the distribution for one light
particle and (s —1) heavy particles. We assume
that we have a weakly coupled gas so that the poten-
tial energy is small compared to the kinetic energy
and that the number of particles within the range of
interaction of a given center is neither very small
nor very large; i.e.,

Eg<<1

BT nrg~1.

(A4)

We consider a spatially homogeneous gas which
implies that the one-body distribution function is
independent of position and that the two-body dis-
tribution function depends only on the relative posi-
tion of the light and heavy particles. We introduce
the two-body correlation G by

Fi=FlicG, (A5)
so that when s=1 and s=2, Eq. (Al) reduces to
9 1
3F_ _ EI z 9, 3G (A6)
of X av
3G - _ 3¢ oF!
B TV VGG Sy r0l). (A7)
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The terms neglected on the right-hand side of Eq.
(A7) include three-body effects.

The equations for the Lorentz gas, Eqs. (A6) and
(A7), are linear. Therefore, we introduce the de-
composition of both the distribution and correlation
functions into equilibrium and nonequilibrium com-
ponents:

F'=Fl +f, (A8)
G=Ge+g. (A9)
The equations for the nonequilibrium components
are
j ax Ig(x,t) (A10)
—ag? +F.Vg=1If . (A11)

We have studied the one-dimensional model equa-
tions for f and g,

%: - J'dxlg(x, f, (A12)
aﬁw——*l(x)f, (A13)

at
where I(x) is no longer an operator but a function.
The choice for the sign of € in the model equation
for f[Eq. (A12)] is opposite to that which appears
in Eq. (A10). This change is motivated by the fol-
lowing stability considerations. The integrodiffer-
ential equation for f in the Lorentz gas is

of )
g _ — - Al4
o +sL dx(av':r v)f(t N, (A14)
where
8¢ 9p(X ~ v?\) AlS5
Ty _[Bx —_—__—ax, (A15)
For times on the kinetic scale, we have
ENE o (A16)
av“[, d\xT 5, <0.

It is this condition that results in stability for F.
However, when the operator I is replaced by a 6
function, the above inequality is reversed and
stability is reestablished by reversing the sign of
€. Tt should also be noted that when three-body
collisions are neglected, the collisional integral
vanishes for the one-dimensional Lorentz gas.
However, for the model this is not the case, so we
can obtain the general features of the model func-
tions f and g subject to the approximation of no
three~-body collisions without resorting to three-
dimensional analysis.

Finally, we observe that in the one-dimensional
situation, if we investigate a square-hat potential,
namely,
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1, lxl<a Note that 9f/9¢ is expanded but, in contrast, f is
¢lo)= 0, lxl>a (A17) not expanded. Thus, the equations for f and g,
i.e., Egs. (3) and (4), in lowest order reduce to
we obtain an interaction function
afp _ 0
¢ =-—€eldx?d t B4
Im—%:é(xﬂz)—é(x—a). (A18) at x 00)gs” (el (B4)
. s . . 3gB
Thus, it is the square-well potential that has moti- =6(x)f5 . (B5)

vated our choice of I=6(x). It can be shown with
the I given in (A18) that stability is maintained auto-
matically without reversing the sign of €.

APPENDIX B: RESULTS BASED ON BOGOLIUBOV’S
TECHNIQUE

Bogoliubov has given a completely systematic
expansion method for the equations of nonequilibrium
statistical mechanics. The basis of his method is
given in Egs. (B1), (B3), and (B8) below. These
unambiguously select a solution of the equations for
fand g.

The leading-order Bogoliubov results for fand g
are given in Egs. (11) and (12) and the resummed
results are given in Eqs. (9) and (10). We demon-
strate below that these results follow from the ap-
plication of Bogoliubov’s functional assumption
which states that g depends upon time only through
the dependence of f on time; i.e.,

galx, 1)=gnlx|f) (B1)
so that

%p _3gs df

5 = of di” (B2)

In the leading-order Bogoliubov result, we make
use of the fact that the variation of f with time is
slow, of order €, and we expand g in a power series
in €,

(0)

88=4&B +€g 2y +

) relgy (B3)

By direct substitution, it follows that the leading-
order Bogoliubov results given in Egs. (11) and
(12) are solutions to Egs. (B4) and (B5). In the
Bogoliubov derivation of the Boltzmann equation,
it is the leading-order result for the correlation
function that is used. However, in order to fully
investigate the value of the Bogoliubov method, we
have determined the functions fz and gz when the
entire Bogoliubov series for gz is summed. This
result can be obtained by solving directly for gjz.
When the Bogoliubov condition in Eq. (B2) is em-
ployed and g5 is not expanded, the equations for f
and g, i.e., Eqgs. (3) and (4), reduce to

s

Ua_ j ax50gslr| f) (B6)
%5 \dfa %5 _
<8fi) Uz 82 _5)s (B7)

Clearly, the results given in Egs. (9) and (10)

satisfy Eqs. (B6) and (B7). In all our expressions

for f we have used the normalization f(0)=1. In

addition, Bogoliubov imposes the condition
lim g, (x =, £)=0. (B8)
A o

This condition is always satisfied since there is no

contribution to g prior to the collision of the light

particle with the heavy particle located at the ori-
gin. Note that this property holds for both g and g5.
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New rescnances have been observed in the absorption spectrum of neutral cadmium vapor
at wavelengths around 30 A. These are believed to be at present the shortest-wavelength
metal-vapor absorption features recorded optically. The 2.5-GeV electron synchrotron at

Bonn University was used as a background source of continuous radiation.

Hartree-Fock cal-

culations enabled identification of the resonances as caused by excitation from the 3d shell,
although somewhat larger differences between computed and observed wavelengths were found

than were expected.

Following our previous work on the absorption
spectra of metal vapors'~® and the work recently
published by Ederer, Lucatorto, and Madden’ on
the Lir absorption spectrum, we report here ab-
sorption features caused by excitation of a 3d inner-
shell electron in Cd1 vapor, the structure being
more than 400 V above the first ionization potential
of Cd1. Our results were obtained in a collabora-
tive experiment between the European Space Re-
search Institute and the Synchrotron Group of the
Physikalisches Institut at the University of Bonn.

In some earlier work®® using the Baloffet, Ro-
mand, and Vodar (BRV) source® to provide a back-
ground radiation continuum, spectra of alkali-
metal vapors were recorded down to 180 A. At
wavelengths below about 100 A, the BRV continuum
became too weak to record absorption spectra.

The furnace design used in Ref. 2 allowed a metal-
vapor pressure of several Torr to be achieved in
the central region of the furnace while maintaining
a pressure of about 10™* Torr atthe ends, but did not
meet the much more stringent requirements (vacuum
better than 1078 Torr) for operation ona synchrotron.

Ederer, Lucatorto, and Madden” have used a
heat-pipe furnace system together with 1000-A-
thick aluminum windows to contain Li vapor at
pressures of up to 2 Torr. With this apparatus,

they were able to study the Li1 absorption spectrum
between 170 and 210 A using the background radia-
tion continuum of the National Bureau of Standards
180-MeV synchrotron. They were not, however,
able to observe structures much below 170 /‘1, be-
cause of the L,; cutoff in the aluminum filters.

We have further developed the furnace described
in Ref. 2, essentially by increasing the efficiency
of the vapor trapping system. Details of our
arrangement will be published separately. Spec-
tra were recorded up to temperatures corresponding
to a Cd vapor pressure of 3 Torr at the center of
the furnace, the over-all length of the furnace being
about 1.5 m. However, owing to the steep pres-
sure gradients in the trapping system, the pres-
sure-path product is probably much smaller than
these figures would indicate. Our spectra were
recorded using a 2-m grazing incidence spectro-
graph® equipped with a 1200-line/mm Bausch and
Lomb platinized replica grating, the entrance slit
being set for a 2-deg grazing angle. The slit width
was 6.3 u. The spectrograph had been focussed
down to 26 A on a low-inductance spark source at
the European Space Research Institute in Frascati.
It was constructed around a vacuum chamber and
Rowland circle made by Hilger and Watts Ltd.,
the supporting frame being demountable for ease



