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ly there are no measurements for the case with
large predicted deviations. Both positive and nega-
tive deviations are seen to be possible.

V. CONCLUSIONS

The present results predict that deviations from
Blanc's law for both mobility and diffusion coeffi-
cients can be of either sign at high fields, and can
be of a magnitude that should be detectable experi-
mentally. The deviations depend explicitly on the
nature of the ion-neutral interaction through the
averages (v„&Q&) and (v„&Q&)~, and are zero for the
Maxwell model in which Q& is inversely proportional
to v„, and the mean free time between collisions is

the same at all velocities. This behavior is remi-
niscent of the behavior of thermal diffusion in neu-
tral gases, which has been used as a sensitive
probe of intermolecular forces, and indeed the
same sort of averages occur in the momentum-
transfer theory of gaseous thermal diffusion. " This
suggests that deviations from Blanc's law at high
fields might be a useful probe of ion-neutral forces.
Physically, the present theory ascribes the devia. —

tions from Blanc's law to the difference in the ion

energy partitioning in the gas mixture and in the

pure components. Only the particular velocity de-
pendence of the cross section given by the Maxwell
model is just right to compensate for this effect.
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In the interest of understanding the nature and properties of physically adsorbed helium

monolayers in the mobile limit, we study the ground state of a two-dimensional helium liquid,

using integral-equation techniques which have been thoroughly tested in connection with bulk

helium. Our results are compared to those of computer experiments by Hyman and by Camp-
bell and Schick, and to actual experimental data obtained by Dash and co-workers.

As a model for adsorbed helium monolayers, we
consider N helium atoms adsorbed on a uniform
homogeneous substrate of surface area A. Recent
studies of single helium atoms interacting with
structured substrates such as graphite indicate
that ignoring the structure of the adsorbing sur-
face may be quite realistic for the calculation of
some properties of the adsorbate Specifically,
the bands are very broad and overlapping. The re-
sulting high mobility makes it reasonable to ex-
pect that the ground- state and low- excited- state
properties of interacting helium atoms will not be

significantly modified by the structure of the sub-
strate. The submonolayer heat capacities mea-
sured by Bretz and Dash for He adsorbed on

graphite provide strong experimental evidence for
this point of view in the low-density regime. It
should be noted, however, that densities which are
in registry with adsorption sites provided by the
substrate may show a tendency to take advantage
of the weak substrate potential at the expense of
their mobility, as evidenced by the order-disorder
transitions observed in the aforementioned experi-
ments at commensurate densities. 3 In that case,
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the model under consideration herein does not ap-
ply.

With the above discussion in mind, we ignore the
structure of the substrate. There remain two roles
for it to play. The first one is static: It provides
an adsorption potential well in the direction nor.-.
mal to the surface. This well is generally very
deep compared to a few degrees Kelvin, and there-
fore confines the adatoms to motion within the
space of the immediate neighborhood of an equilib-
rium plane at sufficiently low temperatures and
densities. The second role of the substrate is
dynamic: It mediates the interaction between ad-
atoms, primarily via exchange of substrate exei-
tations like phonons or surfons. According to re-
cent estimates by Schick and Campbell, these sub-
strate-mediated interactions may be rather in-
significant compared to the direct He-He interac-
tions. While a detailed microscopic calculation is
necessary' to settle this issue, we will ignore the
dynamical role of the substrate and approximate
the static role by actually confining all He atoms
to their classical equilibrium plane. This results
in a two-dimensional many-body problem, that of
N He atoms interacting via a pairwise Lennard-
Jones potential, moving in a normalization area
A, with areal density n = N/A serving alone as a
physical parameter.

The excited states of such a model were dis-
cussed recently by Jackson. He adapts Feynman's
approach for He bulk liquid' to the model de-
scribed above. In order to complete this calcula-
tion one requires knowledge of the ground-state
wave function which provides correlations for the
excited states.

The problem of the ground state was investigated
recently by Hyman using a Monte Carlo method,
and by Campbell and Schick using a molecular-
dynamics program developed by Rahman. The re-
sults obtained by these authors are consistent in-
sofar as the ground-state energy is concerned, but
the equilibrium densities differ by as much as 15%%up.

Their energy-density curves are also incompatible.
On account of the small numbers of particles used
and the small numbers of configurations (or steps)
taken, these computer experiments contain large
statistical uncertainties. We report in this note,
for comparison, results obtained with several ap-
proximate integral equations, whose validity has
previously been tested thoroughly in connection with
the bulk- helium calculation. '

The Hamiltonian for the two-dimensional helium
system is given by

@2 N

a = —Z v„'+ Z v(p„),
t«&J! &N

where p has just two components and V(p) is taken

to be the Lennard- Jones 6-12 potential with the
deBoer-Michels parameter s:

V(p) = 4m[(o/P)»- (o/P)'1,

g = 10.22 'K, o = 2. 556 A

It should be noted that the method of calculation to
be discussed here is not restricted to this potential.
If and when the effective He-He interaction under
the influence of a dynamical substrate becomes
known, we can readily adapt our present program
to that more realistic situation. In a way, our
work prepares the way for just such a calculation.
We believe that the effective interaction will still
contain strong repulsion at short distances, not
unlike the "hard core" in the Lennard- Jones po-
tential. Our treatment, designed to take into
consideration such short-range correlations, will
continue to be valid.

The short-range correlations are accounted for
at the outset of the calculation through a particular
choice of the trial wave function. The shape and

range of the short-range correlations are varied
to minimize the energy expectation value for every
specified ar eal density. The trial wave function
used in our calculations, as well as in Refs. 8 and

9, is of the Jastrow form":

0 (Pl P2, , P(()

N

Q e (l /3)u (n(g

(3)
One defines in terms of !!the I-particle distribu-
tion function for the probability density g

P"' (Pl P2 P()

NT 2
()' (P,P2. . . P~)dP, «l. . . dP„.

(N.—l)!„

The two-particle distribution function

~' ' (p, , p~) = n g(p») = N(N- 1) J g dp, . . . dp„

(4)

(5)
reduces the energy expectation value to a simple
form:

(H) = ~Nn f [V(p) —(I'/4m) V, u (p)]g(p)dP . (6)

The variational procedure is then straightforward.
One chooses a set of values for the variational pa-
rameters placed in u(p), and determines g(p) in each
case. The corresponding pair of u(p) and g(p) are
then substituted into Eq. (6) for evaluating (ff) . At
a given areal density, the minimum (Fly can thus
be determined numerically. For a special class
of u(p), namely, functions which obey simple power
laws, a scaling technique is available for calcu-
lating the energy minimum as a function of n.
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The major task in this program concerns the
determination of g(p) for a given u(p).

In the method of molecular dynamics, g(p) is
generated by numerically solving the classical
equations of motion for N particles, with a distri-
bution of velocities characterized by a temperature
T, interacting via a two-body potential Q(p), where

4(p)=-I.Tu(p) .

There are practical limitations on this method.
The number of particles considered must not be too
large (usually & 10' ); this results in finite-size
effects. Also, there are limits on the computer
time available. Unless the initial conditions are
prepared so well as to be near thermal equilibrium,
the time required for attaining equilibrium in the
system can be painfully long. These limitations
frequently lead to large statistical uncertainties.
The Monte Carlo procedure suffers from similar
restrictions.

Integral-equation methods are available which do
not contain statistical uncertainties. They corre-
spond to infinite summations of selected diagrams
in the cluster expansion. ' Clearly the errors in-
volved are determined by the selection process.
Over the last ten years or so, a number of detailed
calculations have been carried out for bulk helium
using integral-equation techniques. We have by
now become rather familiar with their properties:
both the advantages and the shortcomings. In com-
parison to computer experiments we find them on
the whole more reliable than the short runs like
those carried out in Refs. 8 and 9.

First of all, there is the Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) equation, which
can be readily derived by differentiating Eq. (5)
with the gradient operator V

py

kg (P12) Z (P12) Vp u (P12)

+ (I/n') fP"'(p„p„p,)ip, u (p„)dp, . (8)

A hierarchy of equations can be generated if one
next differentiates P' ', P' ', etc. For practical
applications, one truncates the hierarchy by making
the superposition approximation:

(Pg P2 P3) n 8 (P1P)g (.P23)a'(P31)

After some rearrangement, Eq. (8) reduces to

cf
Ing (p) = u(p)+ 2n

~ g(v) u( )Xv(p, )vv dv,d

4p cfp ~0
(10)

where

&(p, v)= f g([p +v —2pvcos6]' )cosed6.
(11)

For a given u(p), Eqs. (10) and (11) may be solved
iteratively. The convergence is rapid if one be-
gins with a good guess for g(p). Unexpectedly,
however, the solution of the BBGKY equation is
far simpler in three dimensions than in two, the
reason being that in three dimensions the appear-
ance of the extra factor of sin8 greatly expedites
the integration over 8.

Next we have the Percus- Yevick (PY) equation
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FIG. 1. Total energy per parti-
cle obtained from the variational
calculation. The solid line is the
result of the BBGKY, the dashed
line is the molecular-dynamics
curve from Ref. 9, and the circles
are the Monte Carlo results from
Ref. 8. The arrow locates the BBGKY
minimum.
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FIG. 2. Radial distribution
function at equilibrium density.
The solid line is the result of
the BBGKY equation and the
circles are points from the
molecular-dynamics calcula-
tion of Ref. 9.
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and

1 S k —1 ~ k kdk
2m 0 S (k)

8 (k) = 1+n f e'" ' ~ [g (p) —1]dp

and the hypernetted chain (HNC) equation:

PY: u (p) = lng (p) —ln [1+P (p)],

HNC: u (p) =lug (p) —P(p),
where

(12)

= I+2vnf [g(p)-1]J,(kp) pdp .

Sk is the two-dimensional momentum vector and

S (k) is the two-dimensional liquid-structure func-
tion, These equations involve only one-dimension-
al integrals and are much easier to solve than
BBGKY. Also note that if g (p) is given instead of
u (p) these integral equations reduce to mere in-
tegrals.

We parametrize u (p) in the form

u (p) = —(arr/p)'

where a is the lone variational parameter.
For BBGKY, the calculations are performed at
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FIG. 3. Comparison of g(~) from a
given g(x) using several approxima-
tions. The solid line is BBGKY, the
circles are I'Y, and the triangles are
HNC.
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the density no= 1/mo . It is advantageous to carry
out the minimization procedure at a density not
too far from the equilibrium density, for then one
expects the range of values taken for the varia-
tional parameter to be sufficiently wide to sur-
round the energy minimum for all densities of in-
terest. In other words, as we scale our results
to other densities, we will not be forced to bring
in new values of a in order to pin down the mini-
mum. Since m is the only measure of the heli-
um cross-sectional area, we felt that it was a
reasonable first approximation for the equilibrium
density. Guided by the results of Ref. 9, we take
four values of a, solve the BBGKY equation for
each case, and evaluate the energy expectation
value. Using a scaling technique similar to that
described in Ref. 13, we obtain the energy-den-
sity relation shown in Fig. 1. The equilibrium
density is found to be 0. 037 A, with a ground-
state energy of —0. 62 'K per atom. Shown in Fig.
2 is the two-particle (radial) distribution function

g (p) at the equilibrium density. We also show in
these figures the results obtained by Hyman and

by Campbell and Schick. 9 The lateral binding en-
ergy is too small to account for the experimental
value found by Stewart and Dash' for He adsorbed
on argon-plated copper. We conclude that in the
latter experiment either the substrate exerted
mediating effects (static'~ or dynamical~), or there
were indeed macroscopic surface inhomogeneities.
A particular model involving long- range inhomo-
geneities is shown by Roy and Halsey to account
well for this experiment. '

For PY and HNC, we do not feel that complete
variational calculations are necessary. It is much
simpler to begin with the g (p) determined by
BBGKY and compute u (p) through Eqs. (12)-(15).
Only the kinetic energy

E ) = &"f ( —(~/4 ) & (P)]8'( )d

TABLE I. Comparison of kinetic energy per particle
for g(p) at n = 0. 0487 A. using several approximations.

0. 588
1.027
1.958
3, 36

PY (K)

3.54
3.91
4. 50
5.12

HNC ('K)

3.69
4. 20
5. 11
6. 43

BBGKY ( K)

3.60
4. 01
4. 66
5.41

will then vary from that obtained with BBGKY.
Table I lists the kinetic energy for each value of a
at density n~. The agreement between PY and

BBGKY is generally better than that between HNC

and either, much as we expect from our experience
with bulk helium. It is interesting to compare the
u (p) calculated with PY and HNC to the u (p) of

BBGKY with all three u's corresponding to the same

g (p) . Such a comparison is shown in Fig. 2 for a
= (1.027)"' at n, .

It is true that what we present here is merely a
liquid calculation: The wave function employed
does not permit crystallization. However, at an

areal density of 0. 03'7 A ~, the system is about
half as dense as bulk liquid helium at equilibrium
(zero pressure). It is very unlikely that a solid-
like wave function can give rise to a lower energy. ~

A great deal can be extracted from this work. In
particular, when sufficient accuracy is achieved,
such a calculation will complete Jackson's earlier
work on the mobile model of the adsorbed helium

monolayer. We are in the finishing stages of a
highly efficient Monte Carlo calculation, which cor-
roborates the results given here. The details and

some interesting findings will be presented shortly
elsewher e.
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Measurements were made of the mobility of positive and negative charge carriers in He,
for Hes impurity concentrations ranging from 10 to 1800 ppm and temperatures in the range
0.3 &T&1.O'K. The excess inverse mobility e/p —e/po was everywhere found to vary linearly
with concentration, as expected. For negative caxriers, the data are well explained by a hard-

0
sphere scattering model with a collision radius of 21 A. For positive carriers, the polariza-
tion-deficit potential proposed by Bowley and Lekner gives reasonable agreement with experi-

0
ment, provided a collision radius of 7. 0 A is assumed.

I. INTRODUCTION

If an electric field is applied to a charge car-
rier in superfluid helium, the carrier rapidly
reaches an equilibrium drift velocity such that its
rate of momentum loss due to interaction with the
elementary excitations of the liquid equals the
electric force on the charge. At low fields this
drift velocity is proportional to field: v~= p, E,
where the proportionality constant p, is the mobil-
ity. Because of the very large effective masses of
the charge carriers, p, can be simply related' to
the cross sections for the scattering of the elemen-
tary excitations by the charge-carrier structures.
The experimental determination of p. under condi-
tions where rotons, phonons, or He impurities are
variously dominant has thus proved to be of con-
siderable interest.

He scattering can easily be made the dominant
momentum-transfer process at low temperatures
by adding a small concentration of the impurities
to the superfluid. The earliest measurements on
He -limited mobilities were carried out by Meyer
and Reif for T &0. 5 K. More recent work ' has
tended to concentrate on the region below 0. 3 K,
mainly because some particularly novel features
are found in this temperature range, but also be-
cause at higher temperatures the scaih~ring from
phonons and rotons tends to dominate the behavior.
Nevertheless, the temperature range above 0. 3 'K
is also of some interest: Recent theoretical at-
tempts ' to explain the low-temperature results
have been at least qualitatively successful, and it
is desirable to test these theories over as wide a
temperature range as possible.

In the present work we report the measurement

of the Hea contribution to the inverse mobility e/p,
in the temperature range 0. 3& T&1.0'K. Be-
cause of the high precision of our mobility mea-
surements, the phonon and roton contributions can
be subtracted out to yield the He term with rea-
sonable accuracy even at quite low concentrations.
Comparisons between our results and the predic-
tions of current theories are made in Sec. III.

II. EXPERIMENT

The experimental setup and our techniques of

measuring p. have been fully described in a pre-
vious paper. ' Briefly, a pulse of charge carriers
is gated into a drift region of length -30 cm. The

pulse crosses this region under the influence of a
uniform electric field, and is detected at the other
end by a fast electrometer. The time taken to
cross the drift space determines the drift velocity.
This technique yields p. to an absolute accuracy of

better than +2/q.
The only new feature of the present experiment

was the mechanism for adding known amounts of

He' to the liquid. A calibrated volume was filled
with He' gas, and the pressure measured with a
Texas Instruments 145 quartz Bourdon tube gauge.
This known quantity of He impurities was then re-
leased into the lines leading to the experimental
chamber. At least 12 h were allowed for the sys-
tem to come to equilibrium, after which the mea-
sured mobilities showed no significant variations
with time. The volume (965 cm ) of the experimen-
tal chamber was determined simply by filling it
with water. Dead-space corrections for the pump

lines leading to the experiment were calculated
and found to be negligible. The estimated accuracy
to which our He concentrations were known is


