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Expressions 'or the diffusion coefficient of ions in gas mixtures are obtained from momen-
tum-transfer theory, and are given in terms of the diffusion coefficients and drift velocities
of the ions in thepure component gases. Blanc's law holds exactly at all field strengths if
the mean free time between collisions is independent of velocity (Maxwell model), but other-
wise there may be either positive or negative deviations from Blanc's law at, high fields. Such
deviations are of comparable magnitude for the diffusion coefficients and the mobility, but are
not identical. Specific cases of inverse-power potentials are treated in further detail, and
some numerical examples are given for rigid-sphere interactions.

I. INTRODUCTION

The diffusion coefficients of ions in gases are
proportional to their mobilities at low electric field
strengths, but at high fields the proportionality
breaks down and the diffusion coefficients usually
increase more rapidly than the mobilities. More-
over, the diffusion coefficient becomes anisotropic
at high fields, the rates of diffusion parallel and
perpendicular to the field direction being different.
The purpose of this paper is to find an expression
for the composition dependence of ion diffusion
coefficients in gas mixtures at arbitrary field
strengths in terms of the diffusion coefficients in
the pure component gases. Although no data at
present exist, measurements in mixtures introduce
no new experimental difficulties, and the present
work predicts interesting effects.

Since we seek only a composition dependence, we
can use a simple momentum-transfer method used
previously for finding the composition dependence
of the ion mobility. ~ As a side result we make ex-
plicit a hidden assumption in the previous work,
namely that the dependence of the momentum-trans-
fer cross section on the drift velocity itself could
be ignored. This has a distinct effect on the devia-
tions from Blanc's law predicted for high fields.

At low fields, the analog of Blanc's law for ion
mobilities holds to first order in the Chapman-
Enskog approximation,

L/n = K, (x, /D, ), -

where D is the diffusion coefficient of the ion in the
mixture, the x, are mole fractions, and the D, are
the diffusion coefficients of the ion in the pure
component gases at a number density the same as
the total number density of the mixture. Higher
Chapman-Enskog approximations yield only positive
deviations from Blanc's law, but these are usually
small. ' For high fields we find that appreciable
deviations from this linear rule can occur, and that
the deviations are sensitive to the form of the ion-
neutral interaction.

II. MOMENTUM-TRANSFER THEORY

The basic idea in a momentum-transfer calcula-
tion is that the momentum given to the ions by ex-
ternal forces must be balanced by the momentum the
ions transfer to the neutral molecules by collisions,
since the ions are not accelerated on the average.
For mobility, the external force is obviously sup-
plied by the electric field. For diffusion, the ex-
ternal force is regarded as coming from the gradi-
ent of partial pressure of the diffusing species.
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and perpendicular to the field direction is

~If,nkvv„(Nv, i
(1 —co86)2 bdb

JP x

(2)

where n is the number density of ions, $ is a pro-
portionality constant of order unity, ILL, is the re-
duced mass of an ion-neutral pair, v, and v„are
the average ion velocity components, R is the num-
ber density of neutrals (it is assumed that N» n),
v. is the relative speed on an ion-neutral pair col-
liding with impact parameter b and deflection angle
8, e is the ionic charge, E the electric field
strength, and p; the partial pressure of ions. The
pointed brackets indicate avera, ges over relative
speeds. The average ion velocities are related to
the drift velocity g„and to the diffusive fluxes J„
and J, by the expressions

v, = v, + (d, /n), v „=2„/n,

and the diffusion coefficients parallel and perpen-
dicular to the field direction are defined by the
equations

D. ~P;
kT ~z ' " kT

Comparison of Eqs. (2)-(5) identifies D„and D, in
terms of the average momentum-transfer cross
sections.

For mixtures, the left-hand sides of Eqs. (2) and
(3) become summations over the species in the
mixtures. The results for both D, and D, then be-
come

DZ, p, N;&v„, q(v„, ) & =07/], (6)

where q(v„, ) is the momentum-transfer or diffusion
cross section

q(v„,)= 2~ f, (1 —cos8, )bdb,

in which 6, signifies 8(v„;). The diffusion coeffi-
cients in pure gas j of density N = &;N, are given by
one term in these sums,

D,I,N &v„, q(v„, )&, = a z /~, (6)

where now the average & ),. is nof the same as
corresponding average in Eq. (6), because the ion
velocity distributions are different in the pure gas
and in the mixture. From here on the notation & &&

means an average taken in the pure gas j, wherea, s
& & means an average taken in the mixture. Com-

Wannier" has shown that the drift and diffusive
motions are separable, in the sense that the diffu-
sion is simply superposed on the net drift velocity.
Thus the momentum transferred per unit volume in
the field direction (along the z axis) for ions in a
single gas is '

~Ps(1 —cos0)2mb db = neE—
~Z

bining Eqs. (6) and (8), we obtain

1 ~ ~x (v„;q(v„,))
D, &v„q(v,&)&,

An analogous treatment of v„yields an expression
of similar form:

1 g x~ (v„,q(v„, )&

v, , v„&v„;q(v„,)&,
'

However, this does not necessarily mean that the
D's have the same composition dependence as does
v&, because the averages in general depend on v&

unless the fieM is very weak.
The problem is now reduced to finding the ratio

of the averages, &v„,q, &/&v„, q~&, . In general this
will require further approximations, but two espe-
cially simple cases can be distinguished at once.
First, if the field is weak the relative velocities
are essentially all thermal, the ion distribution
functions are the same in the pure gases and in the
mixtures, and the ratios of the averages are all
unity. Second, if q& is inversely proportional to
v„, (the Maxwell model), the products v„,q, are
all constants and the ratios are again unity. Thus
Blanc's law holds for both these special cases.

III. EVALUATION OF AVERAGES

To evaluate the ratios of averages appearing in
Eqs. (9) and (10), we make three approximations.
We first assume that the averages can be decom-
posed,

&v„,q(v„,)&;= (v„,);q(&v„,&,),
and second we a,ssume that

&v„;&, ~ &v„& ".
It is easy to show that

(12)

(13)

where &v2&~ is the mean-square ion velocity and

&v, ~&& is the mean-square velocity of neutral spe-
cies j. The latter is always entirely thermal and
equa. l to 3k T/M, , where M,. is the neutral mass,
but &v~&, contains both thermal and field components,
and the field component is partitioned between a
part visible as drift motion and a random part.
Thus the first two assumptions reduce the problem
to the determination of the partitioning of the ion
energy, for which an approximate result is already
known. ' For ions in a single gas, Wannier has
shown that the energy partitioning is approximately

&v'&,. + &V, '&, = 3ur(I/m+1/M, )

+v„'[(m+M, )/m], (14)
where m is the ion mass. This result is exact for
the Maxwell model, and is thought to be a reason-
able approximation for other ion-neutral interac-
tions. The generalization to mixtures yields
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M = Ziq &u ~ M q/Q~(u ~,

cu, = x, M,Q((v„,))/(m +M, )'.
(16)

(i V)

Equations (15) and (16) can always be considered
correct in a formal sense, so the third approxima-
tion is embodied in Eq. (1V).

Combining the foregoing approximations, we ob-
tain

(v„,Q(v„,)) v, g((v„,)) 'm+M SuT & '"
(v„,Q(v„,)); v„,Q((v„,),) m+M, M,v„'

3urx 1+ 2 . (18)

Substitution of this expression back into Eqs. (9)
and (10) yields the final formulas for the composi-
tion dependences of D„D„and v„. The previous
result for v„ implicitly assumed that the ratios of
the Q's in Eq. (18) were all unity, an assumption
valid only for rigid spheres. The velocity depen-
dences of the Q's must be known before numerical
results can be calculated; although the same Q's
appear in both numerator and denominator in Eq.
(18), they are to be evaluated at different mean
velocities corresponding to averages in the pure
components and in the mixtures.

IV. EXAMPLES

Here we present a few illustrations of the fore-
going results. If the ion-neutral interaction poten-
tials Y& vary inversely as some power of the sepa-
ration x, ,

Vi= C~ /r) ', (i9)
where C& and n, are constants, then the cross sec-
tions vary as v„;

2/n) ( 1 1 2/ti.

Q(v„&) = 2rrA '(n&) z
'

~

—+—,(20)
V„y

where the A' '(n~) are pure numbers that have been
evaluated by numerical integration. ' The aver-
ages in Eqs. (9) and (10) can then be readily found.
Thus Eq. (9) becomes

( ')+(V, ') =3kT(1/m+1/M, )+ „'I( M)/ ],
(is)

where the mean mass of the gas mixture is
Since Eq. (22) itself contains M, the actual compu-
tation of M may require iteration.

For a numerical example we consider rigid
spheres at high fields, for which Eq. (21) can be
put in the form

(28)

where

( y)2( g.)l/2 1i4

x, + x,(v*)'(m*)'"

D* = (D,/v. ,)/(D. /v. .),
V = V@1/V42 )

m*= (m+Mg)/(m+M2) .

(2s)

(26)

(2V)

If we choose x1 and D*, then deviations from Blanc's
law can be shown as contours in a v*-m* plane.
Such a diagram is shown in Fig. 1, with x1 = y= x2
and D* = 1. The latter choice means that the devia-
tions from the Einstein relation are the same in the
two pure components; as a consequence, the dia-
gram represents the deviations from Blanc's law
for v„as well as D. Two points on the diagram
refer to K' in H2+N2 and to He' in He+Ne. The
deviations for the latter case are predicted to be
small, in agreement with experiment. Unfortunate-

.Ol +40—

Al
'Cl

) I

II

For a binary gas mixture the fractional deviation of
D from Blanc's law can be written in terms of three
dimensionless ratios,

-1 ~1
DE(&anc D DB &anc 1-1 +

Daianc

x, + x,D*(v*)'(m*)'"
(x +x D*v*)Ix +x (v*) (m*)' ]'

( ~ 1-4/ng I+~ 3yT 1/2-2/n~
+

D ) D~ Iv~ rn +M& M&e&

3kTx 1+ 2, (21)
M)gq)

I

0.0 I O. l

m =(m+ Ml) /(m+M&)

10 IOO

and a similar expression for v& follows from Eq.
(10). The weight factors &u, of Eq. (1V) for finding
M can now be written

xgM;A' '(n, ) 2n;C; +"J
(m+M )' M v, '

FIG. 1. Percentage deviations from Blanc's law, 100
&&[D —D~1~c ']/Dz&~c, at high fields for an equimolar
rigid-sphere binary gas mixture, as contours in a v*-~*
plane with D* =1. The dimensionless variables are de-
fined in Eqs. (25)-(27). The same contours hold for v&

as for D when D*=1. The open circle refers to K' in
82+ N2, and the filled circle to He' in He+ Ne.
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ly there are no measurements for the case with
large predicted deviations. Both positive and nega-
tive deviations are seen to be possible.

V. CONCLUSIONS

The present results predict that deviations from
Blanc's law for both mobility and diffusion coeffi-
cients can be of either sign at high fields, and can
be of a magnitude that should be detectable experi-
mentally. The deviations depend explicitly on the
nature of the ion-neutral interaction through the
averages (v„&Q&) and (v„&Q&)~, and are zero for the
Maxwell model in which Q& is inversely proportional
to v„, and the mean free time between collisions is

the same at all velocities. This behavior is remi-
niscent of the behavior of thermal diffusion in neu-
tral gases, which has been used as a sensitive
probe of intermolecular forces, and indeed the
same sort of averages occur in the momentum-
transfer theory of gaseous thermal diffusion. " This
suggests that deviations from Blanc's law at high
fields might be a useful probe of ion-neutral forces.
Physically, the present theory ascribes the devia. —

tions from Blanc's law to the difference in the ion

energy partitioning in the gas mixture and in the

pure components. Only the particular velocity de-
pendence of the cross section given by the Maxwell
model is just right to compensate for this effect.
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In the interest of understanding the nature and properties of physically adsorbed helium

monolayers in the mobile limit, we study the ground state of a two-dimensional helium liquid,

using integral-equation techniques which have been thoroughly tested in connection with bulk

helium. Our results are compared to those of computer experiments by Hyman and by Camp-
bell and Schick, and to actual experimental data obtained by Dash and co-workers.

As a model for adsorbed helium monolayers, we
consider N helium atoms adsorbed on a uniform
homogeneous substrate of surface area A. Recent
studies of single helium atoms interacting with
structured substrates such as graphite indicate
that ignoring the structure of the adsorbing sur-
face may be quite realistic for the calculation of
some properties of the adsorbate Specifically,
the bands are very broad and overlapping. The re-
sulting high mobility makes it reasonable to ex-
pect that the ground- state and low- excited- state
properties of interacting helium atoms will not be

significantly modified by the structure of the sub-
strate. The submonolayer heat capacities mea-
sured by Bretz and Dash for He adsorbed on

graphite provide strong experimental evidence for
this point of view in the low-density regime. It
should be noted, however, that densities which are
in registry with adsorption sites provided by the
substrate may show a tendency to take advantage
of the weak substrate potential at the expense of
their mobility, as evidenced by the order-disorder
transitions observed in the aforementioned experi-
ments at commensurate densities. 3 In that case,


