
PHYSIC AL BEVIEW A VOLUME 6, NUMBEB 5 NOV E MB E B 1972
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Franzen's approximation for the relaxation time of an optically pumped vapor is shown to
yield effective values of diffusion coefficients and relaxation cross sections which differ by
small predictable amounts from the true values of. these parameters. The appropriate cor-
rection factors have been calculeted. Belaxation at cell walls is shown to be approximated
well by an additive relaxation rate, allowing a simple description of the relaxation of the
electronic spin polarization of atoms subject to collisions both with cell walls and with buffer-
gas atoms.

I. INTRODUCTION

Spin relaxation in an optically pumped vapor can
be induced both by collisions of the pumped atoms
with the walls of the cell and by collisions of the
pumped atoms with foreign (buffer) gas atoms.
The rate of change of any particula, r observable of
the system thus is governed by a diffusion equa-
tion. The solution of this equation is an infinite
sum of exponential terms, each of which is a func-
tion of the diffusion coefficient Do and of the cross
section for relaxation o of the pumped atoms in the
buffer gas. Franzen suggested a simple approxi-
mation in which only the first term of the series
solution is considered to contribute significantly
to the relaxation. ' Franzen's approximation, which
since has been widely used, permits a convenient
and straightforwa, rd determination of Do and of o

from the experimentally measured dependence of
the relaxation time upon buffer-gas pressure.
Legowski~ and Masnou-Seeuws and Bouchiat3 have
extended Franzen's treatment to consider also the
second most important diffusion mode. Minguzzi,
Strumia, and Violino made an extensive evaluation
of the diffusion problem, deriving in detail the rel-
ative weights of all diffusion modes. Their cal-
culations have been utilized recently by Beverini,
Minguzzi, and Strumia in analyzing data on the
collisional relaxation of (8 I) in cesium. ' The
approach employed by these authors goes far be-
yond Franzen's approximation: It involves the fit-
ting of more than 100 terms of the series solution
to the experimental data. While analyses such as
these may be necessary in cases where experi-
mental cells cannot be considered optically thin,
or in eases where extreme accuracy can be sought,
in many situations they introduce an unwelcome
complexity which would be desirable to avoid.

In this paper we report on detailed studies of
the limits of accuracy of Franzen's approximation
compared to the exact solution of the diffusion
equation. We show how the approximation may be
used to extract highly accurate determinations of
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p, , is the ith zero of Jo(x), L is the length of the
cell, v. is the radius of t.~e cell, x~ is the radius of

D~ and of 0 from experimental data on the relaxa-
tion of observables such as (8 I). We show that
the effects of wall relaxation can indeed be approxi-
mated by a simple additive relaxation rate, as
Franzen's approximation suggests. Finally, w' e
show how the effects of wall relaxation can be
treated in more complicated situations, such as in
the relaxation of the electronic spin polarization
(8.).

II. DIFFUSION EQUATION AND FRANZEN'S
APPROXIMATION

Assume that the relaxation of the observable 8

of an optically pumped vapor can be described by
a single rate constant R. The relaxation of (8 I)
induced by collisions of pumped atoms with buffer-
gas atoms satisfies this criterion. When the con-
tribution to relaxation arising from diffusion to
the walls of the cell is included, the relaxation
equation becomes'

—(e) =Dr'(8) -R(S),
et

where DD Qo0P/) and R=noov„, p/po. P is the
buffer-gas pressure in Torr, D~ is the diffusion
coefficient of the alkali metal in the buffer gas at
atmospheric pressure, no is I oschmidt's number
corrected to the actual temperature of the cell,
v„, is the mean relative velocity, and 0 is the
cross section for the collisional relaxation of the
observable 8. The solution of Eq. (1), for cylin-
drical symmetry, and subject to the boundary
condition that 6 = 0 at the walls of the cell, is"
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the pumping beam, and x, is the radius of the de-
tection beam. Equations (2b) and (2c) are strictly
valid only for small polarizations (see Appendix).
For simplicity in subsequent discussions we shall
assume that r&= r, = y', a common experimental
sltuatl. on.

In Franzen's approximation, one assumes that
only the first term of Eq. (2) contributes signifi-
cantly to the relaxation. Thus,

7 ,'„=-[7('/L'+ i(', /H]D+ It .
If Franzen's appr oximation were strictly valid,
the relaxation equation for (9 wouM reduce to the
following form:

with the solution

g g
-Rt -Bit

0 (4b)

Relaxation due to wall collisions thus would be
described by the simple additive rate constant R,
where

(4c)

We now examine Eq. (2) in closer detail. This
equation is factorable into the following form:

8(t) = 8, exp(-At)

Comparing Eq. (5) to (4b), we find that Franzen's
approximation is, in effect, that the infinite sum
of exponentials in Eq. (5) can be approximated by a
single "average" or "effective" exponential. That is,

QB,„exp[- t[(('(2v+ 1)'/L'+ p'(/r']D)

= exp(- R'f), (6)

ultimately yieMing the same time dependence for 8
as that given in Eqs. (4a) and (4b). Equations (5)
and (6) suggest that if experimental transient sig-
nals closely approximate single exponentials, then
Franzen's approximation should yield reasonably
accurate determinations ct' R and of 8, and there-
fore of D0 and of o. The situation is muddled, how-
ever, by the fact that both the time constants and
their relative weights depend upon buffer-gas
pressure. Thus, even if the single-exponential
approximation were found to hold, the effective
val.ues of D0 and of o necessary to fit the data still
might vary considerably as a function of buffer-
gas pressure. Fortunately, as we shall show
below. such a situation does not exist in practice.

III. COMPUTER ANALYSES AND RESULTS

We have investigated the problems described
above with the aid of extensive computer analyses

of Eqs. (2a)-(2c). We have used these equations
to generate simulated experimental data, to which

we fit single-exponential functions, determining
effective decay times. We then fit Franzen's ap-
proximation to the pressure dependence of the ef-
fective decay times. Comparison of the "eval-
uated" values of D0 and o with the input va.lues pro-
vides an exact measure of the error associated
with the use of Franzen's approximation. We have

found that over a wide range of geometries (L/x
ratios) and over a wide range of buffer-gas-wall
relaxation-rate ratios both that the relaxation of
8(f) is well approximated by a single exponential,
and that the application of Franzen s approxima
tion to the analysis of experimental data yields ef-
fective values of D0 and of cr that differ from the
"true" values by small predictable amounts. A

full discussion of this analysis follows below.
For convenience, we rewrite Eq. (2b) in the

following form:

(('(2v+ l)P,& A
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A = DpPp/(/
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We have simulated experimental data for the fol-
lowing values of the parameters A, L/r, and n:
A = 10; L/x = 0. 5, 1, 2, 3; n = 1, 10 ', 10,10, 10
10 '. These values encompass virtually all com-
monly encountered geometries and relaxation-rate
ratios. For each combination of L/r and o. and

for a wide range of P, we used Eqs. (2a), (2c), and

(7) to calculate 8(t) at 100 values of t equally dis-
tributed over the interval t= 0 to t=47'&0. 6 We then
fit a single exponential to each set of "data, "using
a standard least-mean-squares technique, and

obtained an effective relaxation time v„,. One of
the poorer examples of such a fit is shown in Fig.
1, where the &&'s represent some of the generated
values of 8(t) and the solid line represents the best
fit of a single exponential to the data. The only

strong nonexponential behavior occurs near /= 0,
as evidenced by the intercept of the fitted curve
falling lower than the exact data. This discrepancy
varies from a negligibly small amount at high
pressures to about 6% of 8(0) at low pressures.

Having demonstrated the validity of the effective-
@ingle-exponential approximation, we proceeded to
fit Franzen's approximation to the appropriate
calculated values of 7,«(P). We provided a rather
stringent test by including data at pressures rela-
tively far out on both sides of the relaxation-time-
vs-buffer-gas-pressure curve. Specifically, we

included data at the pressure ggPm~ 8Pm& +m& +2m~
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TABLE II. Variation of the average values of the
correction factors Ct and C2 as a function of L/~ ratio
for a cylindrical cell.
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FIG. 1. Sample fit of a single exponential (solid line)
to the simulated data (x's) obtained from Eqs. (2a), (2c),
and (7) forA =100, 0.'=0. 001, I/~=2, and p=90. 7. Fits
for all other sets of parameters were of comparable or
better quality.

p, 2p, 4p, 8P, and 16p, where p is the
pressure at which 7', 0 is a maximum. For conve-
nience we wrote Franzen's approximation in the
form

( s'
'retg=

~
i i is + pt Ct + Cs~&P

p J
(6)

TABLE I. Variation of the correction factors C~ and

C2 as a function of & (=ppo'p y~ IppDp] ) for a cylindri-
cal cell with I /~ =2. The table indicates that Franzen's
approximation yields an effective value of Dp which is
approximately 3.4% higher than the true value, and an
effective value for g which is 7.4% higher than the true
value.

1.0
0. 1
0. 01
0. 001
0, 0001

1.032
1.034
1.036
1.034
1.035

C2

l. 074
1.074
1.073
1.074
l. 074

A, L/x, and o.'are the original input parameters,
while C, and C~ are variabl. e parameters determined
by the best fit to the data. The deviations of C,
and C~ from unity yield the errors in the determi-
nation of Do and 0 associated with the use of Fran-
zen's approximation. We found that, for a given
L/r ratio, C, and Ca are virtually unaffected by
changes in&. A summary of the relevant results
is given in Table I. C, and C~ do, however, de-
pend somewhat on the L/r ratio. We summarize
the relevant results in Table II. We make the
following conclusions. For optically thin cells,

and for small polarizations, Franzen's approxi-
mation may be used with confidence to evaluate Do
and o from experimental data. For a cell with
L/x= 2 geometry, and for data distributed in the
manner described above, Franzen's approxima-
tion will yield a value of Dc which is 3.4% higher
than the true value, and a value of o that is 7.4%
higher than the true value. These percentage dif-
ferences are unaffected by the volume of the cell,
and by the actual magnitudes of the diffusion co-
efficient and relaxation cross section. The cor-
rection factors depend somewhat, however, on the
distribution of data points with respect to pressure.
If, for example, Franzen's approximation is fit
only to data on the low-pressure side of the 7,«-
vs-p curve, best values of C, =1.018 and C~=1.088
are obtained for a L/x= 2 cell. These values of
C, and Ca differ by less than 2% from the values
calculated including the data at higher pressures.
The difference is small compared to typical ex-
perimental uncertainties. Similarly, if only ex-
tremely high pressure Q»16P ) dataare analyzed,
Cz approaches unity. Such a situation is very sel-
dom encountered in practice.

An interesting test of our results can be made
by fitting Franzen's approximation to the published
data of Beverini et al. ' The solid curves in the
data graphs in their articl. e represent the best fits
of the series solution to the experimental data.
These curves can be reproduced by Franzen's ap-
proximation with values for o that are 7% to 9%
higher than those reported by Beverini et al. , and

by values for Dc that are 9 to 14% higher. The cor-
rection factors for a are almost exactly those that
we would predict. The apparent discrepancies of
the Dp correction factors from our predictions are
due primarily the fact that the data of Beverini
et al. represent the times at which 8(t) falls to
(1/e) of its value at (= 0, rather than the time con-
stants of single exponentials fit to the experimental
transients. Differences between these two repre-
sentations of data are most pronounced on the low-
pressure sideofthe relaxation-time [7„,or 7 (1/e)j
vs buffer-gas-pressure curve, with r,«) v (1/s) in
that region. The correction factor C, for the
w(1/e) curve should be about 6% larger than that
which we cal.culated for the 7,«curve, thus re-
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moving the apparent discrepancy. It may be worth
mentioning that the v', «representation of data,
now that the appropriate correction factors are
known, promises in practice to yield more accu-
rate data than the v(1/e) approach. The accuracy
of the 7 (1/e) representation depends heavily on the
accuracy with which a single point, the amplitude
of the signal at t= Q, is known. In the v,«approach,
an analytic expression can be fit to a large number
of data points, which need not include points near
t=Q, nor at t-~.

IV. RELAXATION OF THE ELECTRONIC SPIN
POLARIZATION

To include the effects of wall relaxation, we take
advantage of the fact that relaxation at a glass or
quartz surface is "uniform"; that is, any Zeeman
sublevel can be reached with equal probability in

a single relaxation event. This fact allows us to
use the same additive relaxation rate to describe
the effect of diffusion to the walls on both (S,) and

(I,) as that which was used for (S.1). We thus ob-
tain the following approximate equations, which
include the effects of both wall relaxation and buf-
fer-gas relaxation;

(1Oa)

We have shown that relaxation caused by diffusion
to the walls of the cell can, to a good approxima-
tion, be described by an additive relaxation rate.
We now utilize this fact to describe the relaxation
of the electronic spin polarization (S,), a task that
would be almost hopelessly complex if a complete
solution to the diffusion equation were required.
The complexity arises from the fact that the re-
laxation of (S,) is coupled to the relaxation of
(I,), the nuclear spin polarization. For simple
binary "fly-by" alkali-buffer-gas collisions, the
relevant relaxation equations are, in the case of
cesium (I=+~), ' 9

(Qa)

(Ob)

(lol )

The solution of these equations yields the result
that the relaxation of (S,) is approximated by a
sum of two exponentials with time constants

= (R'+ —,', R),
7z'-—(R +R),

(1la)

(11b)

a result which has been verified in our laboratory.
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FIG. 2. Sample fit of Franzen's approximation (solid
line) to calculated values &,&f (&&

' s). The input param-
eters were A. = 100, G.' = 0. 001, and L/y =2. The evalu-
ated correction factors were C~ =1.034 and C& =1.074.
Fits for all other sets of para. 'meters were of comparable
Qualig.

D~'P- aP+I(r, z) =O, (Al)

where I(r, z) is the pump rate and P corresponds
to our 8 and k to our R. Equation (Al) is valid
only for small pumping-rate to relaxation-rate

We have stressed the point that our calculations
have been made under the assumption of small
polarizations, i. e. , small values of 8(0). This
restriction stems from the fact that a similar as-
sumption was implicit in the derivation of the
"exact" equations (2a), (2b), and (2c). We now

briefly indicate how that derivation may be broad-
ened to include arbitrary polarizations.

In order to calculate the weighting factors, B,„
of the various diffusion modes, the distribution of
polarization at (=Q must be known. Minguzzi et
al. attacked this problem by solving the PumPing
equation, for which 8 = Q at t = Q, to determine the
distribution of polarization in the optically pumped
equilibrium. This same distribution then served
as the initial distribution of polarization when the
pumping light was turned off, that is, at the start
of the measurement of the relaxation transient.
Minguzzi et al. wrote the pumping equation as'
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ratios, that is, for P=Q. The correct general
equation is

D& P —[k+ I(r, z)]P+I(r, z) = 0 . (A2)

The result of the change indicated by Eq. (A2) is
that the r,„ in our Eq. (2c) no longer are the r&„of
Eq. (2b), but now include the pumping rate: Let
us call these modified constants r, „and understand
that they must be substituted into Eq. (2c) for the ~,„:

r, „'=[m (2@+1) /L + p, /r ]D+R+I(r, z) . (A3)

The r,„in .Eq. (2b), remain, of course, unchanged.
While it may seem strange at first that a pumping
rate now appears in an equation describing relaxa-
tion in the dark, it must be remembered that this
parameter enters because of the dependence of the
initial polarization upon it. Referring again to
Ref. 4, we write the initial polarization in the form

4I,r,'.8; (p, ,) [1- (.—1}"]
P, ( el' (P, )) wv

~JO ~»n
" I, (A4}0 ) I j

where we have assumed that, in terms of the no-
tation of Ref. 4, &=0, @=1, and ID=I(r, z). In the
limit of extremely strong pumping, I- ~. In that
case the z dependence of the polarization has the
form

1 . v7TZP= ~ —sin
vedd Z

which is just the Fourier series for the function

P(z) = const for 0 & z & L Tot.al polarization thus

exists throughout the volume of the cell, the limiting
case which is expected. Relaxation starting from
such a state of polarization is radically different
from that described in the main section of this

paper, as inspection of the relevant equations will

reveal. Higher-order diffusion modes play a much

more significant role.
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The radiation emitted by an electron traversing an output cavity tuned to a single frequency

after having traversed an excited input cavity is calculated using quantum field theory. It is
found that the emission has maxima when the output cavity is tuned to a harmonic of the input-

cavity frequency, the result being very similar to classical klystron theory. The emitted

power is independent of the state of the field in the input cavity under any realizable conditions,

so that this provides no mechanism for determining the state of this field.

I. INTRODUCTION

The classical description of the interaction of an
electron beam with the field of a resonant cavity is
straightforward. For beams which are not too in-
tense the space-charge interaction may be ne-
glected, and the motion of the individual electrons
may be treated independently. An electron tra-
versing a gap in an excited cavity, such as the in-
put gap of a klystron, is accelerated by the electric

field in the gap by an amount depending on the am-
plitude and phase of the cavity field. A succession
of electrons passing through the gap is velocity
modulated and forms bunches at a distance from
the gap. ' This bunching is a many-electron effect,
even in the absence of any electron-electron inter-
action, and becomes less pronounced relative to
statistical fluctuations in the beam as the beam gets
weaker.

It is our purpose to give a quantum-mechanical


