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A general form for the projector onto open channels for rearrangement processes in molecu-
lar collisions is given. This form is investigated for two special cases of the three-atom pro-
cess A+BC-AB+C on a single potential-energy surface: (a) the rearrangement to and from
the ground vibrational and rotational states of BC and AB for arbitrary total angular momentum
and (b) the semiclassical limit of this form. The projector for special case (a) can be found
exactly under either of two limiting conditions, and for case (b) we find the projector to be a
local operator, such that in the semiclassical limit the process A+BC AB+C occurs only
when the distance from A to the center of mass of BC equals the distance of C from the center
of mass of AB.

I. INTRODUCTION

The unified reaction theory of Feshbach has been
applied extensively to problems in nuclear and mo-
lecular collisions. The general expressions in-
clude an operator P, the projector onto some or all
of the open channels and its orthogonal complement
Q= 1-P. Explicit expressions for P can be written
formally in a straightforward manner if the colli-
sion system involves only elastic or inelastic tran-
sitions. For instance, for the inelastic collision
of molecules A and B, P can be written as

where Q, is a product of the internal-state wave
functions for each A and B, and the summation runs
over all energetically allowed states P;. P is

uniquely defined in this manner to project onto all
open channels (corresponding to the states of the
system 2+8 at infinite separation). Q is thus
uniquely defined to project onto all closed chan-
nels.

The definitions of P and Q for rearrangement
collisions in a time-independent theory have pre-
sented somewhat of a problem in the past 10 yr.
This problem results from the fact that the ba-
sis set in one arrangement is not orthogonal to
the basis set in another arrangement. A P for
rearrangement collisions was first derived by Mit-
tleman and modified by Coz. The complexity of
this derivation led Chen and Mittlemans to derive
simpler expressions for P which, however, did
not account in general for possible recoil of the
target. Starting with the procedure of Ref. 6,



1886 T. F. GEORGE AND W. H. MILLER

Chen was able to derive explicit expressions for
P for general three-body rearrangement colli-
sions, which allowed for recoil of the target.

A general construction of P for rearrangements
was given by Hahn in a multidimensional formula-
tion of Feshbach's unified reaction theory that could
in principle be applied to any rearrangement colli-
sion involving three or more bodies. In this paper
we shall present a general construction of P for
molecular rearrangements which does not require
a multicomponent form. In Sec. II we shall sum-
marize the multicomponent formulation of Hahn and
present the general single-component formulation
of P. In Sec. III we shall restrict ourselves to
rearrangements on a single potential-energy sur-
face and (a) consider a special case for three-body
rearrangements, namely, the 0- 0 rotational and
0- 0 vibrational state rearrangement process for
arbitrary total angular momentum and (b) look at
the semiclassical limit of the projector P, In Sec.
IV we shall discuss other possible single-compo-
nent formulations of P along with a summary of the
paper.

as the system goes asymptotically to arrange-
ment n. Defining the N&& N matrix H —E as

1 1 1 ~ ~ ~ 1
1 1 1 ~ ~ 1

H —E= (H —E) (2. 4)

1 1 1 ~ 1

where H is the total Hamiltonian and F is the total
energy, we can then write with the help of the
Schrodinger equation (H —E)+= 0 the matrix analog
of the Feshbach equations

P[H —E]P+ = —PHQ+, Q[H —E]Q4 = —QHP+ .
(2. 5)

Equation (2. 1) does represent a general form of
P for rearrangement collisions, but it requires a
matrix formulation of Feshbach's equations. We
present in this paper a general formulation of P in
a single-component form. To motivate our deriva-
tion, we consider the projector onto the nonorthog-
onal basis {u;]. Given some arbitrary function X,
we know that

II. GENERAL SINGLE COMPONENT P FOR
REARRANGEMENT

Px=Z;unct (2 6)

The formulation of Hahn' begins with the ma-
trix projector P defined as

(2. 7)

where c; is some coefficient. Multiplying both
sides by (u~ ( we have the equation

&u, lx &=2, &u, lu, )c, ,

where we used the fact that

&, lPx&= &., lx&. (2 8)

(2. 1) Multiplying both sides of Eq. (2. 7) by ((u„lu&)) '

[we use ((u~ lu& ))
' to designate the kjth matrix ele-

ment of M ', where M is the overlap matrix such
that M»= (u, lu~)] and summing over j, we find c,
to be

where P is defined by Eq. (1. 1) and N is the num-
ber of arrangements. Q is defined as Q= 1 —P.
The total wave function is generalized in a fashion
similar to the Faddeev formulation of the three-
body problem as

cs-E', ((u. lu~&) (u~lx &

so that

P = g u; ((u; lu& &)
' (u

l
.

(2. 9)

(2. 10)

where 4' is defined such that

0

l0

(2 2)

(2. 3)

We see that P, depending on the inverse of the
overlap matrix, is given in a single-component
form by Eq. (2. 10).

To proceed in a similar fashion for rearrange-
ment collisions, where we have nonorthogonal
channel states, we let R designate the radial co-
ordinate between the centers of mass of the two
molecules in channel n, and let r designate the
internal coordinates of the two molecules. The
internal coordinates are all those other than that
for radial translational motion; i. e. , rotation and
vibration of the isolated molecules, their elec-
tronic states, and the angular part of the transla-
tional motion. (The special cases in Sec. III are
restricted to a single potential-energy surface,
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i. e. , one over-all electronic state for the scatter-
ing system, so that we shall consider only nuclear
degrees of freedom for the internal coordinates in
Sec. III. ) Designating an internal state in channel
n as Q «(p, ), then for an arbitrary function X we
write in an analogous fashion to Eq. (2. 6),

I'X= Q Q, «(p'„) C,«(R„), (2. 11)

where the coefficient C, (R ) deperds on X and is
constructed such that there is no multiple counting
of internal degrees of freedom. Multiplying both
sides of Eq. (2. 11) by J dpspgPs) we obtain

f dP'age& (rs)X= Q J dPs QIh'&(rs) $ «(P, )C «(R ),
(2. 12)

where we have used the fact that

f «fP's «t«fg (P's) I X = f «f&s «tlII«(P's) X

Defining the overlap kernel'

;(R„Rs)= f d'(«2P) «t1Itp (P s) «t«„(P „), (2. 13)

where Jd («2p) indicates integration over all vari-
ables except R, and Rs, we rewrite Eq. (2. 12) as

f dp's Qgq(p. s)X= Z f dR, a „s«(R«„R )Cs;(R ) .

(2. 14)
The inverse of the kernel, bs« „'(R„Rs), satisfies

f dR„A~« „2(R~, R„)b„s s«(R Rs)

= 5.25««5(R. —Rs), (2. 15)

so that the coefficients from Eq. (2. 14) can be

written as

C, (R ) = Z f d(rs R,) 6, s, '(R, R,) $.24', (p s}X,

(2. 16)

P-P„=Z ~y„,)(y„,
~

as R, -
due to the vanishing of the overlap kernel between
states of different arrangements. In this region I'
is identical to Eq. (1.1) defining I' for inelastic
collisions, and is thus uniquely defined.

(2. 18)

III. INVERSE KERNEI.

A. Special Case

In general, the inverse kernel, as defined by
Eq. (2. 15), is difficult to calculate, since it in-
volves the solution of an integral equation whose
kernel is not of finite rank. ' We shall indicate
how to find the inverse kernel for a special case of
atom-diatom rearrangements on a single potential-
energy surface: the case where only two arrange-
ments are open, say A+BC and AB+ C, and where
BC and AB are in their ground vibrational and ro-
tational states. The procedure we follow can, how-

ever, be generalized in a straightforward manner
to the case where all three arrangements are open,
but for simplicity we shall restrict ourselves to
two open arrangements.

For our special case we can write Eq. (2. 15) as

and the projector I' assumes the for~"

& «(& )f d(p'sRs) & «.3« '(R Rs) 4«««(p'3) .
&3& «pf

(2. 17)
Equation (2. 17) is a single-component expression

for the projector onto all open channels for a gen-
eral rearrangement molecular collision. Such a
projector can be defined uniquely, however, only
in the asymptotic region R,- where it assumes
the form

3) 12(Rl~ 3) 11(R31&R2)K12(R31& R2) &(Rl —R2)
6,2(R„R3)5(R,—R3) K2, (A3, R2)K22(R3) Rp) O

0
~(Ri —&s)j ' (3. 1)

where K, &
-=A«& (the subscripts signify arrange-

ments) and R, and R, are the radial coordinates
of arrangements A+BC and AB+ C, respectively.
Writing the four equations resulting from Eq. (3. 1)
and making the appropriate substitutions of these
equations into each other, we arrive at the follow-
ing four coupled equations:

K„(R„R2)=5(R1 —R2)+ f dR3 f dR4 b,,a(R«, Rs)

x +21(R3& R4) Kll(R4& R2) ~ (3. 2)

K21(R1, R2) = —f dR3 &21(Rl, Rs) Kll (Rs, Rp),
(3. 3)

Kps(R«, Rs)= 5(R1 —R2)+ f dR3 f dR4 621(R«, Rs)

X 6,2(R3, R4) K22(R4, R2), (3. 4)

+ 6 (R«, R2)+, (3. 6)

where 6 (R„R2), for example, is

(Alp R2) = f dR3 +(Rly R3) + (R31 R p) (3. 7)

Using harmonic-oscillator vibrational wave func-
tions for AB and BC, we find the kernel for our
specific case, with total angular momentum J, to

K,2(R „Rp)= —f dR3 &12(R«, Rs) K22(R3, R2) .
(3. 5)

let us concentrate on Eq. (3. 2). Both matrices
on the left-hand side of Eq. (3. 1) are symmetric, so
that 6»= 6». Dispensing with the subscripts on
&,2, we can write K„(R„R2)as

Kll(R«, R2) = 5 (Rl —R2)+ 6 (Rl) R2)+ 6 (Rl, Rp)
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be"
~1/2p1/2

&(R), R2) = ' dysiny
Q

7t'

x exp[- C2R, —(C, + C3 )R3 C3R2]

X iz(C4 R,R3) i~(C4R2R3) . (3. 18)

x exP( 2(2 3 1 2 P 32)d00 (y)

(3. 8)
where y is the angle between the R, and R2 vectors,
and x, and x2 are the vibrational coordinates of BC
and AB with force constants a and P. The trans-
formation equations from R1, R, to x1, x2 are'

Rewriting 6 (R„R2) with the help of Eq. (3. 15) as

2 (R„R,)= — — exp(-C, R, C, R2)—
2 C1(R, R2)

(maO
2

X -3 e-(C2+C3) R - Jif j
3 e

~0

2 2 /R) R2 R1R2-- j,
2 ~2 2~2

2/R2 R1 R)R2 -)
2 ~1 2~1

(3. 9)

(3. 10)

JJ „)2 (3C4R)R3) ZJ, ))2 ()C4R2R3),
(3. 19)

we can write the result directly from integral ta-
bles as

C3= p (((2/2M2+ o.')1,/2m2,

C4= o p. )/M2m2+ p p. 2/M2m, .

(3. 12)

The exponential function can be expanded as'

e '4'1"2-"=X'.: (-1)'(2Z +1)

where w1 is the reduced mass of BC, nz2 is the re-
duced mass of AB, M2 is the mass of B, and p, 1

and p. 2 are the reduced channel masses of arrange-
ments A +BC and AB + C, respectively. With Eqs.
(3. 9) and (3. 10) we can write the kernel as

h(R„R2) = R,R2(- 1) —,'C1 exp(- C2R1 —C3R2)

)(f,d(cosy) exp(C4R, R2 cosy) P~(cosy),
(3. 11)

where P~(cosy)=d00(cosy), and the constants C; are
defined as

C —((2 ~2p))2/2((3)' )( 1)

C, = (2 p. ,/2M2+P2p. z/2m)2,

~2(R„R2)=R, R,
4 C2+C3)

C
Ry exp — C2 —— — R1

O'C2+ C3

CqR1R2x 3~ . (3. 20)

This result is most interesting, for 6 has the
same form as h. We can therefore write the gen-
eral expression for LF,

& (R„R2)= R)A2C) exp(- C2 R1 —C3 R2)

x iJ(C4 'R)R2), (3. 21)

where we have the recursion relations for the con-
stants C; '

[C,"' being equal to C, of Eq. (3. 12)]:
(C(m-1))2 ~~

I 4(n(m-1) r (m-1))3i2 1
C2 +C3

'E'g (2 ) ((T/2z ) Ig 1 2(g) (3. 14)

I

x
2

)- IJ .,»(C4R,R2) P~, ( cso)y,

(3. 13)
where i~(z), defined as

( m-1) 2

( (m& C(m-1) (C4 )
2 2 4(n(m-1) ~(m-1)

)
t

C2 +C3
(m-1) 2

C(m) C(m 1) (C4 )
3 3 4(n(m-1) ~(m-1))C2 +C3

(3. 22)

is a modified spherical Bessel function of the first
kind and is defined in terms of Jz,«2 (2) for our
case as

4(~) = ()(/22) e '
~Z )g2(&e" ) . (3. 15)

Using the orthogonality relation

f', d (cosy) ~P. (c syo) P(cJyo)s= 26«,/(2 J+ 1),
(3. 16)

the kernel in Eq. (3. 11) is thus found to be

A(R), R2) = R&R2C(,exp(- C2R( —C3R2)i ~(C4R)A2) .
(3. 17)

To calculate K» as given by Eq. (3. 6), we begin
by calculating ~ in Eq. (3. 7),

6 (R1, R2) = f0 dR3 R2R(R32C,

(C (m-1&)2

4 2(C
'(m-1& C( m-1)

)2 + 3

lf &2(R„R2 ) 1s small, say less than unity for
all R, and R„ then Eq. (3. 21) is quite useful, for
we can write &»(R„R2) through Eq. (3. 6), re-
taining only a small number of terms which we
can write down immediately from Eq. (3. 21). We
know %22 since K22= K11, and the off-diagonal terms
of the inverse kernel matrix are

(R1 R2) K2) (R 1, R2) = h(R), R2) + 6 (R1, R2)

+ ~'(R„R,)+ ~ ~ ~ . (3. 23)

We can therefore write I' if the kernel is less than
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Substituting Eq. (3. 27) into Eq, (3. 28), we arrive
at the following set of equations for A (R2):

(5 —o„)A (R2)=h„(R2),
m=1

where

= J dR, k„(Rg)g„(Rg) .

(3. 29)

(3. 30)

For example, if we need only one term of the se-
ries for i~(z), then K»(R„R,) is (for d= 0)

K»(R&, Ra) = 6(R& —R2)

0 R(, R~ ~
,FIG. 1. Range is the overlap kernel &=&(R1,R2) for

a three-atom rearrangement process and the abscissa is
either R1 or R2. For the special case considered, i. e. ,
the ground-to-ground vibrational and rotational state
transition, the inverse kernel can be found exactly if 4
falls in the shaded area. See the text for an explanation
of the two overlapping parts of the shaded area.

K»(R&, R2) is written from Eq. (3. 6) as

K«(R„R2) = 5(R& —R~)

+ f dR3 LP(R„R3)K&,(R„R3) . (3. 25)

6'(R, , R~) can be expanded in a complete set
h„(R3), '

6 (R&, R, ) = Z g„(R,) h„(R3) .
n=1

If L behaves as the Gaussian in Fig. 1 (i. e. , it
approaches zero quickly as R, or R2-~), then we
need only a few terms in the summation in Eq.
(3. 26), which we can identify immediately from
Eq. (3. 24). Defining A„(Rz) as

(3. 26)

A„(R2)= J dRq h„(RS)K&&(Rg, R2), (3. 27)

K» then is written as

K„(R&,R2) = 5(R& —R~)+ Z„g„(R&)A„(R2) . (3. 28)

unity for all R1 and Rz, which is indicated by the
shady area in Fig. 1 below the horizontal line at unity.

On the other hand, if the kernel goes to zero
quickly as R, or R2- ~, as shown, for example,
by the shaded area under the "Gaussian" in the
figure, then we can use the fact that the kernel
can be made separable in this case to solve for
K;, exactly. We can expand i~(z) in a series as'

z'
I 3 6 "(2d+I) ' I|(2m+3)

( z2)2

2!(2Z $)(2J 5) )

C,'"R,Rz exp(- Cz R2 —C, 'Rs)
C' ')(&&/4(C&» C&»)~/2

(3. 31)
If the kernel falls anywhere in the shaded area

in Fig. 1, we are able to calculate K;~, and thus
I', exactly. Let us consider an example, such as
the rearrangement H+ H& H~+ H on the lowest
adiabatic electronic surface and with J= 0. The
constant y in the Morse potential for H~ in the
singlet state, U(x)=D, (1 —e """e'), where D, is
the well depth and r, is the equilibrium distance,
is given as 1.04 a. u. " We have used the ground
harmonic-oscillator wave functions for the vibra-
tional state of H, in our expression for 6, so we
expand U(x) to second order, equate it to the har-
monic-oscillator potential, and find that y and o.

are related in this approximation by the equation
~&= y'D, . We thus estimate ~ to be near Q. 38
a. u. and list in Table I the values of C', "' for a = P
= 0. 48, 0. 38, and 0. 28 a. u. [see Eq. (3. 22)].
The odd values of n appear in the series expres-
sion for K», K» [Eq. (3. 23)] and the even values
appear in the series expression for K&,, Kzz [Eq.
(3. 6)]. As we see from Table I, we need retain
only a few terms in the series expressions for K;,.
due to their rapid convergence. The kernel falls
into the shaded area beneath the horizontal line at
unity in Fig. 1.

As & and P are decreased, the Gaussian wave
functions for the internal vibrational states of the
two arrangements broaden, so that the amount of
overlap between them increases. In Table II we
see for the system of masses H+ H2- H2+8 that
when the value of n goes from 0. 130 to 0. 129, C',"'

no longer decreases as n increases. C2" and C3"'
decrease as & and P decrease, which we expect
from the form of a in Eq. (3. 20), i. e. , smaller
C~"' and C3"' mean larger 6 . The value of n= P
= 0. 130 for the mass combination H+ H2 seems to
be critical as far as the rapid convergence of the
series in Eq. (3. 6), so that the results of Eqs.
(3. 7) and (3. 20) are useful only for o.'and P above
that critical value. a'"' (R„R~), of course, goes
to zero as R1, R~-~ for ~, p below, as well as
above, 0. 130 since C2"' and C3"' are positive.
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4, 31x10 2

2. 25xlo s

1.ogx lo-'
3. 05 x 10 ~s

2. 42x 10"
1.53 x lp-s'

2, 56xlp"
1.74xlo 1

l. 55x lO1
l. 54x}0 i

1.54xlo 1

1.54xlp i

2. 56 x }0-'
1.74x }0"~

1,55x 10 1

1.54xlp 1

1.54xlp ~

l. 54xlo 1

4. 10 xlp 1

1.64x101
3.86 x 10 2

2. 40xlp s

9.38 x 10 g

l. 43 x }O-'0

n =P=0. 38

n =P= 0.28

3, 41xlo 2

2, 84x}0"
3„50x 10"5

6.36x}0s

2, 12xlo"
2. 36x }0-»

2. 51x }O-'

3.85 x 10-s

1.61x 10-4

3.37xlo '
1.4g x 1O-"
2. 90xlo 23

1.60x101
l. 09xlo i

9.Vox 10"2

9.63 x 10"2

9.63 x lp-'
9.63 xlp

8. 7}xlo 2

5. 92 x 10"2

5.27 x }02

5. 23 xlo 2

5. 23 x 10-'
5. 23 x 10 2

1.60x 10 1

1, pgxlp
g. 70x}02

9.63xlo 2

g. 63 x 1.0"2

9.63xlp 2

8. 7}xlp 2

5. 92 x }0"2

5. 27xlp 2

5.23 x 10
5, 23x}02

5. 23 x 10"

2, 57 x }0
l. 03 x }0"1
2. 42 x 10-'
l. 50x }0-s
5, 88x}08

8 ~ 97x1011

l.3g x}O-'
5.58x}0"2
1.31xlo 2

8. 1.7 x 10
3 19x}0-6
4. 87x1011

B. Semiclassical Form

TABLE I. C&"' t,Eq. (3.22)] are listed for the rear-
rangement process H+H2 H2+H to and from the ground
vibrational and rotational states of H2 for J=O. Different
sets of C&~' are shown for the values of the force constant
e of H2 set equal to 0.48, 0.38, and 0.28 a. u. (in com-
parison with the results of Ref. 17 for the potential-
energy curve of Ht, 0.38 a. u. appears to be the most
reasonable choice). It is seen that the convergence of
the series forE&& fEqs. (3.6) and (3.22)f is quite rapid
for allA~ and R& for the above values of n.

n C tn) C tn) C tn)
3 C tn)

dinates and momenta by stationary phase, we find

K;&(R&, Rz) to be a local operator. This means that
in the classical limit the contribution to exchange
occul s only when Rg =R2.

IV. DISCUSSION

%'e have shown how one can construct the in-
verse kernel, and thus P, for the special case of
the rearrangement collision of an atom with a
diatomic molecule A+ BC -AB+ C, restricting
ourselves to the ground vibrational and rotational
states of BC and AB but allowing the total angular
momentum to be arbitrary. Ne were able to do
this by considering the general form of P in Eq.
(2. 17). The construction of the inverse kernel is
very difficult except for special cases, such as
the one we considered. Our construction was
made particularly easy by the use of Gaussian
wave functions for the vibrational states of BC and

AB.
Although the form of P in Eq. (2. 17) is the most

general that we know of for molecular rearrange-
ments, it is by no means unique. P is unique only

TABLE II. C&"' are listed for H+H2- H2+H under the

same conditions as Table I, where it is seen that as a.

is changed from 0. 130 to 0. 129 a. u. , the series for Eo
no longer converges.

Continuing to restrict the rearrangement to a
single potential-energy surface, we go to the mo-
mentum representation, where P& and P, are the
generalized momenta which designate the initial
and final scattering states, respectively (for fur-
ther discussion of P, and Pz, see Miller' ). The
matrix element (P2 IP, ) is given in the classical
liinit as

"f4i~~ ~i)) "'
2'1MB ~P2 ~Py

(3. 33)

Since (P2IP, ) is the Fourier transform of the ker-
nel, "we can Fourier transform (PzIP, ) to obtain

siR, , R )=i2wki fdP, (dP, '/exp

x exp f4( Ri 1)
(3 34)

.K»(R„R2), for example, is written as

+11(R1 R2) ~(R1 R2)+ J dRS J dR4 ~(R1 R3)

x ~(R„R,) A„(R„R,), (3 35)

and when we perform the integrations over coor-

(3. 32)

where f4 is the generator of the rearrangement,
and
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in the asymptotic channels, and as long as P is
correct asymptotically, we are free to construct
it in the way most suitable for the system of in-
terest. One possible construction is to avoid the
nonorthogonality problem by choosing wave func-
tions of the same zeroth-order Hamiltonian to
describe reactant and product states. ' ' We con-
sider, for example, the three-body rearrange-
ment A+ BC-AB + C with the channel AC+ B
closed. The Hamiltonian for the system can be
written as

+ VAB+ VBc+ VAc+ VABc

where K is the kinetic energy, V» is the potential
interaction between A and 8, and V»c is the
three-body potential interaction. We designate g„
as the eigenfunction of Ho= K+ V~+ VBc, which
goes asymptotically to internal state i of arrange-
ment o(A+BC), and (8, as the eigenfunction of Ho

going asymptotically to internal state j of arrange-
ment P(AB+ C). Then the rearrangement, which
is a transition from g„ to g@, can occur only
through the residual interaction V~c+ V»c. The
projector onto open channels can then be written
as

pie, in a coupled-channel calculation on the equa-
tion

(PHP E)—P4 = 0, (4. 2)

where 4' is the total wave function, the above
choice of P is most likely poor if there are sig-
nificant long-range forces present.

The procedure of choosing some zeroth-order
Hamiltonian Ho is a familiar one in collision the-
ory. In nuclear physics Ho could be the shell-
model Hamiltonian. ' In molecular rearrange-
ments Ho could be chosen to be the Hartree-Fock
Hamiltonian, in which case the P, constructed as
in Eq. (4. 1), can be a projector onto the elec-
tronic space only. If P is defined more generally
as in Eq. (2. 17), then it does not necessarily
commute with a chosen Ho. However, the con-
struction of P as in Eq. (4. 1) can prove conve-
nient since it commutes with Ho.

'

As a final comment, P is not always needed ex-
plicitly. For example, the coupled equations for
open channels for rearrangements can be con-
structed without P, but the solution of the cou-
pled equations can be facilitated with an explicit
form for P.

where the summation runs over all energetically
accessible states. One must use caution, how-
ever, in choosing P in this manner. For exam-
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