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In a recent paper we briefly reported on the possibility of producing spin-polarized hydrogen
atoms through the charge-exchange reaction H +Xe H( S~/2) +Xe' ( P~/2). At proton energies
of 15 eV, spin polarization is implied by the preferential population of Xe'( P&/2) over Xe' ( P3/2)
and the preliminary two-state calculations presented earlier indicated that a high degree of po-
larization could be obtained. In this paper we shall give a more complete discussion of the
earlier work. In particular we shall describe the model. upon which the calculations have been
based, and the validity of this model will be examined. three-state calculations, which allow
for the population of Xe' ( P3/2), have been performed and these results will be compared with
the earlier two-state results. We have also calculated the polarization as a function of scat-
tering angle. It is found that the polarization varies rapidly with angle, owing to diffraction
effects, and at certain angles almost 100/p polarization is achieved.

I. INTRODUCTION

The production of spin-polarized particles con-
tinues to be of interest in many branches of phys-
ics and many methods have been proposed and

employed. ' All methods, except those which
depend on weak-interaction decays (which violate
parity conservation), achieve spin polarization
through the coupling of the spin vector of the par-
ticle to an axial vector whose direction is deter-
mined by the physical geometry of the experi-
ment. For example, in a Stern-Gerlach experi-
ment the spin of the particle is coupled to an ex-
ternal magnetic field, whereas in the Mott scat-
tering of electrons from gold nuclei the electron
spin is coupled to its own orbital angular mo-
mentum. In another method, proposed by Pano,
electrons are produced spin polarized through
photon absorption. Here the electron spin is in-
directly coupled to the circular-polarization vec-
tor of electromagnetic radiation.

The Fano effect is particularly interesting be-
cause it relies on a "leverage" mechanism' to
amplify the influence of the weak spin-orbit force.
We have recently pointed out another leverage
mechanism which acts in charge-exchange colli-
sions to produce spin-polarized particles. This
latter effect deserves further investigation be-
cause of the insight it can provide on the dynamics
of atomic collisions. It may also provide a prac-
tical method for producing spin-polarized par-
ticles. In the case of neutral atoms, such a
method mould be superior to the Stern-Gerlach
experiment which requires a magnetic field and is
unsuitable for producing fast spin-polarized atoms.
In this paper then, we shall give a more complete
discussion of the mork reported in Ref. 4.

Our attention is confined to the particular re-
action

H' +Xe -H( S,~2) +Xe'( P, ~2),

in which the incoming proton captures an electron
to form hydrogen in its ground state, leaving the
xenon ion in its first excited state. This appears
to be the simplest system for which spin polariza-
tion is likely to occur. The reaction is almost
resonant, the energy defect being only O. 17 eV,
whereas the energy defect for leaving Xe' in the
ground state (that is, the P, &2 state) is 1.47 eV,
more than eight times as great, and the energy
defect for any other transition is more than 8 eV.
One can estimate the proton energies at which
transitions to Xe'( P~~2} will be important by using
Massey's adiabatic principle. 6 This principle
states that the cross section for a particular
transition is appreciable only when the velocity
v of the incident proton satisfies the condition

v =a&E/h )

where a is the "adiabatic parameter, " a length
of the order of the atomic dimensions involved,
and &E is the energy defect associated with the
transition. Taking a to be 5 a. u. we find that
population of Xe'('Ps&, ) will not become apprecia-
ble until proton energies of about 1.8 keV, where-
as population of Xe'( P, ~2} is greatest for energies
near 25 eV. Evidently then, in this latter energy
range, the effect of the relatively weak spin-or-
bit interaction is greatly amplified under the
leverage implied by the adiabatic principle, which
requires a large relative population of Xe'( P, ~2)
over Xe'( P»2). The spin-orbit splitting be-
comes vital to the outcome of the collision and
this strongly suggests that the hydrogen atoms
will emerge spin polarized.

This idea vaguely resembles an idea proposed
by Schwinger for polarizing fast neutron beams.
The scattering of neutrons around 1 MeV from
He' may be described in terms of a broad J = —,

'
resonance corresponding to the ground state of
He'; the J = & state is at least 2 MeV higher in
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FIG. 1. Estimated diabatic curves for the important
states. The vertical scale represents the independent-
electron energy.

energy and calculations have shown that the neu-
trons may be highly polarized as a result of the
interference between the scattering from this
split resonance and the potential scattering of the
s wave. The analogy between Schwinger's method
and the method proposed here lies in the fact that
the scattering of the unpolarized incident beam
depends strongly on the spin-orbit splitting of two
levels.

In reaction (1) the orbital angular momentum
of the incoming proton provides the axial vector
to which the spin of the active electron is (in-
directly) coupled. Thus, the orbital angular mo-
mentum of the proton is coupled to the orbital
angular momenta of the electrons through the in-
teraction potential. The orbital and spin angular
momenta of the electrons are in turn coupled
through the spin-orbit interaction. Hence, an ex-
change of orbital angular momentum between the
proton and the electron distribution influences the
spin state of each electron. This will be shown
explicitly in Sec. II.

We have formulated the impact-parameter ap-
proximation to include the spin of the electrons
and we have obtained a set of coupled differential
equations similar in form to those derived by
Wilets and Gallaher' for the proton-hydrogen sys-
tem. The mathematical details of this formula-
tion have been presented elsewhere. Preliminary
two-state calculations, which were based on the
separated atom wave functions and did not allow
for intermediate population of Xe'( Pe~a), were
reported earlier and indicated that for protons
incident at 15 eV spin polarization occurred to a
significant degree. The inclusion of only two
states into the calculations can be justified for large

impact parameters by the rough sketch of the
diabatic curves shown in Fig. 1. In the molecular
picture, which is appropriate at low proton en-
ergies, the adiabatic curves govern the collision
and the chance of a transition is highest in the
region of a pseudocrossing between these curves.
Referring to Fig. 1, we see that the diabatic state
H+ Xe'( P3&2) will not influence the relevant adia-
batic curves in the region of the pseudocrossing
at R~. Hence, for impact parameters greater than
and near to B~, the two-state approximation should
be quite adequate, at least for the determination
of total cross sections. For impact parameters
near 8& and below we must take account of virtual
transitions to H+Xe"( P, & a), but we believe virtual
transitions to further states to be much less im-
portant since they lie much higher in energy.

On the basis of angular -momentum-coupling
rules, there are four final channels into which re-
action (1) may proceed. However, it will be
shown in Sec. II that an important selection rule,
arising from reflection symmetry in the scattering
plane, rules out two of these channels and also
implies that spin polarization cannot be obtained
along the beam axis. Certain intermediate chan-
nels are also forbidden by this selection rule.
Thus, if we allow for intermediate population of
the ground state of Xe' we need only consider an
additional four (rather than nine) channels.

The outline of this paper is as follows. In Sec.
II, we shall discuss the symmetry requirements
and derive an expression for the polarization frac-
tion in terms of the scattering amplitudes appro-
priate to reaction (1). In Sec. III, we discuss the
impact-parameter approximation and we define the
scattering matrix in this approximation. In Sec.
IV, we discuss the theoretical model and examine
its validity, and in Sec. V, we discuss some as-
pects of the numerical analysis involved in our
calculations. Finally, in Sec. VI, we present the
results of two- and three-state calculations per-
formed for protons incident at 15 eV. The scat-
tering amplitudes, and hence the polarization
fraction, are obtained first as functions of the im-
pact parameter. However, for practical purposes,
we need to know the polarization fraction as a
function of scattering angle. This is accomplished
using the method of Wilets and Wallace where
one performs a Fraunhofer integration over the
amplitudes. We have done this and the results
will also be given in Sec. VI. It is found that the
polarization fraction oscillates very rapidly with
the scattering angle and this is explained by strong
diffraction occurring in the scattering.

II. SPIN-POLARIZATION THEORY

To describe the collision we choose a fixed
orthogonal right-handed set of axes (xya) orientated
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so that the beam of protons is incident along the
x axis and scatters into the xy plane. The z axis
is therefore perpendicular to the scattering plane.
It is helpful to view the two collision partners as
two elementary particles, specified by their in-
ternal quantum numbers, which interact and ex-
change an electron via reaction (1). In the final
state of the system the total internal angular mo-
mentum" J may take on the values 0 or 1, on the
basis of angular-momentum-coupling rules. How-
ever, the Hamiltonian is invariant under a reflec-
tion of the internal coordinates in the scattering
plane and this leads to a selection rule which pre-
cludes J from taking the value zero. To demon-
strate this, we introduce the internal reflection
operator"

g -i,ffg ~

where 6' is the internal parity operator. We can
take the phase factor g to be unity if reflections
6t„and 6t in the yz and xz planes, respectively,
are consistently defined by

g $1fg ~(y g $$'gy
(p (4)

Then, if I JM) denotes an eigenstate of 5 and its
projection along the z axis,

6t,
l
JM ) = (-1)™'P

l
JM ),

and hence reflection symmetry gives rise to the
conserved dichotomic quantum number I'= (—1) "' .
Here P is the product of the internal parities of the
two atomic particles. In the initial state of the
system J equals zero, P is even, and there is
only one incoming channel, with I' fixed to be +1.
In the final state P is odd and since I' is conserved
M must be odd also. Hence M must equal +1,
so that J= 0 is ruled out, and there are just two
outgoing channels. In either channel the internal
angular momenta of Xe' and H are both aligned in
the same direction and, if a, are the final-state
amplitudes corresponding to M = a 1, the hydrogen
atom is spin polarized along the z axis (and the
xenon ion is angular rnornentum polarized to the
same degree) provided the quantity

I', = (lail'- i~ il')&(l~
I
"l~ il') (6)

is nonzero. There is no additional symmetry
which might require I a, &l to equal I a &I and we
can assert without further calculation that the hy-
drogen atom is spin polarized along the axis per-
pendicular to the scattering plane. The polariza-
tion is, in fact, greatest along this axis. For
let us take a, new set of axes (x'y' z') related to
the old set (xyz) by the Euler angles" n, P, and
y. Then if a„' (where M runs over the values —1,
0, and 1) denote the amplitudes referred to the
new frame, the polarization fraction P,' along the
z' axis is given by

J",= (I s,'I '-
I

. ',
I
')/I,

where the intensity J= la& I + la qj . The ampli-
tudes a& are simply related to a, & by the rotation
matrices Dz.„(nPy)and we can express P', in the
fol m

~ Pal~ + ~ Va I ~ ~qa] ~ ~Pa
S J

where p=D»(spy) and q=D, ,(npy). This expres-
sion shows that P,' vanishes when P= &w. That is,
no spin polarization can be obtained along an axis
lying in the scattering plane and this is easily
seen to be a consequence of reflection symmetry.
By differentiating the right-hand side of (8) with
respect to P, we can verify that P,' is maximum
when P= 0 and hence that the polarization is maxi-
mum along the z axis, the axis perpendicular to
the scattering plane. For the rest of this paper
we shall only consider the polarization along this
latter axis.

Before the collision takes place, the internal
orbital angular momentum L of the electron dis-
tribution is zero but finally L equals 1, so that
the proton must transfer some of its orbital
angular momentum to the electrons. We shall now
see how this influences the spin of the hydrogen
atom. Let M& be the projection of L along the z
axis. Then after the collision M& may assume
the values +1 or 0. Now if M& is zero the spin of
the hydrogen atom is as likely to be aligned as
antialigned along the z axis. However, if M& is
nonzero the spin of the hydrogen atom is aligned
or antialigned along the z axis according to whether
M& =+1 or -1. These results follow because the
xenon ion is in the P&& z state and because reflec-
tion symmetry implies M = + 1. Now exchange to
the state M& =+1 will not occur with equal prob-
ability to the state M& = —1. Hence the hydrogen
atoms must emerge spin polarized. The polariza-
tion actually depends on how the proton transfers
its orbital angular momentum to the electrons.
Although we have introduced reflection symmetry
into this argument, it must be stressed that this
is merely a simplifying feature and the only condi-
tion actually needed to imply polarization is that
the xenon ion is preferentially populated in either
the P~& 2 or the P,&~ state.

It is often more convenient to use amplitudes
which refer to the beam axis as quantization axis.
In this case we use a set of axes (x'y'z') orientated
so that the beam is incident along the z' axis and
scatters into the x' z' plane. This new set is related
to the old set (xyz) by the Euler angles u=O,
P= 2m, and y= &m. In terms of the new amplitudes,
b& say, where M now denotes the projection of the
total internal angular momentum along the beam
axis, P, may be expressed in the form
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&.= &&
I &0&il sin&/f, (9) DNA =MA, (13)

where & is the phase difference between b, and
Note that I b q I equals I b~ I and that, in the

linear trajectory approximation, bj would be zero
if the projection of the internal angular momentum
along the internuclear axis were conserved. It
has been demonstrated elsewhere' that such a
conservation rule does not even approximately
hold but it is clear from Eg. (9) that should b,
vanish, no polarization would be obtained.

We have assumed throughout this section that
only the 'P&&, state of Xe' is populated after the
collision. Our three-state calculations bear out
this assumption for proton energies of about
15 eV. At much higher energies the P, &2 state
of Xe' will also be populated after the collision
and the final amplitudes pertaining to transitions
to this state will be nonzero, so that the formulas
(6) and (9) for the polarization fraction take a more
complicated form. The generalization of these
formulas is not difficult and need not be dealt with
here.

III. IMPACT-PARAMETER APPROXIMATION

In the impact-parameter approximation the two
collision partners A and B follow classical paths
which we shall assume here to be linear, an as-
sumption which is justified provided the interac-
tion potential between the two particles is much
less than their kinetic energy. The internuclear
nuclear coordinate R may then be written in the
form

(io)

where p is the impact parameter and 0 is the
velocity of relative motion. The electron wave
function 0 is determined by the Schrodinger equa-
tion

~
84j —=xk,
8t

where the Hamiltonian X depends on the time t
through R.

To solve Eq. (11) we expand 4 in terms of the
wave functions g„ofthe separated atomic system.
These functions are assumed to be exact solutions
to (11) in the separated atom limit, and they there-
fore include the translational factors introduced by
Bates and Mccarroll. 4 The subscript n denotes
the quantum numbers J, M, I", and P and also
further quantum numbers needed to specify the
configurations of the two atoms. Writing

where 8 is the antisymmetrization operator, and
substituting this expression into (2), leads to the
set of coupled equations

where

1V„„=&/„lQ+ l g„),
~.„=& e„l6'

I ~ ~ —~
l q„),, (

(14)

lima„=5~ as t- - (17)

and the scattering matrix S is defined by the rela-
tion

(18)

Unitarity and time-reversal invariance impose
certain conditions on the scattering matrix which
provide invaluable checks on the programming
and numerical analysis of the calculations. These
conditions have been derived elsewhere and will
simply be stated here: Unitarity implies that

S'S =r (19)

and A is a column matrix with the expansion coef-
ficients a„aselements.

The fixed coordinate frames defined in Sec. II
simplified the discussion of spin polarization.
However, in any calculation it is most convenient
to employ a rotating set of axes, with origin at the
centre of mass of the nuclei, orientated so that
the quantization axis coincides with the internu-
clear axis. To be precise, we first define a fixed
set of axes (p, n, 8) where the vector n=8&& p points
out of scattering plane. The rotating set is then
defined with respect to this fixed set by the Euler
angles n = 0, P = 8, and y = 0, where & = tan ' [p/et].
It can be shown that in the rotating frame the
elements of M take the form

~..= &s.le'(~- - ~~;)~
I c.), (is)

where V» is the interaction between particles A.

and 8 when the system is in the state g„and0-„is
the projection of the internal angular momentum
operator along the axis perpendicular to the scat-
tering plane. Note that both the spin and space
parts of g„arequantized along the internuclear
axis. The term 88„-is the semiclassical limit
of K~ J/mB, where Ls is the orbital angular
momentum of the relative motion of A and B, J
is of course the sum of the internal angular mo-
menta of A and B, and m is the reduced mass of
the system. Thus 84„-describes the rotational
coupling of the orbital angular momentum of rela-
tive motion with the internal electron angular mo-
mentum. This term induces transitions between
states having different total magnetic quantum
number.

Let us suppose that initially, at time t = -, the
system is in the state specified by g, . The coupled
differential equations (13) are then solved subject
to the boundary condition
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and time-reversal invariance implies that

( I)MrMPtPg+Pgg
n1 n2 n2n1 (2O)

where the subscripts g and 5 refer to the xenon
nucleus and the incident proton, respectively.
Here X is the kinetic-energy operator for the
complete system, U is the Herman-SkiDman
single-particle potential for xenon, and the spin™
orbit term I;, ~ S;, is understood to be an opera-
tor with coefficient

1 1 dU

&ta &ia
(22)

The effect of this operator is accounted for by the
experimental binding energies. We have assumed
that the active electron moves in the same poten-
tial as the spectator electrons and we have ne-

IV. THEORETICAL MODEL

A. Description of Model

In forming a reliable model upon which the cal-
culations are to be based, we are guided by two
criteria. First, it is clear from the adiabatic
principle that accurate binding energies must be
used since the cross section for a particular tran-
sition depends crucially on the energy defect.
Second, since the collision is governed by the
adiabatic curves accurate wave functions and po-
tentials must be used. The first requirement can
be met by employing the experimental binding en-
ergies. The second requirement is more difficult
to satisfy since the only wave functions available
for xenon are those tabulated by Herman and
Skillman. ' The self -consistent-field calculation
from which these wave functions are obtained
(along with the single-particle potential) predicts
an ionization energy of 11.38 eV compared with
the experimental ionization energy of 12.13 eV for
the atom. The error of 6% in the approximate
ionization energy gives some idea of the accuracy
of the Herman-Skillman wave functions and poten-
tial.

In constructing the Hamiltonian for the complete
system we shall ignore the inner-shell and sub-
shell electrons of xenon. These electrons are
tightly bound" and we will assume that they do not
participate in the collision when the proton is in-
cident at a large impact parameter. Thus we
shaD only consider impact parameters greater than
6 a.u. In the outermost subshell of the atom there
are six 5p electrons, one of which is the active
electron, the remaining five being the spectators.
We shall antisymmetrize over all six electrons.
In the independent-particle approximation the
Hamiltonian has the form

glected relaxation of the spectators as the active
electron is removed from the xenon atom. Con-
sistent with these approximations, we have used
the same single-particle wave functions for Xe'
as we have for Xe. The effective charge that the
spectator electrons see near the nucleus should
not change much after the active electron has
been removed, but far away from the nucleus the
charge that a spectator electron sees must change
from + 1 to + 2. Hence the asymptotic part of the
Xe' wave function is incorrectly represented.
The discrepancy can be estimated from the well-
known solution of the Schrodinger equation for the
pure Coulomb potential which predicts that the
asymptotic radial wave function for a modified
Coulomb potential (which tends to a pure Coulomb
potential at la,rge x) should be

(23)1/ &28 ) 1/ 2 -(28)1/ 2r fn' 8

where c is a constant that may be determined
by using effective range theory and E is the bind-
ing energy of the electron in atomic units. The
ionization energy of Xe is about 0. 5 a. u. and of
Xe' about 0.75 a.u. Hence we are representing
the proper asymptotic form cx' 'e ' " for the
radial wave function of Xe' by ce ".

The interaction between Xe and H' is
6——Z—

i=1 +ib

and the interaction between Xe' and H is
5

U(~,.)+ p(~„)L 0 —Z —+-
6a 6a 6a

(24)

(26)

if we denote the active electron by the sixth one.
In evaluating M the spin-orbit term in (26) will,
of course, appear in both direct and coupling
single-particle matrix elements. In the direct
elements this term appears between hydrogen
wave functions, whereas in the coupling elements
it appears between a 5p xenon wave function and
a hydrogen wave function. The coupling matrix
element will be small since P(rs, ) is large only
for small x6a and the oscillations in the xenon
radial wave function cancel the contribution in
this region. The direct matrix element will also
be small if the internuclear separation is large
since the hydrogen atom is then far from the xenon
nucleus. Hence, at large impact parameters the
interaction between the spin of the outgoing hy-
drogen atom and its orbital angular momentum
about the xenon nucleus is not important, and we
have not included this interaction in our calcula-
tions.

To some extent, the distortion of the xenon
atom under the influence of the incoming proton
has been included in our model by allowing for
charge exchange. ' However, the charge-ex-
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change interaction decays exponentially with R,
whereas the actual interaction between the proton
and atom tends at large R to —n/R, where o.' is
the po1.arizability of xenon. This latter intera, c-
tion arises from the virtual excitation of xenon
and can be properly accounted for only by includ-
ing some of the excited states of the atom into
the calculations, a formidable task which we have
assumed to be unnecessary. We should note,
however, that because the adiabatic curves for
H'+ Xe and H+Xe'(PPq& p) are so narrowly separated
at large R, the excited states of xenon may sig-
nificantly shift the pseudocrossing between these
two curves. Nevertheless, we have calculated
that the term n/R is a factor of 10 less than the
molecular coupling between H'+ Xe and H+ Xe'

( P»p) and for this reason the general shape of
the adiabatic curves will not be altered by in-
cluding more states of xenon.

B. Summary of Approximations

There are eight approximations: (i) the linear
trajectory approximation; (ii) the approximation
that the center of mass of the system is at the
xenon nucleus; (iii) the neglect of the inner shells
of xenon; (iv) the independent-particle approxima-
tion; (v) the use of approximate wave functions
and potentials; (vi) the neglect of the relaxation
of the spectator electrons of xenon as the active
electron is removed; (vii) the neglect of the spin-
orbit interaction between Xe' and H; and (viii)
the inclusion of only two or three states, which
do not account for the large induced dipole mo-
ment of the xenon atom.

Most of these approximations have been dis-
cussed earlier. The use of the linear-trajectory
approximation at proton energies of 15 eV is as-
sumed to be valid for impact parameters greater
than 6 a.u. , where the average potential is weak.
In approximation (ii) we have taken the center of
mass of the system to be at the xenon nucleus since
the xenon atom is 131 times heavier than the hy-
drogen atom. Approximation (iii) needs further
discussion. The active electron cannot penetrate
the inner shells of the target because of the Pauli
exclusion principle but, since we have ignored
these shells in our model, we allow the active
electron to move arbitrarily close to the target
nucleus after it has been captured by the proton.
Now near the target nucleus the captured electron
moves in a strong attractive potential leading to
a spurious contribution, at small internuclear dis-
tances, to the molecular potential of the H+Xe'
system. To eliminate this spurious contribution
we must modify the hydrogen wave function so that
in the united atom limit it becomes the 6s wave
function of Cs'. Thus, in the united atom limit,
the wave function of the captured electron should

have five nodes, which minimize the contribution
from U inside the inner shells. We have not per-
formed any such modification since for internu-
clear distances greater than 6 a.u. the hydrogen
wave function barely extends into the target. W

are confident &hat, except perhaps for the use of
Herman-Skillman xenon wave functions and poten-
tials, all of the approximations listed above are
good for impact parameters greater than 6 a,.u.

Ip= fEp(ra) yes(r, ) e ' 1'pp(rp) d~a ) (27)

where A. = 1 and Eq and E3 are numerical functions
known only at the points of the Herman-Skillman
mesh. Replacing E, by —Ep in (26) and differen-
tiating I& with respect to X yields I2 so that is suf-
ficient to determine an algorithm for evaluating
ig.

Integration over the angular coordinates is
facilitated by the expansion

e'' " happ(rp)=ypp(r) ~ &r& ~

+b ir'm'

&f, (r„R)j,(vr, ) F,p(r" ) Y, (r ), (28)

in which we have used the multipole expansion of
e'"' and the well-known expansion of the Green's
function e "»/r, p. Here we have

a„.„.=4p[4p(2f+1)]"'(f)' y, . (v) (2O)

y, (r„R)= —~q, (f~r,)g" (f.~r,),

r& = min(r„R), r&-—max(r„R), (31)

j& is the spherical Bessel function, and h,
' ' is the

spherical Hankel function of the first kind. Per-
forming the angular integration we obtain

Ig = 5 b( ( C(l 'f 1;m Om) C (f '/1; 000) G(, . , (32)

where we have used the notation of Rose ' for the

V. NUMERICAL ANALYSIS

A. Charge-Exchange Integrals

The most difficult numerical problem encoun-
tered in charge-transfer calculations is the eval-
uation of integrals involving the overlap of the
initial and final wave functions. An ingenious
method for solving such integrals has been given
by Cheshire. ' However, Cheshire's method re-
quires analytical wave functions and is inapplicable
to the present problem. We shall describe here
another method which is most successful for low-
energy scattering.

We are required to evaluate the two integrals

Ig = f Eg(r, ) Ff„(rg)e""""p (1/rp) Fpp(rp) dr,
(26)
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Gii = f »(i')fi(~, ft)A (v~)i"'« (34)
0

The integrals 6, &
are evaluated by some standard

numerical procedure.
The triangular property of the Clebsch-Gordan

coefficients means that only terms where l =l' +1
will contribute to the sum in (32). Now if v is
small 6„.tends to zero very rapidly as l' becomes
large. This may be seen roughly as follows. For
large ~, lf,j i l is small and since Fi decays ex-
ponentially with i the integrand in (34) is effective-
ly cut off after a distance rp, where rp may be
chosen independent of I and I'. Now I Eif, l is
bounded by some B which is also independent of l
and $ and

(35)

Hence we have

1/2 3 gl
m Bro vro

» i
'

2(I +3)1'(I + )

showing that as l' becomes large G„.tends to zero
for all v and tends rapidly to zero if v is small.
It can be shown that the series (32) converges for
all v. For v equal to 0. 2 a. u. we found that it was
necessary to sum only the terms l' & 2 in the series
to gain at least three-place accuracy in I&.

B. Inversion of Normalization Matrix

In solving the coupled differential equations (13),
the complex matrix N must be inverted at each
integration step. The straightforward inversion
of N at each step is very time consuming and in-
stead we employed an iterative method, suggested
by Lipsky, which was found to be much faster.
Let f f» j denote the (unequally spaced) mesh of
time points over which the equations are inte-
grated, and let N» denote N(t»). We have

N» i=0 +C»)N» (37)

where

C, =(N„,-N„)N-,', (36)

and hence

N». i=N» (I+C») '
(39)

=N Z (-c,)'. (40)
J«0

Thus, knowing N&' we can determine N~&. How-
ever Np=I so that we do not have to perform a
single inversion. The diagonal elements of C, are
of order h.„=v(t»,i —f») and the off-diagonal ele-
ments of C, are zero when 0 corresponds to either

Clebsch-Gordan coefficients C(lil»lq, ' mim2m3)
and where

b„.=4(21+1)(i)' [~(2I'+ I)/3]'~'y, ',.(6) (SS)

the united or separated atom limit and are small
at other k. Consequently the power series in (40)
converges rapidly and we found it necessary to
sum only five terms to gain at least three-place
accuracy in the final iteration.

VI. RESULTS AND DISCUSSION

The many-particle matrix elements of M and
N were reduced to expressions in single-particle
integrals which were then evaluated numerically.
In the two-state approximation there were three
coupled differential equations to solve whereas in
the three-state approximation there were seven.
The integration of these equations was accom-
plished using the fourth-order Runge-Kutta meth-
od and all calculations were performed with the
IBM 360/65J machine at the University of Nebraska
Computing Center. The unitarity and time-rever-
sal symmetry of the scattering matrix is invali-
dated in our model by the expression (16) for the
matrix M, which depends on using the energy
eigenvalues of the approximate wave functions
rather than the experimental energies. Thus, in
order to test the calculations, we first used Her-
man-Skillman energies and after unitarity and
time-reversal invariance were confirmed to three
place accuracy we replaced the Herman-Skillman
energies by the experimental energies. Unitarity
no longer holding, we then found that the sum of
the direct and charge-transfer probabilities dif-
fered from unity by as much as 30/0 at a given im-
pact parameter. Hence, at each impact parameter,
we have renormalized the results by dividing the
final amplitudes by a common factor determined
to ensure that the sum of the probabilities be unity.

We have calculated total charge-transfer cross
sections for proton energies of 15, 300, and 1000
eV and our results agree well with the experi-
mental values measured by Koopman. At 1 keV
we find that the P&& 2 and 'P3& 2 states of Xe' are
about equally populated and the three-state approx-
imation yields a total charge-transfer cross sec-
tion of 29&&10 cm compared to the experimental
value of 30&10 '6 cm . The cross section remains
roughly constant down to 15 eV, rising slightly as
the energy decreases in accordance with typical
resonance behavior. However, at 15 eV we cal-
culate the population of Xe'( P3& 2) to be negligible.

In Fig. 2, we present the results of two- and
three-state calculations performed for protons
incident at 15 eV. Vfe have plotted the spin-polar-
ization fraction P, as a function of impact param-
eter p. Positive polarization corresponds to the
spin of the hydrogen atom aligned along the vector
k&&k&, where k& and k& are the initial and final
momenta of the projectile. At large p, P, is a
slowly varying function of p. As p is decreased
P, increases steadily to a maximum, P, ~ say,
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(ki/k;) If (8) I'
where

(4l)

and then begins to oscillate. This feature persists
at all proton energies although P, decreases as
the energy increases. At 15 eV, P, '" is about
0. 75 but drops to about 0. 30 at 1 keV. This drop
is to be expected since as the energy increases the
relative population of the P»2 and P3~3 states be-
comes smaller and the spin-orbit splitting is not
so significant. The sharp variation of the polar-
ization fraction with impact parameter, seen in
Fig. 2 below p=-7 a.u. , is typical of phenomena
which are sensitive to phase changes.

We have also plotted in Fig. 2 the yield of hy-
drogen, and this is seen to be considerable even
at large p. The discrepancy between the two- and
three -state calculations is perhaps surprising
since the three-state calculations reveal that, for
p & 6 a.u. , transitions to Xe' ( P3/2) occur with a
probability less than 10 . However, it must be
remembered that virtual transitions to this state
will influence the adiabatic curves and consequent-
ly effect the final amplitudes.

A method for calculating differential cross sec-
tions, once the amplitudes have been obtained at
all impact parameters, has been given by Wilets
and Wallace. '0 With the internuclear axis as quan-
tization axis, the differential cross section for
a transition into a particular channel with total
internal magnetic quantum number M is

5
IO

4
O IO
I-
O
LLJ

CO

o IO-CO

C3

2
LLI

~ IO

K
LLL

LL
LL

CI

I I I I I

2
SCATTERING ANGLE (deg )

I
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fM(e) = (-i) 'k~ cos'(-,'8) f pdpa (p)

x J„(k~p sine), (42)

and where 8 is the scattering angle and a~(p) is
the amplitude, calculated at all impact parameters
in the linear-trajectory approximation, pertaining
to the transition. At proton energies of 15 eV only
the P» 2 state of Xe' will be populated after the
collision and there are only two final channels
which can be reached. The differential cross sec-
tion for producing hydrogen is

I IG. 3. Differential cross section da/d~ forproducing
hydrogen at 15 eV between 1' and 5'. We have computed
da/d~ from the two-state amplitudes.

(48)

O ~
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I
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where the sum is over the final total internal mag-
netic quantum numbers of the system. Since k&

very nearly equals k;, we can take the factor
kz /k; to be unity. Note that lf, I equals I f& I and
that, in analogy with Eq. (9) (recalling that the
beam and internuclear axes coincide finally), the
polarization fraction is determined by the formula
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FIG. 2. (a) Probability for producing hydrogen at 15
eV and at impact parameters greater than 7 a. u. {b)
Corresponding spin-polarization fraction.

(8)'~ Ifofql sin&
(da/d CL)

(44)

where & is the phase difference between fo and f,.
We have computed do/dQ at 15 eV from the two-

state amplitudes and have plotted the results in
Fig. 3 for scattering angles between 1 and 5 .
In the limit of classical scattering a unique rela-
tion is obtained between impact parameter and

scattering angle. In this limit we require the
phases of the amplitudes a„(p)to change very
rapidly with p so that the stationary-phase approx-
imation can be applied to the diffraction integral
in Eq. (42). Referring to Fig. 8, we see that the
differential cross section diminishes with angle
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A general form for the projector onto open channels for rearrangement processes in molecu-
lar collisions is given. This form is investigated for two special cases of the three-atom pro-
cess A+BC-AB+C on a single potential-energy surface: (a) the rearrangement to and from
the ground vibrational and rotational states of BC and AB for arbitrary total angular momentum
and (b) the semiclassical limit of this form. The projector for special case (a) can be found
exactly under either of two limiting conditions, and for case (b) we find the projector to be a
local operator, such that in the semiclassical limit the process A+BC AB+C occurs only
when the distance from A to the center of mass of BC equals the distance of C from the center
of mass of AB.

I. INTRODUCTION

The unified reaction theory of Feshbach has been
applied extensively to problems in nuclear and mo-
lecular collisions. The general expressions in-
clude an operator P, the projector onto some or all
of the open channels and its orthogonal complement
Q= 1-P. Explicit expressions for P can be written
formally in a straightforward manner if the colli-
sion system involves only elastic or inelastic tran-
sitions. For instance, for the inelastic collision
of molecules A and B, P can be written as

where Q, is a product of the internal-state wave
functions for each A and B, and the summation runs
over all energetically allowed states P;. P is

uniquely defined in this manner to project onto all
open channels (corresponding to the states of the
system 2+8 at infinite separation). Q is thus
uniquely defined to project onto all closed chan-
nels.

The definitions of P and Q for rearrangement
collisions in a time-independent theory have pre-
sented somewhat of a problem in the past 10 yr.
This problem results from the fact that the ba-
sis set in one arrangement is not orthogonal to
the basis set in another arrangement. A P for
rearrangement collisions was first derived by Mit-
tleman and modified by Coz. The complexity of
this derivation led Chen and Mittlemans to derive
simpler expressions for P which, however, did
not account in general for possible recoil of the
target. Starting with the procedure of Ref. 6,


