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The angular distribution of collision products is expressed as a sum of incoherent contribu-
tions corresponding to different magnitudes of the angular momentum ] &

transferred to an un-
polarized target. For targets with a characteristic internal reference frame (e.g. , molecules)
the coefficients of this sum are interpreted as generalized 2~t-pole polarizabilities of the
target in its internal reference frame, analogous to the scalar and quadrupole polarizabilities
that determine the Raman effect. The theory is developed in the context of photoionization,
but is applicable to more general collision processes as well. It is illustrated by use and ex-
tension of diagrammatic techniques.

Theoretical expressions of the angular distribu-
tion of radiations from single-collision (or decay)
processes have repeatedly been given in terms of

the angular momentum j, transferred from one re-
actant to another. ' In view of the increasing role
of angular-distribution studies in atomic and mo-
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lecular physics, it seems worthwhile to identify in
what respects and by what procedures the theory
may be usefully developed in terms of j,. The re-
sults of this investigation appear equally relevant
to nuclear physics.

It will be shown that use of j, plays two separate
roles. First it simplifies the averaging over mag-
netic quantum numbers of reactants whose orien-
tation is not controlled or observed. A subsidiary
advantage is gained here in the frequent case that
a single value of I j, I is compatible with triangular
conditions. In this role the use of j, complements
but need not replace altogether a consideration of
the total angular momentum J of the system.

A second and more essential role is played by

j, in processes whose dynamics is properly treated
in a rotating (or body-fixed) frame, e. g. , in mo-
lecular processes or in processes involving non-
spherical nuclei. Here use of j, permits one to
eliminate Z altogether. Irreducible body-fixed
parameters of a collision, such as scalar and quad-
rupole polarizabilities, are classified by values of
the quantum number j, .

These two aspects are treated separately in the
following sections. For the sake of definiteness
we will refer to the photoionization process

hv(j„= 1)+H ('3Z'„N)- H2'( Z,', N')+e(l=1), (1)

which is treated in detail in another payer and
whose study motivated the present one. We shall
keep the formal development as general as we can
without undue complications, having in mind ap-
plication to more general collision processes.

As a by-product this paper presents a rather
straightforward derivation of the relevant angular-
distribution formula, which has a broad range of
application and is amenable to further generaliza-
tion. This derivation should make it particularly
evident that theorems of Yang3 on angular distri-
butions are wholly independent of assumptions on
the target structure and geometry, provided only
that the target is unpolarized.

The calculations of this paper are done analyti-
cally, as usual, but are complemented by diagram-
matic analogs drawn in accordance with a recent
article by Briggs, which we have extended slightly.
For qualitative purposes, the diagrams may give
a visual impression of the topological relationships
utilized in the analytical calculation. However, the
set of diagrams may also be regarded as constitut-
ing an equivalent self-contained quantitative cal-
culation. As a further illustration the Appendix
outlines a derivation of the final result of Sec. I
carried out in the spirit of the Briggs article.

I. LABORATORY-FRAME TREATMENT

trix element

(2)

Here I j„m„) indicates the state of a radiation in-
cident on a "target" system which is itself in the
state I j,m~), however, the orientation of the target
system has not been preselected and m& will have
to be averaged. Similarly (lm I represents the
state of the collision product to be detected, while

(ja m2 i' indicates the state of the "residue" whose
orientation remains unobserved, eventual summa-
tion over m~ being required. In process (1), N and
N' correspond to j~ and j&, respectively; the photo-
electron's spin, which remains unobserved, can be
regarded as still coupled in a singlet state with the
electron of the H~' residue.

This aspect of process (1) raises a point of gen-
eral significance for simplifying the treatment of
the matrix element (2). We define the states

I.j,m, ) and ( jama l'
, so as to include ill them all ele-

ments of the process whose orientation is not con-
trolled or observed, e. g. , the photoelectron's
spin in process (1). Should the matrix element (2)
be introduced initially in a different form, its
angular momenta can be recoupled to meet our def-
inition. We shall deal explicitly only with col-
lision processes whose matrix elements can take
the form (2), but we have also in mind equivalent
double-decay processes.

The scattering-matrix element (2) serves to cal-
culate the differential cross section for emission
of particles in a direction (8, p). The probability
amplitude for this emission is proportional to

QY, (8, P)(j~ma, Im ls I j~mq, j„m„),

where Y, is a spherical harmonic. The cross
section is proportional to the squared modulus of
(3) averaged over mq and summed over mz. The
essence of the angular distribution theory lies in
performing the sums over m quantum numbers
and in expanding the result into a sum of spherical
harmonics. The proportionality coefficient re-
quired to complete the cross-section formula will
be introduced at the end of the calculation.

We begin by working out the dependence of the
transition-matrix element [Eq. (2)] upon the quan-
tum numbers m. Invariance of colbsion processes
under space rotations suggests that (2) be expanded
into components corresponding to different magni-
tudes of the total angular momentum

J= j&+ j„=j~+l .

Thus we write, in terms of Wigner coefficients,

The probability amplitude for a reaction exempli-
fied by (1) may be represented by a scattering ma-

(j~m2 Imlsl jim~ j.m. ) =g(jam' Im
I
JM)
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FIG. 1(a). Diagrammatic repre-
sentation of Eq. (5). See Eq. (4.11)
and (4. 14) of Ref. 4. The minus (or

(b) plus) sign on the nodes of the diagrams
indicates that the momenta correspond-
ing to the lines emerging from the nodes
are coupled in clockwise (or counter-
clockwise) order. (b) Representation
of Eq. (7); 6-j symbol as in (4. 20) of
Ref. 4. (c) Representation of Eq. (8).

( J g I $(j ) ) J J ) (d) Representation of (j2 l I S(jt) Ijfjy),
2 t I r Eq (9) ~

I J
I

L

(c)

r
JM

J
= Ra~+in-i)'

jl

x(js&
I

S(&)
I jij.) «~

I jt mi j.m.) 5

(5)

where (js l I S(J) I j~ j„) indicates a submatrix of S
which is rotationally invariant and hence indepen-
dent of M. Figure l(a) illustrates this expansion
using the representation of Briggs. '

Consider now the angular momentum transferred
to the unobserved reactants (to molecular rotation
in our example):

3t =33-31=3

This momentum can be introduced in (5) by a re-
coupling transformation with the intent of joining
together on the one hand the angular momenta j1
and j~ whose orientation is not observed and on the

other hand the momenta j„and l which pertain to
observed variables. The transformation is repre-
sented analytically by'

(js ma lm
I
zjtf)(~~

I jt m» j m )

= ( - l)~ ~s + s~r (2~+ l)

x (js —ms, j,m, I j,mq —ma)

x (j,ms —m& Il —m, j„m„) . . . , (7)~Sa~
21&at

and diagrammatically by Fig. 1(b). Substitution
into (5) gives

(jsms ~m
I SI j,m„j„m„)
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x, (j,-m„j, m, Ij, m, -m, )

x(j, ma —my If —m, j„m,)

g( )j,

e'( ),
(s)

where [Fig. 1(c)] FIG. 2. Representation of Eq. (11). The sums over
m& and m2 are indicated by the joined j~ and j2 lines as in
(4. 15) of Ref. 4.

(9)
is a new type of invariant matrix represented in
Fig. 1(d). This matrix will be discussed in Sec.
II.

The square of the probability amplitude (3) con-
tains products of the matrix elements of S and of
its Hermitian conjugate

(jgma, Em
I
s

I j& mq, j„m„)
x (j,m„j„m„IS' Ij,mp, l'm'). (10)

In this expression the primed indices allow for the
occurrence of cross terms with different indices
(lm) and (f'm'); cross terms with (j„'m„')t(j„m„)
are excluded from this paper for simplicity. Cross
terms pertaining to unobserved variables are ex-
cluded by the problem formulation, that is, an es-
sential step consists of setting j,=j'„etc., and
summing over mj and ma. It is here that the re-
coupling transformation (V) pays off, since the
orthonormality of Wigner coefficients gives
(Fig. 2)

mg(j2 ma&m
I

S
I
jim' j.m.)(jim' j.m.

I
S

I jam' &'m')

=~~, (jism. —m
I

f —m j.m. )(ja& IS(j~) I j~j.)(jij.IS (j~) Ijaf )(l' —m', j„m„Ij,m„—m')5„„, .

Had we used the expansion (5) of the scattering
matrix, in terms of J, the result (11) would be
represented by a double sum over J and J' with
cross terms that are essential to the angular dis-
tribution, whereas we have in (11) a single "in-
coherent" sum over j, . The sums over J and J'
are actually hidden in the definitions of S(j,) and
S (j,). As anticipated, the sum over j, may reduce
to a single term owing to triangular relations, for
example, when j~ takes the largest or the smallest
value consistent with conservation of angular mo-
mentum. On the other hand, the j, expansion may
be wasteful when a single value of J contributes to
the transition, as for example in resonance phe-
nomena.

To obtain the cross section expanded in spherical
harmonics, we expand the products of harmonics
Y,„(8,Q) Y*,.„(8,P) in the squared modulus of (3).
However, we need only the formula for m' = m owing
to the coefficient 5„~ in (11). The expansion for-
mula is

Y,.(8, e) Y*, .(8, y) =(-1)"

x Z~(lO, l'0
I

kO) P~(cos8) (kO
I

lm, l' —m), (12)

and is illustrated in Fig. 3. Upon substitution of
this formula and of (11) in the squared modulus of
(3), there remains a single sum over m quantum
numbers which is carried out by a formula of Hacah
algebra, 7

~-(-1) (kO Ilm 1' —m) (j,m„—mI 1 —m, j„m„)

x (1' —m, j„m„ I j, m„—m) = ( —1)~&" ' ~ (2j ~+ 1)

illustrated in Fig. 4.
Combination of the results (11)-(13)yields the

desired differential cross section to within a pro-
portionality coefficient. To determine this coef-
ficient we must specify the normalization of the
continuum states I j„m„) and (fm I which form the
basis set for the scattering matrix. These states
are assumed to satisfy the so-called "outgoing-"
and "incoming-wave" boundary conditions, respec-
tively, and to represent a current of one particle
(or photon) per unit time incident on, or emitted
by, the target. The cross section equals then
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= v( j,+ I)+!(2ji+I) '~.,~., I ~I. I'~.«y)(j2ms im
I

&
I jim' j.m.) I'

&(2j + I) ik. (2ji+ I) ~i~i ~y, (jai
I

&(j~) I jij,) (jzj, I s(j~)
I j, I') o (j„j„m„, t I'; 8), (14)

where +„ is the wavelength of the incident radiation
(divided by 2w), and where we have introduced a
function

8(j„j,m„, it'; e)

( I)y, e„( i+1) (2i +1)
(2 1)4n.

xZ, . i" i", . (t0, t'0
I
k0)P, (cose)jt .

x (k0
I j„m„,j„—m„), (15)

which depends only on j, and on the quantum num-
bers of the observed radiations.

Note that the function 8(8) is simple for the low
values of quantum numbers which are often rele-
vant, in spite of the complication of its general
form (15). In the example of the reaction (1)
for which j„=t= t' = 1 and m„=0 (linear polarizatior
along z), only three values of the quantum number

j, are compatible with triangular conditions, and w

have

8(0; 8) = (I/12m) [1+2P3(cos8)] = (I/4w) cos'8,

0(1' 8)= (I/4~) [1 —P (cose)]

= (3/8v) (1 —cos 8),

0(2; 8) = (5/12m) [1+-', P~ (cose)]

= (3/8g) (1+ —,
' cos'e) .

(18)

,
=(-0 g k k k k

m=o,

LEGEND
= 0@08,$), = ~8 — = P„(cos 8)

FIG. 3. Representation of Eq. (12); spherical harmonics
are normalized here as Legendre polynomials.

Note finally that the angular distribution functions
8 include only finite sets of spherical harmonics
P~, limited by the triangular and symmetry condi-
tions under which the signer coefficients are non-
zero. These conditions imply the Yang theorems
on angular distributions. 3 The signer coefficients
in (15) depend only on quantum numbers of the in-
cident and emitted radiations, not on those of the
unobserved target. Nonzero values of the 6j coef-
ficient in (15) imply additional triangular conditions
which restrict the values of j, .

II. TRANSITION MATRIX IN BODY FRAME

Molecules, as well as most nuclei, have struc-
tural properties which are brought out by treating
their reactions in a body-fixed coordinate frame.
For simplicity we consider here only collisions
involving a diatomic molecule with initial and final
rotational states I j,m, ) and (j2m~ I. These states
are also characterized by quantum numbers & which
indicate eigenvalues of the angular momentum about
the internuclear axis. These quantum numbers are
usually taken to be non-negative —in which case they
correspond to the label Z, II, etc. , —but they must
then be supplemented by an additional quantum
number (plus or minus) which identifies the parity
under reflection on planes containing the internu-
clear axis. Here we regard ~ as positive Oz nega-
tive; thereby we achieve a formal simplification but
fail to establish selection rules based on parity, as
will be explained further below.

The rotational part of the initial molecular wave
function can be represented explicitly by writing

I x, j1m, ) =
I x1) D„"," (0, e, y) [(2j,+ I )/4v]' ',

(IV)

where I X,) indicates a state of the electronic and
vibrational motion in the body frame, (8, P) are now

coordinates of the internuclear axis, the third Euler
angle y of the body frame being set at zero. D
indicates a wave function of the symmetric top
which serves also as a matrix to transform ket
states from the body frame to the lab frame, A
formula analogous to (IV) holds for the final state
(A2 jam~I. The state I j„m,) of the incident radia-
tion can be expanded into body-frame states by a
unitary transformation formula which is also anal-
ogous to (IV) but includes a summation and has a
different normalization

I j„m„)=++ I j„~„)D&"„& (0, e, y) . (18)

The state (tm I of the collision product to be detected
is represented by an expansion analogous to (18).
[Note that the body-frame states I A, ) and (Z, I are
treated as independent of j, and j~, in accordance
with the Born-Oppenheimer approximation, but that
the quantum numbers j„and l are relevant to inter-
actions in the body frame. ]

Substitution of (IV), (18), and the analogous for-
mulas into an expression of the scattering-matrix
element (2) permits explicit integration over the
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rotational coordinates (8, t!)). The lab-frame matrix frame matrix element (Az, lk I S I X„j„X„)whose
element (2) is thus expressed in terms of a body- separate evaluation need not concern us,

w Q

dP
' sine de [D)U„) (0, 8, P)]~

4Q

x, „„[D&»(0, e, y)]* (), & &
I
s

I &» j.))..) D &&~&, (0, e, y) D'„"~& (0, e, y) (19)

To carry out the integration over (8, P) one may
sort out the product of four D functions into two

products of two factors each, and then expand each
product of two D into a superposition of single D
factors. After this "reduction" procedure, the
integral is given by the orthonormality of the D
functions. The point of interest to us lies in the
alternative ways of sorting out the four D factors
of (19) into two pairs [Ref. 1(c)]. If D'/i& and D'/~&

are paired, one obtains an expansion of

(A.,j,m„ lm
I
s

I
x~ jqm2, j„m„)

into contributions classified by the quantum number
J of the combined system, as in (5); if DU~) and
(D' &))~ are paired, one obtains an expansion into
contributions with the quantum number j„as in
(8). The two expansions are

(pajama, Lm
I sl &iji~i j.~.)=~~(j2tpER Lm

I
&ma+~)

( 1)2l-2/„(2j + 1)1/2 (2
~ + 1)1/2 j2 ll

~2 ~ ~2 ~ ~1 ~r ~1 ~r

x(z, ~ f&
I
S

I
&» j.&)5)& ~)& ), (~~)+m.

I j~~i~j~m)~;,
&

„(20)

(~,j,m„imlsl~ij&m„j„m„)= Z(j2 m2 j&m&ljtm1 ~8)
Sg

&&(j,m —m„l fm, j„—m, ) 5 Q ( 1)Q La+my m„+ -/y-2/z -(2j + 1)l/2 (2j + 1)1/8
X, X

j1
r

-I x ~ -'x
)). -x x '-x I

(21)

Comparison with (5) shows that the expression in
the brackets of (20) represents (zaj~ l!S(Z) I z, j&j„);
similarly comparison with (8) shows that the ex-
pression in the parenthesis of (21) coincides
with (Xaja l I S(j,) I )).,j,j„)to within a phase factor.
Thus we find the initial result that the matrix of
S(j,), to be used in the cross-section formula (14),
is obtained directly from the body-frame matrix
S. This avoids the by pass through S(J) which is
required by the defining Eq. (9). More specifical-

)+Ca+m, k ~&

FIG. 4. Representation of Eq. (13).

ly, the matrix of S(j,) is defined in terms of the
body-frame matrix by

(&a~a ~
I s(s~)

I &isis. )

j2 j1 jg l l j„j,
—&2 &g A2 —X) jl A, —A.„A.„—X

x(x„ falsi) „g„)).„)5, ~,, „,. (22)

The same formula can be obtained by extracting the
matrix of S(J) from (20) and substituting it in the
definition (9) of S(j,), after which the sum over Z
can be carried out analytically.

A more important result is that the dependence
of (22) on the quantum numbers j, and j2 of the mol-
ecule factors out. Thus the matrix of S(j,) can be
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&nt)] I,
g QI~( iP

X N~~(X,
k, k

k k~8k k

k keek k

((' (' k

st

(a)

(c)

ecule and l = j„=1 representing the dipole character
of the incident and scattered light. Two values of

j, occur usually, namely, j,=0 and 2; the corre-
sponding values of I M I

3 are proportional, re-
spectively, to the scalar and quadrupole polariza-
bilities of the molecule. Equation (24) may be re-
garded as a generalization of the polarizability for-
mulas to processes in which the incident and the
emitted radiation may be different, with arbitrary
multipolarity, and which need not be diagonal in
A.

&
and A,3.
Note finally that the factoring of the dependence

of S(j,) on j, and j2 is responsible for a well-known
sum rule, which gives a total angular distribution
in terms of body-frame parameters only, inde-
pendently of rotational quantum numbers. Sub-
stituting (23) into (14) we find that the cross section
depends on the target momenta j, and jz only through
the weighting factor'

(2 1) JR (1 2t
~ ~ ~

—Xg A.g A.g
—Xy

(25)

X (2it+~)
j~

which when summed over j3 equals unity. Thus one
obtains the cross section which is observed when
one fails to resolve the contributions of the alterna-
tive final states of a "rotational band", namely.

t/(2j + 1)+ Zt t ( ( km
l

(tf(l j jt) l &t)

= Z(2i, +l)
+Ijt

Ijt
+

s'

x(xtlM(E' J jg) l xa)8(j„j„~„,ll'; 8). (26)

This is the result one obtains in a fixed-nuclei ap-
proximation. '

FIG. 5. Outline of complete diagrammatic calculation.

expressed in terms of an intrinsic body-frame
operator M(lj„; j,), which is ind'ependent of molec-
ular rotation

( 1)2(1+/2 k2 (2j + 1)1/2(2j + 1 )1/2

(~~1M(f, j„j,) l~,), (23)

where

(~,
l
(ti(f, j„;j,)

l
~,) = Z (-1)"'~

)t, X

A.P y lX S A.g ~ jr g 5)k )t g )t . 24
r r

An example of this type of parameter occurs in
the theory of rotational Raman scattering by mol-
ecules. In this case we have X&= X, representing
the electronic A (or A) quantum number of the mol-

APPENDIX

The first equality in (14) constitutes a formal de-
finition of do/dw for the processes of interest, and
the second equality gives the final form of da/d~,
broken down into separate standard factors. Here
we shall obtain the final form from the initial one,
to within a phase factor, by the graphical procedure
of Briggs. 4 The procedure consists of representing
the initial definition of do/d& by a diagram and then
of breaking down this diagram into smaller ones
by a sequence of standard operations. Since a com-
plete procedure for keeping track of all phase fac-
tors graphically is not immediately available in our
context we omit such factors and the corresponding
graphical indications by arrows.

The initial formal definition dry/d~ is represented
by Fig. 5(a), which employs the spherical harmon-
ics symbols introduced in Fig. 3 and the coeffi-
cient

N, , , = v(2j„+ 1)y„(2j,+ 1) (2l+ 1)' (2l'+ 1) /4tt .
The summations over m quantum numbers are sym-
bolized in Fig. 5(a) by the joining of full lines where
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they cross the vertical dotted lines. The first step
of the calculation consists of "pinching" together the
pairs of lines (1, 1') and (j„,j„), as (j, , jz) are
pinched in Eq. (4. 26) of Ref. 4. Note that the
existence of open lines in Fig. 5(a) prevents ap-
plication of (4. 28) of Ref. 4, just as the existence
of a dotted line does in (4. 26) of Ref. 4. Figure 5(b)
shows the result of the double pinching obtained
using also our (12) and its representation in Fig. 3.
Here and in the following we represent implicitly
by the use of heavy lines some of the factors [j]
which appear explicitly in the Briggs equations.

At this point the central block of Fig. 5(b), which
contains the scattering operators, is connected to
the rest by two lines only. We can then apply (4. 28)
of Ref. 4 in which e represents our central block
and n' all the rest; (k, 0') correspond to (j, , jz).

The result is represented by Fig. 5(c), where the
closed diagram on the right has to be reduced fur-
ther.

This final reduction is achieved in two steps as
shown in Fig. 5(d). The first step consists of
pinching the (j» j2) lines into a single j, line, ap-
plying (4. 26) of Ref. 4. The second step consists
of a, twofold application of (4. 30) of Ref. 4 in which
one "pinches off" a set of three lines, namely,
(j„,j, , l) in one case and (j„,j, , E') in the other
where they intersect the dotted lines.

The resulting 6-j coefficient [e.g. , (4. 20) of
Ref. 4] and 2j, + 1 factor are included in the function

8(j, ; j„m„, 1 l'; 8) with the other elements of the
diagram. The two remaining blocks represent the

S(j,) and St(j,) invariant matrix elements on the
right-hand side of (14).
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The electron excitation of the sodium resonance lines (D lines) has been measured in the
energy range from threshold to 1000 eV. The electron-beam full width at half-maximum was- 3 eV, and the sodium-beam optical depth was small and varied. After correction for minor
cascade contributions and the measured polarization, the excitation function has been normalized
to the Born theory in a high-energy limit where the energy dependence converges to the theo-
retical behavior. The resulting normalized cross section and the polarization are in excellent
agreement with recent close-coupling calculations for the energy region from threshold to 5 eV.

I. INTRODUCTION

Despite the relatively simple electronic struc-

ture of sodium, various theoretical calculations
of the electron excitation cross section for the Ss-
3P transition have differed considerably. Pre-


