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A many-body optical potential Z which has been demonstrated to give excellent electron-
helium elastic scattering cross sections is analyzed. It is shown to encompass, yet be more
general than, almost all previous model potentials used in electron scattering and Rydberg-
state calculations. A partial semiempirical form of this potential is achieved. It is shown

how Z can be computed by methods of variation-perturbation theory.

I. INTRODUCTION

The recent numerical results for the properties
of the helium system by Yarlagadda et a/. ' show

the high physical quality of the optical potential Z,
the response A, and the Martin-Schwinger one-
particle Green's function G, which were computed
self-consistently in the generalized-random-phase-
approximation (GRPA) method postulated by
Schneider et al. (This paper will be referred to
later in the text as STY.) These quantities immedi-
ately yielded, in simp/e calculations, highly accu-
rate elastic scattering cross sections, ionization
energies, generalized oscillator strengths (hence
Born inelastic scattering cross sections), ground-
state energies and properties, frequency-depen-
dent moments, and moderately accurate excitation
energies. In a sense these properties have all been
calculated simultaneously.

The general purpose of this paper is to study the
functional form of Z given in STY (upon which the
calculation of Yarlagadda et gf. is based).
(Throughout this work we are implicitly assuming

that the functional form of the STY optical potential
is more correct than the GRPA method that is used
in the calculation. ) This functional form consists
of three terms [Egs. (4. 6) and (4. lla. ) of STY]:
the Hartree-Pock term, the direct polarization
term Icontaining the two-point response function

A(32, 3'2')], and the exchange polarization term
[containing the three-point response function

B(32, l'"2')]. In particular we shall seek (i) ways

of using semiempirical data (on frequency-depen-
dent moments and adsorption coefficients) in con-
structing Z, and from Z, the aforementioned
properties; (ii) alternate methods of computing Z

using the excellent variation-perturbation methods
of Karplus and Kolker, 3 Yaris, ' and Dalgarno and

Epstein; (iii) to demonstrate and interpret the
relation of this Z to the multitude of optical poten-
tials used in elastic electron-atom, -molecule
scattering calculations, in the determination of
Rydberg states of atoms (molecules), and for the

core pseudopotentials in solids (Bethe, ~ Temkin, a

Mittleman and Watson, Lippman et g/. , Laaahn
and Callaway, "' Khare and Shobha, ' Kestner
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et a/. , ' Eissa and Opik, "and Opik, ' 7). (E.g. ,
if one starts the iteration of STY with Li-atom HF
orbitals, one gets properties of the Li-atom,
ground-state, and e-Li scattering data from the
Dyson equation; excitation energies come from the
RPA; Z is the optical potential. If, on the other
hand one starts with the HF states of the Li'ion,
similar statements can be made, but one can also
say that the discrete particle states will represent
Rydberg states in the field of the energy-dependent,
nonlocal potential of the Li' ion. Here Z contains
the core polarization potential as mell as the effec-
tive scattering potential. )

It shall be shown in this paper by one simple ex-
pansion (Mittleman and Watson ) that the present Z
encompasses the work of a large number of authors
on optical potentials and pseudopotentials.

The above optical potential will be demonstrated
to give completely Bethe's, LaBahn and Calla-
way's, ' and Castille~o et al'. 's' potential in the
adiabatic limit, with a slight modification ("cut-
off") Temkin'ss theory.

The "orthogonality" potential of Lippmann et al.
is also obtained in the adiabatic limit. The first
nonadiabatic correction is derived in the form
given by Mittleman and VVatson, LaBahn and Calla-
way, ' Kleinman ef, a/. , Dalgarno et gl. , Khare
and Shobha'3; the associated orthogonality potential
is likewise obtained. Additionally the nonadiabatic
(and orthogonality) correction will be derived for
the exchange polarization potential (this for the
first time).

This optical potential can be used for electron
scattering, for Rydberg orbitals of an atom, mole-
cule, or ion, and also for the description of the in-
teractions of valence electrons with the core in
solids or in molecules (e.g. , impurity scattering
in solids). (In this paper for simplicity we deal
only with closed atomic shells. Extension to other
systems is tedious but not in principle new. )

As said, the here-contained analysis will allow
the partial semiempirical form as well as the use
of alternate (e.g. , Yarlagadda et al. ') methods of
computing ZGppA These alternate procedures are
not necessary to use the theory but can be conve-
nient and theoretical unifying alternatives in many
problems.

For those more familiar with the diagrammatic
perturbation form of many-body theory (Kelly, '
Pu and Chang, Dutta et al. ) it might well be
mentioned that after iteration (renormalization)
almost all important diagrams needed in the com-
putation of the above-mentioned physical properties
are represented. The difference as seen in Yar-
lagadda et ~l.' is that they are combined and
weighted according to a highly physical idea. This
idea is that for the calculation of small variations
in Z one can replace pZ by OZ„F (superscript E

na ~ n &up
drs V(r, - rs) X""(rsrs)

drs V(rs —rGX (rsrs)fs(ri)f. (rD

1+Z-., J ~+(d. —
~&g

x~ drs V(rs —r,')X"*(rsls)g,.(r, )g,*(r,'),

where = E Ep is the excitation energy of the
target system, and

X"(r, r') = (0l y'(r)tp(r')ln ) (2)

as defined by formula (AGa) of STY; f,(r) and g&(r)
are, respectively, the "particle" and "hole" Dyson
orbitals with energies q~ and q, ,

fs(r) = (0, l
«r)l)'s. .i& g;(r) = (~. ~le(r)l 0.&,

/+1 N—Ep E N EN-1
0 j

as defined with formula (A2) of STY.
It can be shown (Ref. 24) that if 10„& is an S

state (e.g. , closed-shell target) then X"(r, r) can
be factorized into a radial and angular part in the
following may:

x"(r, r) =x"'(~) r,„(r),
where IM are the angular momentum quantum num-

indicates the fact that only the functional form of
Z» is used). The orbitals contained in Z are com-
puted self-consistently and treated as unknowns.
This approximation is known to give excellent re-
sults in atomic and molecular frequency-depen-
dent-moment calculations, and its first iterate is
called coupled time-dependent Hartree-Fock the-

. Ory.
The plan of the paper is as follows. In Sec. GA

an angular momentum analysis of the optical poten-
tial is achieved. In Sec. IIB the radial part of the
optical potential mill be related to moments and
shielding transition integrals. Section II C will
use Secs. IIA and II B and express Z in a form ex-
plicitly showing the moments, shieldings, and be-
havior in the limits of the range of the radial vari-
able. Section III discusses the exchange potential
and Sec. IV relates Z to previously published the-
ories.

II. ANALYSIS OF MRECT POLARIZATION POTENTIAL

A. Angular Momentum Analysis

The direct polarization potential [the second
term in (4. 6) and (4. lla) of STY] of STY can be
written in the form [essentially the first two terms
after Z» in (4. 11b) of STY]
Zdtl' gol (r r I . ~)
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bers of the state l n) and n are all additional quan-
tum numbers.

The Fourier transform of X"(r, r) is defined as

X"(q) = J e'O' "X"(r, r) dr . (5)

One can prove that (see Csanak et al. ,
o p. 805)

X"(q) can be written in terms of wave functions as

x"(q)

N

=Z J (0(r, ~ ~ ~ r„)e'0'pl p„(r, ~ ~ r„)dr, ~ ~ ~ dr„.
(8)

[This quantity is called the inelastic scattering
form factor (Inokuti, p. 299), and it plays an im-
portant role in the electron-atom inelastic scatter-
ing at high energies, where the Born approxima-
tion is valid (Schneiderov). (Therefore, it is
called Born amplitude also. ) In the high-energy
region I X„(q) I "gives. the conditional probability
that the atom makes the transition to a particular
excited state n upon receiving a momentum trans-
fer hq

" (Inokuti, m p. 299). X„(q) is related to the
generalized oscillator strength (GOS) introduced
by Bethe with the formula

f„(q)= ~ Ix.(q)l';

potential (in atomic units),

elO 0"-8)

2v J
Eq. (12) gives [with the definition (5)]

V, „(r)=, dq ~ X"(q),
2g g q

(14)

which in turn gives via (8) (using the partial wave
expansion of e '0'

)

vo„(r) =- (- i)' dqj (qr)x" (q)Y „(r) . (15)

v, „(r)= (- i)'v, „,(r)r, „(r-) . (17)

It has been proven (Ref. 24) that for an S ground
state the Dyson orbital can be angular momentum
factorized in the form

4 0

An angular momentum factorization of the transi-
tion potential has been achieved.

Introducing the radial part of the transition po-
tential with the definition

i0 OO

vo „,(r) -= d—qj, (qp. )x"'(q),
ko

Eq. (15) gives

x"(q) = x"'(q)I;.(q),
where

(8)

(q) =4vi J' r jl, (qt)X (r)'dr .
with jL a spherical Bessel function of the first
kind (Abramowitz and Stegun, p. 487). In terms
of wave functions [using (8) and (7)] we find

X (q) =, X"(q)I'~„(q) dq

(9)

here E„ is the excited-state energy and Q= il q'/2m
is the transferred energy. (Concerning the prop-
erties of GOS, see e.g. , Inokuti. )J

Using the partial-wave expansion of e'0' " in (5)
(see e.g. , Bransden, oo p. 10), and factorization of
X"(r, r) in (4), one obtains

fj,(r ) =f„, (1') &, „(r),
g, (r)=g„, (l) Y, .(r) .

Then (1) gives, using the addition theorem for
spherical harmonics (Messiah, p. 10V5),

gdlr pol (r r & . Z)

VOOI(P 1)VOOL. (1 1)f (~ )f4
( )

n: COL ~ »
nkk nkk

n nkk
nkl k

2L+I („-,
)

2l„+I (. -,
)

vo;i( 1)vo.-l, ( 1) (~ )
*

( )g,.»,. &1 g'n, l,. &1
nL ~+ &aL &n~l~

n ~ » ~

2K+1 „„,2ly+1
X P~ (r", ~ r",') P,, (r"1 ~ i,') .

4m

(18)

=4vi Z yg(rl ~ r„)j (qr, )I' „(r;)

x &„.(rl ~ r„)dr, ~ ~ ~ dr„. (10)

Using (8), (V) gives for the GOS

foz(q)=
q

IX"'(q)1' 4„
The direct polarization potential, Eq. (1), con-
tains X"(r, r) in the form of

Vo„(r)= fdr' V(r —r')X"(r', r'), (12)

a quantity called the transition potential (Inokuti,
p. 307). Using the Betheoo form of the Coulomb

Expressing the product of Legendre functions in an
expansion of the same functions (Messiah, p.
1057) (19) gives

gdlr pol {r r~ ' Z)

I (+1) RVLO(+1) f ( )fP
( )

nL Z —h)L —6 l
nkrk 1 nkrk 1

n nkk
&k»kp»

1{L,I,001 «&I'P, (~1. ~1)

VOOL (+1)Vo L(+l)
(+ ) 0 (+ )g'n;l; &18'n~»~ &1~+ &nL —~n
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~', " ',""
I «l;OOI l0&l'& (~

(20)
where the Clebsch-Gordan coefficient has been in-
troduced with the notation (l~lom)moI LM) (see
Ref. 31). An angula. r momentum resolution of the
direct polarization part of the optical potentia, l has
been achieved. (This type of expansion is valid
generally for atomic systems with S type of ground
state; for molecules and non-S ground states the
methods are generalizable but lengthy and will be
presented as called for by their application. ) For
the calculation of the S-wave phase shift, l = 0 has
to be chosen and the radial equation should be
solved. If 1 = 0 is taken, then L = l, (or L = ft)
gives the only nonzero contribution. In this case
the I.= l„=1 is called the dipole part, I.= /~=2 the
quadrupole part, etc. , of the optical potential.

q values. The mathematical reason that the Taylor
series diverges was pointed out by Lassettre, who
used an independent particle approximation for (i)o

and (i„ in E(1. (10). By dividing the radial integra-
tion region to internal and external parts, he ob-
tained for the external part the form [see Las-
settre, Eq. (14)]

X."'(q) = f SoS;ii « (21)

(So, S-„are the radial parts of the one-particle or-
bitals) where in this external region S(-y't ie- ("

is a good approximation, and 1/n, is the average
radius of the ith state (i=0, tt) T.aking the asymp-
totic form for jL and using Euler's formula for the
trigonometric function, he obtained

f S S„q dr=(a~q) (e ' 'toF' e(" oF—),
(22)

where
B. Analysis of Radial Part of Transition Potential into

Transition Moments and Shielding Integrals
F+ f 8 (iq a)rd-&

'C (23a)

In the following, the 1.=0, 1, 2 case of the
Vo«(w), the radial part of the transition potential,
will be considered. It was mentioned in the Intro-
duction that a major aim of the present analysis is
that of relating the optical potential to quantities
that are used in spectroscopy and can be measured
directly or can be calculated with accurate methods
of quantum chemistry. This program originated
from Bethea who introduced the Taylor-series ex-
pansion of X«(q) around the origin, by expanding
the j~(qr, ) Bessel function into Taylor series be-
hind the integral sign in E(1. (10). The first coef-
ficient in this expansion is the multipole oscillator
strength, a fundamental quantity in spectroscopy;
the other coefficients are called hyperoscillator
strengths. (These (luantities will be introduced
later. ) From E(1. (16) it is obvious that the long-
range behavior of the transition potential Vo„-t (r) is
mainly effected by X"~(q)'s value around q= 0 be-
cause of the oscillatory nature of jt; (q)') for large qx.
Therefore, an accurate representation of X" (q)
around q = 0 gives the proper long-range behavior
of Vo«() ) (Inokuti, oo footnote on p. 307). However,
the Taylor-series expansion cannot be valid for
large q (i.e. , for small ~ in the transition poten-
tial). The physical reason for this can be seen in
two ways. First, as pointed out by Inokuti,
X" (q) h(ts to decrease rapidly because the elec-
trons cannot obtain arbitrary momentum: "Their
momentum cannot fluctuate excessively beyond a
limit set by their binding. " Second, the Taylor-
series expansion physically means the substitution
of the effect of the test charge by the first- and
higher-order effects of multipole fields. However
when the test charge penetrates the system (small
r, large q) this physical model is not applicable,
and therefore the Taylor series diverges for large-

F =f Pe"" )"dr
C

(23b)

I/no+ I/no 1
~ n = no+ (24)

F ' (F ) has a singularity at q= —in (in). Now, the
divergence of the Taylor series for large q is due
to the fact that the X" (q) has singularities on the
imaginary axis at q =+ iz, and therefore the radius
of convergence of the Taylor series is z.

Paraphrasing for our problem the work of
Lassettre, ' we can introduce the representation for
X"~(q):

X«(q)= (aiq) (e («E+-e(t'r E ) (26)

x (()„(r, r„)dr, dr „.' (26)

From Lassettre'ss work it follows that E' ' has
a pole at q = —ia(in), F ' ' being the "external"
part of the integral in g' '.

Now, by introducing the variable transformation
u= q/(q+ in) in E' and u= q/(q —in) in E, the Tay-
lor-series expansions

E'=Re„u", E- =Z e„u" (27)

will converge for all physical values of u (u).
The problem is now twofold. One is to express

our e„ in terms of multipole oscillator strength,
hyperoscillator strengths, and/or moments of

using the jt, (x) = —,'[h~")(x)+h~( )(x)] identity, where
ht'. '(x) and ht', '(x) are the spherical Bessel functions
of the third kind (Abramowitz and Stegun, so p. 443),
and the notation

+ (i )-(e it /roEr+(-)
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F„,(q) = &v(1 —v)'(1+Z„a„u"),

for L, =l (Vriens)

&~(q) = &(1 —v)'(1+Z„f „v"),

for L=2 (Vriens)

F„„(q)= Cv(1 —v)' (1+Z„c„v").

(29)

(30)

(31)

In these expansions, fitted from the helium and hy-
drogen data, the first factor is dominant, and the
other terms are corrections to it. Guided by Las-
settre we now drop in the sum over v all but the
first two terms for the L=1 case and all terms for
other L's (L=O, 2). Our aim is to obtain the e„
coefficient in (27) from the (29)-(31) series. [We
note that the parameter o., defined in Eg. (24),
physically denoting the average inverse radius of
the ground- and excited-state orbitals, depends on

This dependence is not strong, and Lassettre
points out that "to effect the fact of convergence an
error of more than 100% must be made in the esti-
mation of n2." By considering 0. independent of n
we will not commit an error of that magnitude. ]

X"i(q) such as

f q'x~ (q) dq, (23)

which gives rise to shielding oscillator strengths.
(For more detailed explanation see later in this
section. ) (These integrals appear in shielding con-
stants. ) When this is accomplished, one can en-
vision external electron "seeing" moments and
hypermoments and an internal one probing velocity-
dependent electric shieldings due to other elec-
trons. This is an ideal physical picture for a one-
particle theory. The second problem is the rela-
tion to Lassettre's theory. Lassettre32 has stud-
ied the GOS and proved that it has a pole at q2

= —n . Using the v=q /(q~+ n ) variable transfor-
mation he obtained a convergent Taylor-series ex-
pansion for the GOS in terms of v for all physical
values of v. Now, by using the expansion (27), the
Lassettre expansion for the GOS can be recovered,
and as such it relates our e„'s to his expansion co-
efficients. Bather than develop a cumbersome
notation for expressing all e„'s in terms of Las-
settres's expansion coefficients, we will follow the
strategy of working out in detail those terms which
we claim to be physically important. In this we
shall retain sufficient terms in the X" (q) expan-
sion to reproduce the minimum number of terms
in the GOS expansion that Lassettre and Vriens33
find sufficient to fit the known helium and hydrogen
data. If experience tells us we need more terms
it is then a simple matter of algebra to go further.
In practice, Lassettre and Vriens considered a
rearranged form of the series for F„~(q):

for L=0 (Lassettre)

Following what we find above, the following formu-
las are obtained for the form factors (from now on
we use n instead of v,):

2

x (q)-=x"'(q)=~„, ,q .. ."(o +q) (32)

S
X"'(q)-=X"'(q)=p„( 2, g)g +X„( 2 3)4, (33)

x"'(q) -=x"'(q) = a„a 2 a (34)

From these expressions one can get, using Eq.
(11), the Lassettre-Vriens expressions for the
GOS through the terms retained, as discussed
above.

We now give two methods of specifying the pa-
rameters 5„, p„, y„, and &„ in terms of physical
quantities. Both methods are equivalent if the ex-
act series (27) would have been used, but one meth-
od can be favored when either physically measured
data of varying physical quantities are available
or when in a practical computation one intuitively
feels that it is worthwhile to sacrifice short-range
(long-range) accuracy to obtain better long-range
(short-range) accuracy.

The first method stresses long-range properties.
Taking the q-0 limit, Eqs. (32)-(34) give

x"'(q)- sq' (35)

x (q)- q+ q' — " q' (36)

x"'(q)- Sq'. (37)

Now we identify the parameters by using the exact
Taylor-series expansion of X" (q) around q=0
(Ref. 23):

(33)

where X„~"s are the spectroscopic multipole oscil-
lator strengths. The oscillator strength is ob-
tained for x= L and [from Eg. (10)]

4
Xni =1.3.. . (2L~1) ~ &f(ri rg)+) 1'iu(r))

)=1 y

x g„(rq ~ ~ ~ r„)dr~ ~ ~ dr„. (39)

For L = 0 the monopole oscillator strength is ex-
actly zero. For L=1 the dipole oscillator strength'
is obtained:

D =-X"'
e el

N

=3+vi Z (t)(~)(r, r„)r,r„(r,)
~=i

&0 (ri ' ' ' rz)]dri ' ' ' drg (40)
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For L = 2 the quadrupole oscillator strength follows
as

field at the nucleus due to the effect of a moving
test charge to the electric field at the nucleus due
to the external charge alone. (For the definition
of static shielding, see, e.g. , Dalga, rno. )

Finally, we have, in the first scheme,

xrir (r, ~ ~ r„)dr, ~ ~ ~ dr„. (41)

For g= L+2, the first multipole hyperoscillator
strength is obtained. This is, for L= 0, the
monopole hyperoscillator strength is

(47)

8 3
(48)

Q qx"'(q)=F
2( 2 )2

Q q Q gX"'(q)= . ( 2, 2)2+&n 6( 2„2)4

N

Frr n0 2 ~ ~ ~0 &rl rrr)&r' F00(&i)
(2) 4 ~

l
+ r 2

i 241

XSn(r1 ' rrr) dr1 ' ' drN ~ (42)

For L= 1 the diPole hyperoscillator strength is

.=Xn1'=-n V, lZ ' e0(r, . r~)1', y10(r, )

x g„(r, r~)dr, dr„. (43)

8 2
XnD( ) 'nn 2( 2 + 2)4

in the second scheme (48) is substituted for by

Q' 6 3

x ()=Dn (n2+ 2)3 n (n2+ 2)4

16Q q
n ( 2+/)4 ~

(48)

(50)

These quantities are calculated or measured in
spectroscopy. Consequently, the following identi-
fication is made:

P„=n D„,

yn=8 Q Hn+» Dn r

q„= —,n Q„.8

(44a)

(44b)

(44c)

(44d)

~„=J qx"~(q) dq (45)
0

by an appropriate fit for y„. This procedure gives
y„as a linear combination of D„and M„. M„. can be
written in terms of wave functions as

~n= rl 'rN 2 ~10 ri nrl

The second method of fitting the coefficients is
to realize that the dipole hyperoscillator strength
may not have an important effect, and one may
wish to determine y„ to describe short -range pene-
tration properly. We identify pn as in the first
method [see Eq. (44b)]; however, the second param-
eter is adjusted by requiring that V0„P(1.) computed
at small x [i.e. , from Eq. (16), j (qr) = ,'qx] is the-
same if one uses the exact X" or, in other words,
F„given in the form of Eq. (33) provides the exact
first moment

We repeat that for an exact representation of
X" (q), both schemes give identical results; how-
ever in an approximation [as (32)-(34)] the first
scheme provides highly accurate long-range be-
havior, while the second gives good long-range and
short-range behavior simultaneously for the transi-
tion potential.

C. Expression of Z in Terms of Moments and Shieldings

We are now ready to put expressions (47)-(49)
[or alternatively instead of (48), (50)] into expres-
sion (16) for the transition potential and the form
so obtained into Eq. (1). Then we arrive at the
following formulas for the transition potentials:

V0„,(r) =~10 F,n'e "(n~+-1), (51)

V0„~(1 ) = (D„/r )(1 —r'rr. "[(n—r) +4(m) +8n4 +8]]
+ (y„/48 n') «- "(n~+1), (52)

V0„. (r)=(3Q /x )(1 ~e [(nr)

+4(nr) +12(nr)2+42(ny)2

+114(nr)+144]] . (53)

[Here y„ is given by (44c) or by another linear ex-
pression of D„and M„.] Now the S-wave potential
is considered as an example (l = 0) in Eq. (20):

nadir pol( 1 . &) ~monopole K =0)

gdipol. e K =1) ~quadrupole (LA)

xdr ~ ~ . dl (46) where (54)

The reason that we claim this gives short-range
accuracy is that M„ is the key integral in the fre-
quency-dependent dipole shielding factor which is
defined as the ratio of the change of the electric

~z, Q vk l (+1)VO I (yl)
S

nrnl, ~ nL &nI L

2L+1 2
x f„P.(r1 )f„*P(r1 )

~
(ILOO

~

00 ) ~4n
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+(term containing g„,l, (rl)g„* J.(ri)]

is the multipole contribution (I.= 0, 1, 2 gives

(55) monopole, dipole, quadrupole, respectively) to the
S-wave optical potential. Using (51)-(53) in (55)
one obtains

Zs"" =(«) (l&& n ) e '"'e '" P (nrl)P '(«3) t~ W(z dnhs)fnhs(rl)fnhs(rl)-+P(d„~ —z)g~s(«)g„*~s(rl)],

(56)

Zg' "'—- — 1100 00 ~ I2 1 ——'e "1&' ' (yg 1 ——'8" "&Q' '
y'1 r i

I 1 3 2 1 1 -oty 3
sx Qnd&y&s(z —En p)f„p(rl)f„*,p(rl)+, —~(1100~ 00)~ ~ (1 ——,

' e "lP' '(nrl)jr& e '"'P'" (nr', )48m 4m y,

2~ v(z —
dn, p)f pn(rl) f„*p(rl)+ 46 3 3

~

4— ~(1100~00)~'r ei"lP"'(nrl)rle "lP"'(nr', )Can' ', 4~

&& Z &d (z —e„p)f„„p(rl) f„*p (rl) +(terms containing [g„p (r, ) g„*p (r', )]}, (57)
n~

gc Po 2200 00 1 &- g y( ) && 1 e- l ~( )

uusdruyols (z —~n, &&)fn, && (rl)f „*„&&(rl)-~ nu. sdr. yo, s (~n, &&
—z) a„,&& (r, ) g+

&& (r,')] . (56)
ny

"J.

In these formulas we find

P&'& (x) =x+1,

P' ' (x) = x + 4x + 9x+ 6,
P' ' (x) =x +4xd+12x +42x + 114x+ 144,

and we have introduced the following quantities:

( ) g n n

n ~ &nS

~()=&, "

In Eq. (56)

(65)

(66)

( ) Q n n

n ~ ~nS
(59)

D„D„*
ndi yols (Z).

n ~ nI

the frequency-dependent dipole polarizability;

(60)

v(z) =Z
n ~ +nS

(61)

the frequency-dependent monopole hyperpolariz-
ability;

n,„~„„„(z)=
n ~ (dnD

(67)

xf...(r, ) f„*,, (r,'), (ea)

is the frequency-dependent quadrupole polarizabil-
ity.

Now we have achieved our objective of express-
ing the optical potential (at least the direct polar-
ization term) in terms of spectroscopic quantities.
Observe that as rl- ~ and x,- ~,

Z~"oyo"- const x r, r,' e " en&"l + g(z —d, s)
n

&d(z) =Z
n ~ +nI

(62) di pole 1 1
Z, -constx 3 3 ~ ndi l (z d p)

Here y„ is a linear combination of D„and H„or D„
and M„. To calculate v(z) and p, (z) we need to cal-
culate the quantities (first scheme)

x f„p (rl) f*„~p (r',), (69)

D„H„*
ndi y-hyy di y (Z )

n ~ nI

H„H~
nhyysrdiy (z )

n ~ +nS

or (second scheme) the quantities

(63)

(64)

1 1Zsu"~"""-constx
3 /3 Z nu ~ yol, (z —h„D)

xf D (rl) f l& (r l) (I0)

In the adiabatic limit (see Sec. III) these formulas
give
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(71)

Zs constx~ cIdIyeIe5(r1 —r1) (72)

zs'""- const x r1 r1 [Q odh, „(z—d„ I )
n&

asymptotic forms, where u$$yo)ef Qqp~„ypip are the
static polarizabilities and p, is the static monopole
hyperpolarizability. This behavior is well known
and required from any reasonable optical potential.
We note that any theory that introduces quadrupole-
Polarization effects (Zqs" ~""")should introduce en-
ergy dependence into the dipole-polarization part
(Zs~") because (as it was proved by Kleinman et
al. ) the energy-dependent correction to the adia-
batic dipole polarizability has the same long-range
behavior as the quadrupole-polarization potential
in the adiabatic approximation. The other limit is
if ri-0, ri-0. In this case the asymptotic be-
havior is obtained as

E """'-constx[g P(z —d„s)f„s (r,) f*„s(r', )
n&

~ p(& s z) g s (r1)g*s (rI)l (74)

direct polarization potential has been reduced [as
can be seen from EIls. (54)-(67)] to the calculation
of frequency-dependent moments, defined by Eqs.
(59)-(67).

Except for the dipole polarizability [EIl. (60)],
the other moments cannot be easily measured or
calculated semiempirically (e.g. , by fitting sum
rules, the methods of Dalgarno '). Therefore,
they have to be calculated. In the following only
one very accurate method will be mentioned for
the calculation of these quantities, namely, the
variation-perturbation method (Karplus and
Kolker, Yaris, ' Dalgarno and Epsteind).

In this method the equation

[a(i, 2, . . . , X) -z]4,(z}=pe, (80)

(where 4y(z) is essentially the dynamicallyperturbed
state)is solved using the Hylleraas variational method
(Bethe-Salpeter, Karplus-Kolker, 1 Yarisd'd) to a
high degree of accuracy. Basically one chooses
as a basis for 4y, p4O, [P, H]4o, etc. This, as
shown by Dalgarno and Epstein, 6 automatically
satisfies the first n sum rules and gives perturbed
quantities to high accuracy. One can choose for p
different operators, dipole, quadrupole, dipole-
shielding, etc. , perturbation, and all the mentioned
quantities can be calculated. %e note that in the
course of this method essentially the perturbed
wave function

xf.,~ «I) f.*,D(r1) -~ ~d~I. (&.,D)

x(~.,~) g„,& (r1) g„&(r1)*], (75)

g (nlpl0&
P=

(d 8 8

is calculated and with this function one obtains

(sl)

const&& r i ri ndIy„, (z) =(0IPI4y& if P=Z rI FIo(rI)

the dipole perturbation;

quedyuyele (~n D Z) gn D (r1)
fly

~q.~.y.I. (z) =&0IPI4y& if P=~ rhI y~(rI)

and in the adiabatic limit,

x g.*,D (r1)], (76)
the quadrupole perturbation;

p()z= &0IPI4, &If P=& r' l" (r, )

E s
"'""-const x [6(r, —r', ) —ps (r, r', )],

Z s coIlst x r 1 [6(r1 —r1) —pD(r1 rI)]

(77)
the hypermonopole perturbation;

+hyydly (z) = « IP I +y& 1f P =~ r I ylo (rI)
g=i

~s" " "-constx r, ([5(rI —r', ) pD(r, rI)—]) .
(79)

Here pD(rI r, ) means the multipole part of the one-
particle density matrix. 5'e zoould like to Point
out that the asymptotic behavior at large r and
small ris correct, and no artificial cutoff Parfum
eter has been introduced in the optical potential as
given by Eq. (54). Ultimately the calculation of the

the hyperdipole perturbation;

N

+dIy-h ydI (z) = « I q I +.& If P =~ rI yId (rI),

the dipole perturbation;

N

q=Z rI YId(r;)
~=i

the hyperdipole perturbation;
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~(s)=«lel4'&) lf P=~ r; Ylp(ri),

the dipole perturbation;

xf„P(r,) f„*P(rl) . (83)

Concentrating on the first term and considering the
summation only on n, the following expression has
to be calculated:

the dipole-shielding perturbation;

Dn

n ~ &nP ~n~»
drs V(r3 1 1) X (13r 1) .

(84)
N 1

P(z)=(0lPl4~) 1f P=Z 3 Ylp(r,.),

III. ANALYSIS OF EXCHANGE POLARIZATION POTENTIAL

The exchange polarization potential is given as
(STY)

Ecxchccl (r r ~ . &)

na ~ n
dr, V(r, —r, ) X"(r,r,)

dr3 V r3 —r& X"* r, r» * r» r&

drs V(r, —r, ) X"*(r,r, )
n, y

~+ n

x] drs V(r3 11)X"(rlrs) g& (rs) g&(r, ) .
(82)

Having introduced the parametric representation
of the transition potential [Eqs. (51)-(53)]the ex-
change polarization potential can be calculated by
solving the type of equation (80) for the wave func-
tion C.

Let us demonstrate the procedure on the dipole
term. Putting (52) into (82), because of the fact
that only the parameters D„, y„depend on n, one
obtains the following expression [first term in (82),
dipole part]:

~ fl ——,
' e "[(nr)'+ 4(nr)'+ 8(nr) + 8]]

d 1'3 V (1'3 —1' 1) X (I'3 r 1)
n, n~

~ +nS ~n~p

x f„p (r, )f „* p (r,) +
48 3 r e "(nr+ 1)

x Z "
t drs V(rs —r 1)X"P(r,r, )

nnh ~ &nP ~nhP J

the dipole-shielding perturbation.
In summary, the direct polarization potential ob-

tained contains monopole-, dipole-, quadrupole-
polarization effects, it is energy dependent and

nonlocal, at large r and small r gives the exact
behavior and contains no artificial cutoff parame-
ter. In the adiabatic limit it gives a potential that
looks very similar to those used in polarized-or-
bital calculations (LaBahn and Callaway, ' Tem-
kin').

This can be written in the form

D„(n I g (rs) g(r 1) I 0)
drs V rs —r', )

n ~ &itI' ~n~&

dr V(rs rl)(4'(~ ")It -(rs) ((r 1)l»
(85)

where @(z—hh) is the solution of the first-order
perturbation equation

(a-s+~, ) 4 =Dlo) . (86)

which can be called the transition density matrix
between the state 4 (z —&„) and the ground state of
the target. This quantity can be obtained easily
from the wave function 4 = 4(z —eh) and 4p, with
the formula

(4
l

y' (rs) l) (r 1) I
o ) = &J «1' ' ' d 5&1-

"4'*( 3 $1 53l 1)4'P(rl 51 $Pr 1)-
[analogous to Eq. (23) in Csanak et al. "]. After
having solved for 4, this quantity can be con-
structed and the exchange polarization potential
calculated.

For the second term in (83) the procedure is
identical, only the perturbation operator in (86) is
different. The monopole and quadrupole term can
be handled analogously.

In summary the first-order dynamically per-
turbed wave function, which already has been
needed for the direct polarization term, also gives
the exchange polarization potential.

Note, that it is impossible to obtain any part of
the exchange term from experiment. This is due
to the fact that X"(r, r ) = (0 I gt(r) P(r ')

I n) cannot
be expanded as X"(r, r) [or the Fourier transform
of it X"(q)] and physically means that a particle in
exchange cannot be reproduced by any external
field.

We have now completed the analysis to the degree
that Z can be obtained semiempirically. This can-
not be done completely, only the dipole, quadru-
pole polarization and the shielding can be obtained

[This equation is identical to Eq. (80) if z- s —h

and p= D= (dipole perturbation) is substituted into
it. ]

The expression (85) contains 4 (z —h, ) in the
form

(87)



1852 G. CSANAK AND H. S. TAYLOR

easily. There is little hope to obtain the cross
term and less to get exchange.

It remains only to relate our potentials to that of
other theories. Before doing so we would like to
make two short comments.

The first is on the imaginary part of the optical
potential which is needed above the first inelastic
threshold. This term was not explicitly men-
tioned in STY and not considered in the calculation
of Yarlagadda et a/. It seems to be a very small
correction for elastic scattering. In principle this
can be calculated once the real part of Z is known
as given previously by using the dispersion relation
(Luttinger '). Taking the imaginary part of the
dipole polarizability, the photoionization cross sec-
tion is obtained. (The authors are grateful to Dr.
B. Schneider for bringing this point to their atten-
tion. )

The second is on the numerical procedure needed
to compute the Dyson orbitals from Z constructed
by the aforementioned method. We note that Z still
depends on unspecified orbitals which now have to
be solved for self-consistency. We can now de-
fine an iterative scheme requiring self-consistency
for the Dyson orbitals (in other words for the
Green's function), i. e., in the first step we use
Hartree-Pock orbitals and solve for new Dyson or-
bitals; with these new Dyson orbitals the new op-
tical potential is constructed and Dyson orbitals
are obtained again, continuing this procedure until
self-consistency is achieved. This means that the
particle will polarize the core, and its own orbital
will therefore change (compared to Hartree-Fock).
Simultaneously the core orbitals will change, and
in the next step of iteration the motion in this po-
larized core will be considered. Note that in the
GRPA scheme the iteration for two quantities, the
response function and the one-particle Green's
function, has been postulated. Here only the one-
particle Green's function need be determined self-
cons istently.

IV. DERIVATION OF PREVIOUSLY PUBLISHED THEORIES

In the following, the relationship of the general
total polarization potential to other potentials used
in calculations will be shown. Only the potential
acting on the extra particle will be considered, i. e. ,
the interaction potential of the extra par ticle with
the core. This potential will not refer to the par-
ticles of the core, as before in Secs. II and III.

A. Direct Polarization Potential

Let us consider the direct polarization Potential,
as is given in Eq. (1), and let us take z in the "par-
ticle" region.

J. Adiabatic Assumption

Let us notice that under certain conditions (Mit-
tleman and @watson, and Fetter and Watson, "pp.

129-132) the main contribution to Z comes from
those intermediate f,(r) states, for which e, is close
to z (it is in "resonance" with z). For scattering
this means that the scattered wave packets are
made of those particle states that are near to the
energy of the incoming electron. Thi's approxima-
tion is good if "the energy fluctuations of the inci-
dent particle are small compared to those of the
target" (Fetter and Watson22 pp. 129-130). The
validity of the adiabatic approximation has been in-
vestigated by Mittleman and Watson. In this case
the second part of Zd" "' ("hole term") will be
neglected, and in the first expression only those
terms are retained that have &, energy c1ose to z.
The following expansion can be used for these
terms:

(89)

On( 1) fn( 1) Q f ( )fQ( )
n (dn k

One can use the following identity (see Csanak et
af 25).

Z f, (r,) f,* (r,') =- 6 (r, —r ', ) —p(r, r ',)

(this is only approximately true in our case),
where p(r, r ) is the density matrix. (Note how
the f 's have now been eliminated and the density
matrix enters. )

After substituting (91) into (90) we arrive at the
formula

(91)

Fdir yo1 (r r ' . z)

(92)
The first term in this expression is the exact adia-
batic polarization potential (Mittleman and Watson,
Castillejo et al. ) as given by Bransden also [Befs.
29, p. 201, Eqs. (5-62a)-(5-62c)]. This term is
the direct polarization term used in the electron—
helium-atom scattering calculation of LaBahn and
Callaway, and Bethe' in the He Rydberg-state
calculation. Temkin's direct polarization poten-
tial can be obtained by restricting to the dipole
contribution„simultaneously introduci ng the "cut-
off" in the calculation of the transition potential
U2„(r). Our prescription for calculating this po-
tential is to solve the first-order adiabaticly per-
turbed problem (z =0) with the variation method. '

The second term is the so-called "orthogonality

In the adiabatic limit only the first term will be re-
tained in Eq. (89) and the following expression re-
sults:

&~)b'b (rgrg z)
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The first nonadiabatic correction is obtained by
considering the linear term in the expansion (89)
from Eq. (1) which follows:

Znonadiab eorr( 1 lr Z)

On l n 1

(93)
Using the identity

h(r) fb (r) = ~b fb(r)

where h(r) is the exact one-particle operator
[(94) is the Dyson equation for f,(r)], (93)
transforms to the form

(94)

potential" (Lippman et al. and Fetter and Wat-
son, p. 132), after localizing the first factor.
[Expanding Vb„(r ', ) into Taylor series around r, and
taking the first term in this expansion, we obtain
the slightly modified form of (92):

n n

the expression given by Lippman et al. ] This
type of orthogonality potential has been used suc-
cessfully in the calculation of Kestner et a/. for
e-He zero-energy scattering.

2, First Nonadiabatic Correction

et al. ' and Dalgarno et al. b (Kleinman et al. '"
and Dalgarno et al. do not obtain the first term
because of different normalization of the perturbed
wave function. ) Zd', r~,'~„„„is the associated
orthogonality potential to the first part in Eq. (99),

~l
nadir

pol -v' Vo (ri)vi Vo (r )
nonadiab corr ll 2

"
p (rlrl) V

n &n

2
1 Q VQn (I'1) Vi~ VQn (ri)

( I) (101)

This nonadiabatic orthogonality term was not in-
cluded in any work except those based on the
Green's-function formalism (e. g. , Pu and Chang
and Yarlagadda et al. ).

We can obviously derive higher nonadiabatic
terms.

B. Exchange Polarization Potential

1.Adiabatic Form

The exchange polarization potential is given by
Eq. (82). In the adiabatic limit [first term in Eq.
(89)] the following expression is obtained:

Z exeb pc i (r

II'f

Vd„(ri) X"(ri ri),- -, v. Vo„(ri)V(r, —r,)-~
(dn n n

[~ - &(r)] [5(rl r 1) -p(ri r 1)] .Vo.(ri) Vf.(r 1)

(95)
Now we construct an equivalent potential by re-
quiring that

J Z (rr') g(r') dr'= J Z„(rr') P(r') dr' (96)

is fulfilled; then we write

dr3 V r3 —rl P r3rg X r3rl . 102

The first part of this expression is the generaliza-
tion of the exchange polarization term introduced
by Temkin. [In the Hartree-Fock approximation

x"(ri ri) = 9.(ri) qo (ri),

Z (r r') =- Z„(r r') (equivalency) . (97) where y„ is a Hartree-Fock orbital, and the first
term is written as

Substituting (95) into (96) and using the identity

Ii (r) it (r) = ~ it (r) (98)

[g(r) is a scattering state with energy z], after par-
tial integration, one gets

nadir pol nadir pol nadir pol
Znonadiabcorr Znonadiab corr 1 Znonadiab eorr II t (99)

where
nadir pol
Znonadiab corr 1 (ri rid )

Vd„(ri) '71 Vf„(ri)
Vl

n

2
——' Z " o" 1 . (100)2 2

This is the nonadiabatic correction which has been
used by LaBahn and Callaway in e-He scattering
calculations, and is a.iso given in this form by
Khare and Shobha' and, essentially, by Kleinman

g Vo. ( )q„( ) (,
-

V(,-,-)
n +n

= y (ri) yo (ri) V(ri —r,'),
where X(r,) is the polarized ground-state orbital;
this is the form introduced by Temkin, p. 1010.]

The second part of expression (102) is the as-
sociated "orthogonality" potential.

2. First Nonadiabatic Correction

The first nonadiabatic correction to the adia-
batic exchange potential can be constructed sim-
lar to ~ngnadiab corr ' Considering the second term

in Eq. (89), we obtain

~ exch pol (Z nonadiab eorr (r1 rl i ~)
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x [~ ~ (r1)] [5(ri rs) P (rt rs)] . (103)

The equivalent potential can be constructed using
the identity

&(ri) P(ri) = ~ 0(ri) . (104

Considering the first term in (103) [that contains
5(r, —r, )],
~ exch p01 I~ nona(nab (.orr I (rl rl i ~)

'",. ' (~, V(r, -r', )[~,+V, ,]X"(r, r', )
n &n

+ V(r, —r,') [P', —V, , ) X"(r, r', )

+ V(rs —rs) X"(rq r~) [V„,(rs) —V„,(rs)]]';
(105)

here Ue« is defined by the equation

a(r) = ——,
' v'+ V.„(r) . (lo6)

Of course we do not know V„,(r); however, ex-
pression (105) is a very high-order correction.
We can use an approximate form in (105) for V,«,
e. g. , the Hartree-Pock expression with adiabatic
polarization correction. The associated orthogo-
nality potential can also be obtained.

Finally, let us note, that the adiabatic exchange
potential can be obtained by solving the problem"

&o] C' (ri ' '

Q )'(r —r,.)+ v, i„(r))y~(rv . . r„)
j=i

(los)

—r )'(r —r;)+)'..., (F))(,(F, r )
j=i

+z 4 (r, ~ ~ ~ r„) . (108)

In comparing the GRPA and the semiempirical
method with Khare and Shobha's' energy-dependent
perturbation theory one can conclude that from
the previous theories one can obtain the "ortho-
gonality potential" in the adiabatic limit, whereas
the energy-dependent perturbation method pro-
vides the local polarization potential, and the or-
thogonality potential cannot be recovered in the
adiabatic limit.

It was pointed out recently that the adiabatic
theory should be used including both direct and ex-
change polarization. There are calculations with

(H is the target Hamiltonian); the first nonadia-
batic correction is obtained by solving the energy-
dependent problem

r )-&o] X(ri

the nonadiabatic corrections to the direct polariza-
tion potential; however, the nonadiabaticity of the
exchange polarization potential has not been con-
sidered except in the Green's-function type of
calculations. The first nonadiabatic correction to
the direct adiabatic polarization potential has to
be considered simultaneously with that of the ex-
change adiabatic potential. I et us conclude with
a comment on applications to solid-state physics
and diatomic molecules. The potential described
herein if computed for ionic systems can clearly
be used as core potentials in solid state problems.
It clearly has the correct nonadiabatic orthogonali-
ty corrections. It's most useful application will
probably be in impurity scattering where simple
pseudopotentials have failed. (The authors thank
Dr. H. Orbach for this suggestion. )

For diatomic systems one can simulate the effect
of nonoverlapping distorting atomic cores by using
the atomic ion potential of this paper. The prob-
lem then would be reduced to an M-electron
problem, where M is the number of electrons out-
side the cores. For the core-core interaction one
would take a van der Waals model (Dalgarno ef al . ' )
or a more sophisticated slightly overlapping core-
core model as given by Yaris and Boehm. ' In

any case both these corrections are completely
calculable in terms of the X" 's already calculated
for the atomic core potentials. This idea is a
generalization of a model used by Dalgarno et al. ,
and by Goddard, ' where in the former a semiem-
pirically determined optical-potential was employed.

~ 0

Opik' has studied the energy-dependent corrections
to Rydberg core interactions in atoms and mole-
cule s.

Note added in Proof. After the present manu-
script had been submitted for publication a paper
was published by Winifred M. Huo [J. Chem. Phys.
56, 3468 (1972)] on a similar subject. In this
paper a form is used for the transition potential
which is proved here to be generally valid. Huo
treats the long-range and short-range part of the
transition potential separately and certain oscil-
latory terms are obtained for the polarization po-
tential. A consideration of regularity at the origin
of the transition potential might eliminate these
oscillatory terms (The au. thors are indebted to
Professor Don Truhlar for bringing this paper to
their attention. )

ACKNOWLEDGMENTS

The authors would like to acknowledge stimulat-
ing conversations with Dr. R. Orbach and Dr. B.
Schneider.

*Work supported by the National Science Foundation
under Grant No. GP-12877.

~B.-S. Yar1.agadda, Gy. Csanak, H. S. Taylor, Robert

Yaris, and Barry Schneider, Phys. Rev. A (to be pub-
lished) .

Barry Schneider, H. S. Taylor, and Robert Yaris,



EXACT AND SEMIEMPIHICAL ANALYSIS. . . 1855

Phys. Rev. A 1, 855 (1970).
M. Karplus and H. J. Kolker, J. Chem. Phys. 39,

1493 (1963).
R. Yaris, J. Chem. Phys. 39, 2474 (1963).
R. Yaris, J. Chem. Phys. 40, 667 (1964).
A. Dalgarno and S. T. Epstein, J. Chem. Phys. ~50

2837 (1969).
~H. A. Bethe, Handbuch de~ Physik (Springer-Verlag,

Berlin, 1933), Bd. 24/1, pp. 339-349.
Aaron Temkin, Phys. Rev. 107, 1004 (1957).
M. H. Mittleman and K. M. Watson, Phys. Rev. 113,

198 (1959).
B. A. Lippmann, M. H. Mittleman, and K. M. Wat-

son, Phys. Rev. 116, 920 (1959).
~R. W. LaBahn and J. Callaway, Phys. Rev. 135,

1539 (1964).
~2R. W. LaBahn and J. Callaway, Phys. Rev. 147, 28

(1966).
~3S. P. Khare and P. Shobha, J. Phys. B 4, 208 (1971).
~4N. R. Kestner, J. Jortner, M. H. Cohen, and S. A.

Rice, Phys. Rev. 140, A56 (1965).
'H. Eissa and U. Opik, Proc. Phys. Soc. (London) 92,

556 (1967).
'6U. Opik, Proc. Phys. Soc. (London) 92, 566 (1967).

U. Opik, Proc. Phys. Soc. (London) 92, 573 (1967).
' L. Castillejo, I. C. Percival, and M. J. Seaton,

Proc. Roy. Soc. (London) A254, 259 (1960).
'SC. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev.

165, 53 O.968).
20A. Dalgarno, G. W. F. Drake, and G. A. Victor,

Phys. Rev. 176, 194 (1968).
H. P. Kelly, Advan. Theoret. Phys. 2, 75 (1968).
R. T. Pu and E. S. Chang, Phys. Rev. 151, 31

(1966).
N. C. Dutta, T. Ishihara, C. Matsubara, R. T. Pu,

and T. P. Das, Phys. Rev. Letters 22, 8 (1969).
Gy. Csanak, thesis (University of Southern California,

1971) (unpublished).
Gy. Csanak, H. S. Taylor, and R. Yaris, in Advances

in Atomic and Molecular Physics, edited by D. R. Bates
and Immanuel Estermann (Academic, New York, 1971),
Vol. 7, pp. 287-361.

M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).
B. Schneider, Phys. Rev. A 2, 1873 (1970).
H. Bethe, Ann. Physik 5, 325 (1930).

2~B. H. Bransden, Atomic Collision Theory (Benjamin,
New York, 1970).

Handbook of Mathematica/ Functions, edited by M.
Abramowitz and I. A. Stegun (U. S. Department of Com-
merce, National Bureau of Standards, Washington, D. C. ,
1964), Appl. Math. Ser. 55.

A. Messiah, Quantum Mechanics (North-Holland,
Amsterdam, 1965) Vol. II.

E. Lassettre, J. Chem. Phys. 4~3 4479 (1965).
L. Vriens, Phys. Rev. 160, 100 (1967).
A. Dalgarno, Advan. Phys. 11, 281 (1962).

3~A. Dalgarno, Rev. Mod. Phys. 35, 522 (1963).
36H. A. Bethe and E. E. Salpeter, Quantum Mechanics

of One- and Tao-Electron Atoms (Academic, New York,
1957).

J. M. Luttinger, Phys. Rev. 121, 942 (1961).
N. R. Kestner, J. Jortner, M. H. Cohen, and S.

A. Rice, Phys. Rev. 140, A56 (1965).
~W. M. Duxler, R. T. Poe, and R. W. LaBahn, Phys.

Rev. A 4, 1935 (1971).
A. Dalgarno, C. Bottcher, and G. A. Victor, Chem.

Phys. Letters 7, 265 (1970).
~R. Boehm and R. Yaris, J. Chem. Phys. 55, 2620

(1971).
42W. A. Goddard III, Phys. Rev. 174, 659 (1968).

PHYSICA L RE VIEW A VOLUME 6, NUMBER 5 NOVEMBER 1972

Variational Methods for Multichannel Scattering

R. K. Nesbet and R. S. Oberoi
IBM Reset"ch Laboratory, San Jose, California 95114

(Received 18 May 1972)

Several methods have recently been proposed for avoiding computational anomalies in the
multichannel variational formalism of Kohn. The proposed methods themselves have charac-
teristic difficulties, discussed in detail here, leading to ambiguous or discontinuous results.
Two new methods are proposed. One, the optimized minimum-norm (OMN) method, is a
development of the minimum-norm method of Harris and Michels. The other, the optimized
anomaly-free (OAF) method, applies the idea of a preliminary unitary transformation of the
open scattering channels to the anomaly-free method of Nesbet. Model calculations are re-
ported that show both OMN and OAF methods to be superior to earlier methods. The OAF
method has the additional advantage of avoiding anomalies that occur in the OMN method.

I. INTRODUCTION

The problem of spurious singularities in the
Kohn variational formalism for scattering theory
was first considered by Schwartz, ' who attributed
the anomalies encountered in variational calcula-
tions to singularities of the system of inhomogeneous
linear equations common to all standard variational

methods. More recently, it was shown that these
singularities exactly cancel out of the Kohn for-
mulas for the tangent of the phase shift in the case
of elastic scattering, ~ and for elements of the
reactance matrix R (or K) in multichannel scatter-
ing. The computational anomalies result from a
different aspect of the variational formalism. In
both elastic and multichannel scattering the Kohn


