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Clusters of condensed matter which are produced under some particular conditions in super-
sonic molecular jets can be ionized by electrons. Measured ionization cross sections show
a sharp dependence on N, the mean number of molecules per cluster. For small clusters
(N &50) the cross sections increase as ¹ for larger clusters as about N~~3. Furthermore
the electron initial energy W'~z, for which the cross section is maximum, increases with ¹ In
this paper we present a model for the computation of the cluster ionization cross sections
which includes the energy losses inside the cluster of both primary and secondary electrons.
The escape probability for secondary electrons is given as a function of their initial position
and energy. This latter is related to the primary-electron energy. Results of these compu-
tations for H2, CO2, and N& clusters are in good agreement with experimental data.

I. INTRODUCTION

The formation of molecular clusters in free-ex-
pansion supersonic jets has been observed by
Becker et aL. ~ For gases such as CO2, cluster
formation occurs above a critical pressure even at
room temperature. Permanent gases such as N2

or H~, on the contrary, must be near their lique-
faction temperature before expansion in order to
form clusters.

As shown by Baoult, Farges, and Bouault and by
Audit' these clusters have a crystalline structure,
and their size is determined by the expansion pa-
rameters: pressure ratio, nozzle-skimmer dis-
tance, nozzle shape and size. Clusters are ionized
(positive charge) by electron collisions'-' and can be
accelerated up to high energies in electrostatic ac-
celerator s.

The ionization cross section we are concerned
with in this paper has to be defined. Because of
ionization, the attenuation of a neutral cluster beam
with intensity Io and velocity v„each cluster con-
taining X molecules, which intersects an electron
target, length dE, electron density n„electron
velocity e, »v„can be written as

dIc = —I,an, (n, /e, )dl, (l. l)

where a(N, W,c) is the cluster ionization cross sec-
tion and 5',0 is the electron energy.

Measurements of o are uneasy due to the spread
in the cluster masses. Generally it is possible to
measure the mean molecular mass number X of
the cluster beam, without knowing f(N), the dis-
tribution function of the cluster mass. The experi-
mental cross section is related to ¹ Therefore
a,„„(N, W~) defined as in (1, l) is actually

a.„„(N, W„)=a.„(N, W. ,)

x &max

f(N)a(N, W.c)l 5 f(N) . (l. 2)
1

Ionization cross sections for hydrogen clusters
under electron impact have been measured by Tay';
for argon and CO~ clusters by Falter ef al. ' These
cross sections are measured at a given electron
energy as a function of the mean value of the num-
ber of molecules per cluster.

The most important features of their results are
the following: (a) At constant energy, the cross
section is proportional to the mean mass number
of the cluster Pup to a critical value, roughly
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equal. to 50 molecules per cluster; above this val.ue,
it increases as about N ' . (b) At constant mean
mass number, the cross section versus electron
energy exhibits a maximum; the electron energy
5;„for which this maximum occurs is greater than
the corresponding value for the molecular cross
section and increases with N.

Qualitatively, the first feature is interpreted as
follows: The cluster ionization cross section is
the product of. two terms. The first one, propor-
tional to N ', is the geometrical cross section of a
cluster containing N molecules and supposed to be
spherical. The second one is the probability for
an electron colliding with the cluster to make at
least one ionizing collision inside it. This term
is equal to 1-e ' ~. The mean distance l traveled
by an electron inside the cluster is proportional
to N; X, the ionization mean free path of an elec-
tron in the solid, is constant at constant electron
energy.

For low values of N, 1-8 ' ~ is nearly equal to
l/X, that is, proportional to N'~~, so that the ioniza-
tion cross section increases as ¹ for high values
of N, on the contrary, 1-e ' " becomes equal to
unity so that the cross section increases as N ".
No satisfactory explanation has been given for the
second feature. We have improved this qualitative
picture by taking into account the electron energy
losses inside a cluster. Because of these losses,
the average energy of an electron passing through
a cluster is lower than its initial energy. There-
fore, the maximum of the cluster ionization cross
section will occur for an initial electron energy
TV,„which increases with the cluster mass number
N. Furthermore, the secondary electron, created
by ionization, loses its energy and will escape only
if it reaches the cluster surfacewith enoughenergy.
It is possible to calculate an escape probability for
the secondary electron which depends (i) on the
position where the ionization occurs, (ii) on the
cluster size, (iii) on the initial energy of the sec-
ondary electron, and (iv) on the scattering under-
gone on the cluster molecules. After computing
the primary-electron losses and the secondary-
electron escape probability, it is possible, by in-
tegrating over each primary-electron path and
over all possible electron trajectories, to compute,
for a given set of N and of the initial electron en-
ergy 5",0, the cluster ionization cross section
o(N, W„).

These calculations are undertaken in this paper.
Vfe shall first describe the cross-section compu-
tation scheme in Sec. II, then we shall investigate
the electron collision processes in order to com-
pute the primary-electron energy losses and the
secondary- electron recombination probability,
which both affect the cluster ionization cross sec-
tion [Eq. (2. 11)j. The electron energy losses will

s = wA, = w(3NM/4zp) is, (2. 1)

where R, is the cluster radius, p is the specific
mass of the considered solid, and M is the mass
of the corresponding molecule. The assumption
of sphericity is of course very idealistic; never-
theless, hydrogen, nitrogen, and CO2belong to
the cubic system, and the geometrica. l cross sec-
tion must increase as R, even if the numerical
factor is somewhat different.

Let us now consider (see Fig. 1) an electron
with energy W, impinging at point A on a spherical
cluster. The distance h between the electron tra-
jectory and the cluster center is called "cluster
impact parameter. " The number of ionizing colli-
sions made by an electron bebveen B and B', i.e. ,
after a path inside the cluster between x and x+dx,
18

dn = o'(1, W, (x))noE(W, O(x), x) dx. (2. 2)

Therefore, the probability for the electron to
make at least one effective ionizing collision is

2 &8 2 -h 2) 1/2
p(h)=I -exp[-no 1,

'
o(1, W, (x))

~F(W„(x), x) dx]. (2. 3)

The meaning of quantities appearing in the two

preceding equations is as follows:

dW, )
W, (x)= W, o

—
i

'
wads; (2. 4)

be examined in Sec. III, electron scattering inside
clusters in Sec. IV, and the relation between pri-
mary- and secondary-electron energies in Sec. V.
Section VI is devoted to the electron-range calcu1a-
tion, the computation results are discussed and
compared with experimental data in Sec. VII, and
some concluding remarks are presented in Sec.
VIII. The rationalized mksa system isused, but en-
ergies are in electron volts.

II. CALCULATION OF CLUSTER IOMZATION CROSS
SECTION

In this paper we have calculated both o,~,(N,
W, o) as defined in Eq. (l. 2) in the case of a Poisson
distribution

/(K) = e-"K"/K!,
with

K=KN/N (K= 5 or 10) (K= 1, 2, . . . , n)

and o(N, W, o), that is, for a cluster with a fixed
mass number. The difference between these two
values is never significant when Ã=N, so we con-
sider single-mass clusters only.

We first assume that clusters are spherical;
their geometrical cross section is therefore
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Primary
electron
trajectory

U=xe /R, , v = 6t/R„

where x~ is the radial vector corresponding to x
(Fig. 1) it can be easily shown that

tributed. If we write the dimensionless parameters

E(U, v)=[(U+v) —1]/4Uv. (2. 5)

Incident
electron

E depends on 8',p through the range 8,.
We can now express the cluster beam attenuation

through two consecutive independent processes:
(a) cluster collisions with electrons in a target
with length dl and density n„ the corresponding
pr obability being

p, (f) df = ~R,'n. (v, /v, ) df; (2. 6)

FIG. 1. Collision of an electron with a cluster at a
"cluster impact parameter" A.

dw, /ds is the electron energy loss per unit path
length, o(1, W,) is the molecula. r ionization cross
section by electron impact, and no ——p/M is the mo-

lecular density of the crystal.
The term E(W,O(x), x) is the probability for a

secondary electron produced by ionization of a
molecule at x with an initial energy W, o(x) to es-
cape out of the cluster. As shown in Sec. III,
W,o(x) is related to W, (x); to W,o(x) corresponds a
value of the range @.which is the maximum distance
from its origin the secondary electron can travel
before losing, in its random walk, enough energy
to be stopped. The secondary electron can escape
only if the vector of its stopping point is located
inside the cone C1BC2, the solid angle 0 of which
(Fig. 1) is a function of re, Ro, and 6I, Hence, the
escaping probability E(w, o(x), x) is 0/4)) since
the mean direction of motion is isotropically dis-

2h
2(R2 ~2)1/2

C

p,(h)dh=x 1 —exp n, l—
~C

o(1, W, (x))

(2.7)x E(W,O(x), x)dx dh,
)

that is, the probability for a collision between h
and h+dh,

p, (h) dh = 2~h dh/~R, ', (2. S)

mujtiplied by the probability for the electron to
make at least one effective ionizing collision,
given by Eq. (2. 3). Therefore the number of
clusters effectively ionized in passing through an
electron target of thickness dl is

dI= -I,p, (f)dl f 'p, (h}dh.

Integration of Eq. (2. 9) over a target thickness l
yields the cluster beam attenuation

(2. 9)

(b) ionization inside the cluster by primary elec-
trons colliding with "cluster impact parameter" h,
without recombination of secondary electrons, the
corresponding probability being

2(R 2-h 2) 1/2

I/le=exp(- d, x, —'( -x ( —exp -x, e(l, W. (x))P(W„(x), x)dx de)
C wP C ~p

(2. 1O)

and comparison with Eq. (1.1) gives the required cross section

Rc 2(Bc -h
o(N, W, ())=2)) f 'h{1-exp[ n() f -o,(1, W, (x))E(W„(x), x)dx]fdh. (2. 11)

III. ENERGY LOSS OF ELECTRONS INSIDE CLUSTERS

A. High Energy

The collisional energy loss per unit path length
for electrons passing through matter is given by
Bethe's formula, in the limit of validity of the
first Born approximation. For energies smaller
than the electron rest energy, the density effect
and the relativistic corrections are negligible as

are the radiation losses. Hence the total energy
loss can be written as follows:

d8', a&Z @28',-- ln eVm (3.1)

where z, = K, q n/8)) eo, W, is the electron energy,
n is the atomic density of the cluster, K, = o, (expt)/
o;(Born) is the empirical factor of correction,
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FIG. 2. Mean energy loss per collision 68'~ of elec-
trons in hydrogen. nW~= (1/no, )(d Wads) is plotted ver-
sus the electron energy 8'e. Full line curve is obtained
by using theoretical cross sections (Ref. 10). By dashes
are represented AS', values obtained from experimental
data on ionization cross sections of atomic hydrogen (Ref.
22).

q = i.60210 10 ' C is the electronic charge, I~=Ah
=13.5 eV is the hydrogen ionization potential, R is
the Rydberg frequency, Z is the atomic number,
o, (expt) is the experimental ionization cross section,
g, (Born) is the theoretical ionization cross section
computed by the Born approximation, and «
= 8. 859 10"' Fm ' is the vacuum permittivity. The
empirical factor K, for H2 takes a value between 0. 5

and unity for the energy range from 50 to 100 eV.
It is almost equal to unity for higher energies. For
Np and COp K] is taken equal to unity. For the
atomic hydrogen, the electron energy loss per col-
lision

dR',
ala'z ds

is plotted in Fig. 2 versus the electron energy
e'

B. Low Energy

The Born approximation fails at electron en-
ergies smaller than 80-50 eV. The electron en-
ergy-loss rate can be evaluated by summing all
the possible energy-loss mechanisms of an elec-
tron interacting with an atom or a molecule:

dS,' = —nor (V, + W,s) n, +Z V„„tr„„ds m, ff

+2 —'
W, n„eVm ', 3.2

where o.
& is the total collision cross section. This

method requires knowledge of the ionization cross
section n, o~, the mean initial energy 8',0 of the
electron ejected in an ionizing collision, the exci-
tation cross sections tr „or (excluding ionization),
and the momentum-transfer cross section ~„o~.
V, and V „are, respectively, the ionization poten-

E
W)

20-
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FIG. 3. Energy-loss rate dS'~/ds for low-energy elec-
trons in H& versus the electron energy W, (W~ in eV;
d ', /ds in eV m" ).

0
lU 0

tial and the excitation energy from the ~th to the
nth level; m, and M are, respectively, the mass
of the electron and of the cluster molecules. The
ionization cross sections for Ha, Nz, and CO& are
given in the literature. " Only the terms corre-
sponding to transitions from the ground level to the
first few excited levels give significant contribu-
tions to the formula (8. 2). The values of the cross
sections we use are those assumed by Phelps and
co-workers in their analysis of the experimental-
data on electron swarms in H„N„CO, . ' "For
each molecular species, these values are a co-
herent set of cross sections for the different elec-
tron-molecule interactions. Detailed discussion
on the method of analysis employed in establishing
these sets of cross sections is given in the orig-
inal papers. The momentum-transfer term by
elastic scattering is always negligible for 8', great-
er than a few electron volts. The dependence of
dWJds on the electron energy W, is shown in Figs.
3-5, respectively, for H» N» CO& clusters.

The values of dW, jds for Ns and COs from 80 to
80 eV are computed with poor accuracy (errors
+50%%d) due to the lack of precise data. Neverthe-
less, the energy-loss rate in this region affects
the cluster ionization cross sections only slightly
for initial electron energy greater than 100 eV.
Moreover, the secondary-electron mean energy
is always less than 30 eV. Hence, this region is
not important for the results of our calculations.
The energy-loss rate of electrons can be approxi-
mated in this region by the formulas given in
Table I.

C. Very Low Energy

Electrons whose energy is smaller than 5-10 eV
lose their energy mainly by excitation of the vi-
brational and rotational levels of the molecules.
The elastic momentum transfer is no longer neg-
ligible, and it becomes more and more important
as the electron energy is decreasing. The en-
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FIG. 4. Energy-loss rate dS'~/ds for low-energy elec-
trons in NI versus the electron energy W, (W~ in eV;
dW~/ds in eV In ).

ergy-loss rate can be expressed in the following
form:

N
O
I
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FIG. 5. Energy-loss rate d8'~/ds for low-energy elec-
trons in COI versus the electron energy W, (W, in eV;
dW, /ds in eV m-').

~v

ds vg so

where v„ is the energy-exchange collision fre-
quency, as defined and evaluated by Phelps and
co-workers for electrons in several gases. ' ' '"
The energy-loss rate dW, /ds vs W, is shown in
Figs. 6-8, respectively, for electrons in H» N»
and CO&. These values can be approximated by
the formulas given in Table II.

IV. ELECTRON SCATTERING

A. High Energy

The differential cross sections fall off with in-
creasing scattering angle more rapidly for in-

elastic than for elastic collisions. Therefore the
standard deviation n of the resultant scattering
angle after n collisions has been evaluated for
elastic collisions only. By using William's ap-
proximate form for the elastic scattering differen-
tial cross section, the value of a is found approx-
ilnatively equal to 8ln, where I), = A,/160t, 's;
e and v, are, respectively, the light and the elec-
tron velocity; and A. = Z . Accurate values of
A. for several atoms are given in Ref. 16. Below
100 eV, o.'/n is about 10'; however in a spherical
cluster the effective length of the electron tra-
jectories differs on the average from the mean
unscattered path (=0.62D, where Dis the cluster

TABLE I. Energy-loss rate for electrons of low energy
(d W/ds in eV m; 8', in eV).

I I I IIII( I I I I Illl( I I I I Ill[

Hydrogen clusters (H2)

d We

ds
= —(1+0.18W) x 10~ 10&8' «6pe e—

Nitrogen clusters (N2)

—10

cl 9
Is 10—
L

ds
----' = —(7+0.135$")x10' 25&8' ~808

ds
= —0.4x109 W, 10 & W™~25e e

Carbon dioxide clusters (CO2)

dÃe = —(4. 8+0.35 W,) x 109 40 & &,~ 90
ds

10

dS"e ——( —3.72 + p. 53 W,) x 109 20 & 5', ~ 40
ds

10 1 10
We(eV)

~ —( -4.9+0.59 W~) x 109 10 & W'~~ 20
d8"e
ds

FIG. 6. Energy-loss rate dR'~/ds for electrons of very
low energy in H2 versus the electron energy 5'~ (Ref. 12)
(W, in eV; dWgds in eV m ').
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I I I I I I I[ ergies are about 10 to 10 ' eV per molecule. An
electron passing through the solid lattice induces
dipole moments in the surrounding molecules. One
can define a minimum impact parameter b* in the
induced dipole field such that electrons with an
impact parameter b & b* spend a very long time
interacting with a molecule as they spiral around
it until they are repelled by the molecular poten-
tial. The value of b* is as follows:

b*= 4.95x10 "
— m

no

(W, in eV)

p5 I I I I I I III I I I I I I III I l I I 1 1

10 2 101
I I I I IIIII I I

10
w, (ev)

FIG. 7. Energy-loss rate dWe/ds for electrons of very
low energy in N2 versus the electron energy We (Ref. 13)
(W'e in eV; d W,/ds in eV m ').

where E„zs the relative cluster dxelectrzc constant.
The dependence of b* on W, , computed on a line
joining two molecules, is shown in Fig. 9. Elec-
trons with b &b* are scattered through an angle ~,
expressed in the c.m. system by

"&o
6=m —2

diameter) by lessthan 10%. So weassume in our
calculations that the primary-electron trajec-
tories are always linear down to about 50 eV.

B. Low Energy

The electron scattering for S', & 30 eV has been
evaluated taking into account the molecular struc-
ture of the cluster. In Ha, N2, and CO2 crystals,
molecules are tied to each other by the van der
%aals forces. The corresponding cohesive en-

with p = b/r. x is the distance from the electron
to the molecule. For energies smaller than 30 eV,
which include always secondary electrons, the
scattering angles fall between 30 and 180 for
b*&b& ~do. Since b* is about —,'do, where do is the
intermolecular distance, scattering angles are, in
general, very large. In fact, if an electron has
an impact parameter greater than b* with respect
to the nearest molecule, the probability of passing
at a distance» b~ from the next center of scat-
tering is very low. The probability that an elec-
tron can escape from the cluster without passing
closer than b to one molecule is roughly

I I I I lllli I I I IIIII) I I I IIIII) I I I &I~

10
10

10—9

108
DD

OP

III
III 7

o. 106-

105'. I I I I I llll I I I I I IIII

10 2 10"1 1

I
I
I

/
I

I

I I I I Illil I I I IIIII
101 102

W, (sV)

TABLE II. Energy-loss rate forelectrons of very low
energy E'dWe/d8 in eV m; 8'e in eV).

Hydrogen clusters (H2)

dW ' = -4. 9 x 10' 5"," 10-'«5' «10
d8

Nitrogen clusters (N&)

dW '= -4x10'(2.5W)" 0.4& W, «10
d8

d+' = —2x10'(1.0th" )" 0.1&8 0.4
ds e ' e

Carbon dioxide clusters (COp)

dw
dS

= —3.2x 10 (0.25W ) ' 4& 8' «1pe e

dW
=- —1.2x 10 W 1&W «4

ds e e

FIG. 8. Energy-loss rate dWe/d8 for electrons of very
low energy in CO2 versus the electron energy We (Ref.

) (~e n eV; dSe/d8 in eV m ).

dw
—e = —4.3 x 107 (258' ) 0 04 & W'e «1

ds
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O
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03—

0,2—

1 —(2b/do)
2g2 (4. 2)

where g is the distance (normalized to do) from the
electron to the cluster surface. In the range of
energy of the ejected electron P„~ 5&&10 if g» 2.
Therefore the electrons of less than 30 eV ex-
perienerience large-angle scattering each time they col-
lide with a molecule of the crystal lattice. As the
total collision cross-section magnitude is about
the mesh area of the crystal lattice, the mean
free path for a scattering collision is the inter-
molecular distance do. We have thereafter assumed
that the motion of the low-energy electrons inside
the cluster looks like a three-dimensional random
walk, with a mean free path equal to do.

0,1—

0 I I I I I I I I I l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

50 1 2 4
W, (eV)

FIG. 9. Minimum impact parameter b* in electron-
molecule interaction versus the electron energy W~, for

d N 5* '
mputed in the dipolar potential induced

by an electron on a line joining two molecules a distance
d0 from each other. At ~$0 the electron does not interact
with the two molecules because the two induced potentials
cancel mutually (W~ in eV; &* in units of do, the inter-
molecular distance).

ergy versus @' is shown in Fig. 10. Thee
curves show good agreement with those deduced
from the velocity distributions calculated for elec-
trons ejected in ionizing collisions with hydrogen
atoms. ~' The values of 5',0, calculated at a g'ven
S', in the region 50-200 eV, are spread between
j.2 and 20 eV, depending mainly on the chosen
value of the ionization cross section (theoretical
or experimental). Though precise experimental
informations on the energy spectrum of the ejected
electrons is lacking, the trend found for S',o vs
S', agrees with the available experimental data.

The energy spectrum of the secondary electrons
measured in several gas targets does not seem to
show any significant dependence on the nature of
the gas. In formula (3.2) the weight of the ejected-
electron term never exceeds 35-40% of the total
loss, hence the accuracy in 5;0 which is always
better than 30% affects, only slightly, the estima-
tion of dW, /ds in the low-energy region. In ad-
dition, we shall show that the range of the secon-
dary electron in the cluster depends rather more
on the rate of energy loss than on the initial mean
kinetic energy 5',0 of the ejected electron. Hence
we assume the calculated relationship between 5;
and 8', is adequate for our use and holds approxi-

rite TVmatively for N2 and CO2 also. We can wri e
=f, (W,) as follows:

W, o
= 10+3.33 ln(0. 032W,) eV,

50 eV& W, &10' eV (5. 1)

W, =8.8ln(0. 074W,) eV, V, & W, &50 eV.

UI RANGE OF EI.ECTRONS

An electron, losing energy by collisions with
the crystal lattice, is stopped before reaching the
cluster surface when its energy becomes smaller
than some critical value W*, which is the largest

V. SECONDARY-ELECTRON ENERGY
I I I I I l Ill

I I I I I llll I I I I I I II

In order to calculate the cluster ionization
cross section, it is necessary to evaluate the range
f th secondary electrons. To do this, the

tinitial evergy S',o of the secondary electrons mus
be known to compute dW, /ds from formula (3. 2).
For hydrogen, in the range 50-10~ eV, dW, /ds is
given by Bethe's formula [Eq. (3.1)I, and the
dependence of the ionization and excitation cross
sections on the electron energy is known theo-
retically. It is then possible to compute the rela-
tion between W,o and W, from formula (3. 2). This
is not possible for energies lower than 50 eV be-
cause Bethe's formula is no longer valid. Be-
tween the ionization potential V&, for whicich &
=0, and S', =50 eV, we arbitrarly use an inter-
polation. The ejected-electron mean initial en-

30-

0
g

20-

10-

0
101

/
/

I I I I I IIII
1Q2

I I I I I llll I I I I I llll
103 10

I I I I I llll I I I I I I II

1Q 10
6

W, (e V)

FIG. 10. Mean kinetic energy of the ejected electron
8'~0 versus the energy of the primary electron W~. Solid
line curve is obtained by using theoretical cross sections
(Ref. 10). W, 0 evaluated by using experimental data on

ef. 18 isatomic hydrogen ionization cross section e .
plotted by dashes. Dotted line represents the average
values of W, o used in computations.
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Qx
energy at A, Eq. (6. 1) must be modified as fol-
lows!

where
gg~ 1

We
dW,

"~'eW

pi

Origin of coordinate system

FIG. 11. Coordinate system for an electron interacting
with several electric charges.

The electron is trapped when

W~ ' Z ' =W*
4m' )

« Ir, —r] I

(6. 3)

value determined by the following conditions:
(a) The electron becomes trapped in the

Coulomb potential of one or several ions, which
can be the cluster electrical charges or the ion
resulting from the considered ionizing collision.
In this case W* depends on the electron position.

(b) For low electron energy (= 1 eV) the mini-
mum:mpact parameter b~ is very close to —,

'
do so

that an electron spends a long time in spiral orbits
around molecules. As vibrational and rotational
levels of the molecule ean still be excited, we
suppose that the electron keeps on in losing en-
ergy along its trajectory. As the minimum impact
parameter b* increases with decreasing energy,
the probability for the electron to collide with an
impact parameter b* & b & —,

'
do becomes rapidly

negligible. Therefore, the electron can be con-
sidered trapped in the dipole potential of one of
the surrounding molecules, as soon as its energy
is so low that 5* becomes close to —', do. Values
of 25*/do, for which the electron trapping in the
induced dipole potential is effective, are given
later.

A. Trapping in Coulomb Field

The energy equation of an electron in a, Coulomb
field of n fixed positive charge wouM be, in the
absence of energy-losses,

(6. 1)

where r«are the vectors defining the position of
the fixed charges and r, is the vector defining the
position of the electron (Fig. 11). W, is the local
kinetic energy of the electron; W,„is the electron
kinetic energy at the infinity.

Inside the cluster, electrons lose their kinetic
energy at a rate dW, jds at the same time that they
change their potential energy in the Coulomb field.
If A is the starting point of the electron path in-
side the cluster and W,A is the electron kinetic

that is, when its kinetic energy is lower than the
depth of the Coulomb potential at the point r, .

The following system must be solved to know the
electron kinetic energy along its trajectory:

dW~' =f, (W,), s=f (r,),

dW
(6. 4)

ds
eA

with the boundary conditions

[The last condition is already included in (6. 2). j
The trapping condition (6. 3) determines a function

f fs (lr,&- r, l, W,„, e, d, ),

and the range is then

61= [r„r,„[ . (6. 5)

The system (6.4) is very difficult to solve in all
but a few simple cases. However the actual situa-
tions in a cluster are simple. In fact small clus-
ters can carry, without breaking up, only one
positive electrical charge while large ones can
only carry a few charges (N» 103 molecules). '

The range 6I defined in (6. 5) depends on the posi-
tion of the positive charge with respect to the elec-
tron trajectory. Therefore 8 must be averaged
over all possible electron trajectories and all
possible charge configurations. The dependence
of 8 on the physical properties of the cluster is in-
cluded in the dielectric constant e, the intermolecu-
la, r distance do, and W~, which, in the case of a
secondary electron, includes the ionization poten-
tial of the cluster molecule [see Eg. (6. 7)].

In this work we have solved the system (6. 4) for
a cluster with one positive charge and the second-
ary electron resulting from the formation of this
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positive charge. For the case of a secondary elec-
tron resulting from the ionization of the ruth mole-
cule equation, (6. 2) becomes

n Pl

Ws=R's +
4'f~

y I r —r& I ~ r —r I

7
O

4 6—

because
sm

(6. 6)

1 g -=V;
47T&p Ir A

—r I

the ionization potential of the m molecule, and

5',„,= V( + W'~, (6.7)

where 8'z, the secondary-electron energy, is deter-
mined by formulas (6. I).

If n, = 1 we have

0—
0

I I

5 10 15 20 ~ ( y) 25
SO

FIG. 13. Range (R, of secondary electrons in CO2 clus-
ters versus electron energy 8', 0. 8"» is the kinetic
energy (at infinity) of the electron at its ejection from the
molecule. ($~0 in eV; 8 in units of d0, the intermolecu-
lar mean distance. } Curve I: Coulomb trapping; curve
II: dipole field trapping (b* = 0.475d0}.

' ds, 6. 8
F +N'

where n is the number of collisions and s =f~(r, )
becomes

(the equation is given in Table I or II depending on
the values of W, and on the nature of the cluster),

s =f~(r2)

As shown in Sec. IV, the path of the secondary
electrons inside the cluster can be considered as
a random walk in three dimensions with X = do.
Therefore

7—
OD

Figures 12 and 13 show, respectively, the values
of (R/do for clusters of Ha and C02 (curve I) versus
the secondary-electron energy W+,. beyond this
distance the secondary electron has lost enough
kinetic energy to be recaptured in the Coulomb
field of the ion produced by ionization. As the
electron starts from the ion position, we have only
one possible relation between the electron trajec-
tory and the ion position.

Tay et al. and Falter et a/. point out that ex-
perimental cross sections for H~ and CO~ clusters
have values such that one can consider the cluster
ionization to be effective only in an outer shell of
thickness three or four times do. It is noteworthy
that this qualitative picture agrees with the elec-
tron range computed by our model, which takes into
account the microscopic behavior of electrons in-
side the cluster„

8. Trapping in Dipole Field

0
15 20 (ev) 25

FIG. 12. Range 8, of secondary electrons in H2 clusters
versus electron energy S',0. 8'~& is the kinetic energy (at
infinity) of the electron. at its ejection from the molecule.
(5' 0 in eV; Q in units of d0, the intermolecular mean dis-
tance. } Curve I: Coulomb trapping; curve II: dipole field

pping P* =0.475'

Electrons can be trapped not only in the Coulomb
potential of an ion but in the dipole potential (in-
duced by the electron itself) of a molecule. When
the electron energy becomes so low that the cor-
responding minimum impact parameter b*(W,) is
close to —,'d the electrons can be considered as
trapped. The trapping probability evaluated for
H~ and CQ~ from the Cou'. omb potential agrees
very well with the experimental data.

The trapping in the Coulomb field is effective
when the secondary-electron energy becomes on
the average smaller than 8'* =0.7 eV for H3 and
8'~ =1.2 eV for CO2. The minimum impact pa-
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W, & W* (b* = 0.475 do)

instead of condition (6. 3).

C. Range of Primary Electrons

(6. 9)

0
I

20 W„{V)

FIG. 14. Range (R of secondary electrons in N2 clus-
ters versus the electron energy W, o (dipolar potential
trapping). Electron is captured when b* =0.475do, that
is, when W, =1.3 eV. W~o is the kinetic energy (at infin-
ity) of the electron at its ejection from the molecule.
(8",0 in eV; {R in units of da, the intermolecular mean
distance. )

rameters corresponding to these energies are al-
most the same for H~ and CO~ and equal to b*
=0.475d0. Because of the very rapid variation of

W, vs b* near b* = —,
'

do these data are not very ac-
curate. Figures 12 and 13 (curves II) show the
range 8/do vs W, o obtained by taking exactly W*
= 0. 7 eV for H~ and 8'* = 1.2 eV for CO» that is,
by choosing as the electron-energy limit the one cor-
responding to a minimum impact parameter b~

=0.475 do. The difference between curves I and
II is not significant, and it is due to our approxi-
mations used for choosing b*.

For N~ the trapping probability calculated in the
Coulomb potential or in the dipole potential with
b*&0.475d (W*&1.3 eV, see Fig. 9) are very
different. Figure 14 shows R/d vs W~ calculated
for nitrogen by the dipole potential trapping. 9/do
is of the same order of magnitude for the results
in H& and N2 obtained by the Coulomb potential trap-
ping. Values of 8/do calculated for several limit-
ing energies 5'* are given in Fig. 15. The limit-
ing energy in the Coulomb potential is W* =0. 1
eV and the corresponding (R/d is 35, that is about
seven times greater than for H~ and CO2 at the
same electron initial energy W+ = 10 eV. The lack
of experimental results for N~ clusters does not
allow us to choose at present between the two
methods of determining the range of the low-ener-
gy electrons.

The trapping of electrons in Nz seems likely to
occur owing to the dipole potential since it acts be-
fore the Coulomb trapping, whereas in H~ and CO&

the trapping seems to be due to the Coulomb po-
tential.

To compute the range for a secondary electron
in the dipole field one must solve the system (6.4)
coupled to the trapping condition

Computations of the cluster ionization cross sec-
tion under electronic impact has been performed
on a IBM 360-91 computer for H» N» and CO3.
The double integration of (2. 11) is performed by
the trapezium method. At each j step over z, the
electron energy S'„. is obtained by integrating the
differential equation dW, /dx =f(W, ), where f(W, )

is one of the equations of Tables I and II. This
integration is performed by the Runge-Kutta meth-
od with four orders of approximation. At each j
step over g, W„, F(W,, , gz), and o (1, W,~) a,re
calculated.

The computed values of o (N, W,o)/o (N, W, „)
versus the initial electron energy W, p for several
molecular number of mass N are plotted in Figs.
16-18, respectively, for H» CO» and N2 clusters.
The values o (1, W,o)/o (1, W,„)for the corre-
sponding molecules are shown on the same figures
as well as the experimental results available for

25

I

0.5
I

1,5 W&(eV) 2

FIG. 15. Range 8, of secondary electrons in N& clus-
ters versus arbitrary limit energies 8"*. 8'» =10eV.
(W* in eV; (R in units of do, the intermolecular mean dis-
tance. )

The range of primary electrons of energy higher
than about 80-100 eV is very large because the
path of the scattered electrons is not a random
walk. The trapping conditions give values of 8,
o (200-300)do. Primary electrons could then be
captured only in clusters for which the mass
number is N~ 10 molecules. These clusters are
at least of three orders of magnitude greater in
size than the clusters produced in present systems.

VII. RESULTS OF NUMERICAL COMPUTATIONS
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FIG. 16. Computed ionization cross section g(V, W«)
of H2 cluster by electron impact versus the initial elec-
tron energy W«. g. (N, W«) is normalized to the maximum
cross section g~=g(N, W~&&). On this figure are drawn
g(1, W), the molecular ionization cross section by elec-
tron impact, normalized to its maximum g(1, 5'~), and
the experimental data of Tay et al. (Ref. 7) for H2 clus-
ters (W« in eV).

FIG. 18. Computed ionization cross section a(lV, W@)
of N2 clusters by electron impact versus the initial elec-
tron energy W,o. g(Ã, W,o) is normalized to the maximum
cross section g~=g(N, 5'~z). g(N, W«) is computed by
taking into account the values of S of Fig. 13 (electron
trapping in the dipole field). On this figure is drawn the
molecular cross section g(1, W«) normalized to its maxi-
mum g (1, W+,) (W,o in eV).

H, and CO2 clusters: The agreement between
the computed and the experimental data is fairly
good, especially for 8," greater than W, ,~, the en-
ergy corresponding to the maximum of the cluster
cross sections.

The dependence of 8,'~ on the cluster mass num-
ber, shown on Figs. 19-21, is in agreement with
the available experimenta, l data.

0,75-

The ratios of cluster ionization cross sections
over the corresponding molecular ionization cross
section o (N, W,.o)/o (l, W,o) are plotted versus
N in Figs. 22-24 for several initial energies 5', 0
of the primary electrons. For very small clusters
o (N, W, o)/cr(l, W, o) is proportional to N, where-
as for larger clusters it increases more slowly
than ¹ In the range 10 & N«10' the slope of
o (N, W, o)/ o (1, W, o) is roughly proportional to

The experimental data available for H2 clusters'
agree fairly well with the calculated ones. For
CG~ the experimenta, l values have been plotted in

Fig. 23 by assuming the cluster to be multi-
charged. The measured decrease of N/Z when

W,o grows has been interpreted as due to an in-

I
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Q) N =50

g) N =100

04 N =1000
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06 N = 10000
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FIG. 17. Computed ionization cross section g(V, W«)
of CO& clusters by electron impact versus the initial
electron energy W«. g(N, W«) is normalized to the maxi-
mum cross section o.~»=IT(N, w~z). Qn this figure are
drawn g(l, 5'@), the molecular ionization cross section
normalized to its maximum g.{l, 5'~J), and the experi-
mental. data of Falters et al. (Ref. 8) for CO& clusters
(W„ in eV).

0 I I I I lilll I I I I IIIII I I I I IIIII I I I I IIII
10 102 103 1O4

FIG. 19. Computed energy W,~ corresponding to the
maximum ionization cross section of H& clusters by elec-
tron impact versus the cluster molecular mass number
X (e„, ineV).
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FIG. 20. Computed energy W',„corresponding to the
maximum ionization cross section of CO& clusters by
electron impact versus the cluster molecular mass num-
ber Ã (W~» in eV).
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crease of Z, rather than to a reduction of the
cluster number of mass. 8 The experimental
curve on Fig. 23 for R', = 100 eV has been inferred
from the data given in papers. '

The discrepancies between the experimental and
calculated values are due likely to experimental
errors, mainly in estimating the cluster mass
number, as well as to the approximations of the
present model, We recall that the ionization cross
sections are computed for a fixed cluster mass or
for a Poisson distribution of the masses, whereas
experiments deal with the mean value of the actual
distribution function. This latter has not been
directly measured„only its possible shape has
been inferred by difficult elaborations of the crude
experimental data. '

It is possible to make the computed values fit the
experimental ones by adjusting empirically the en-
ergy-loss rates and the electron scattering; never-
theless we believe these numerical corrections are

FIG. 22. Computed ionization cross section of H&

clusters by electron impact 0.(N, 5'~0) versus the clus-
ters molecular mass number N, for electron initial
energy TV,0=100, 200, 500 eV. o.(V, W) is normalized
to the value of the corresponding molecular ionization
cross section at the same electron energy 8'&. In this
figure are drawn the experimental data of Tay ep al.
(Ref. 7) at ~"« = 200 eV.

at present meaningless because more experimental
data are necessary, in particular, those concern-
ing cluster beams of well-defined mass.

I j
QWeo =100eV— Calculated gW 500 y—————Experimental
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FIG. 21. Computed energy 8'~» corresponding to the
maximum ionization cross section of N2 clusters by elec-
tron impact versus the cluster molecular mass number
N (W'~» in eV).

10 ' I I

101 102 103 1O4 „1O5
FIG. 23. CO2 cluster ionization cross section

0. (N, 8'@), computed for electron impact, versus the
cluster molecular mass number N, for electron initial
energies S'«=100 and 500 eV. o.(N, 8'&) is normalized
to the value of the corresponding molecular ionization
cross section at the same electron energy 8"«. In this
figure are drawn the experimental data of Falter eI; al.
(Ref. 8) at %@=500 eV and Hagena {Ref. 21) at %,0
=100 eV.
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VIII. CONCLUSIONS

The present model takes into account three sim-
ple phenomena: the energy loss of the electrons
inside the cluster; the trapping of the secondary
electrons, ejected in an ionizing collision, by the
Coulomb field of the ion or by the induced dipole
field of a cluster molecule; the random walk of
the secondary electrons due to their large scatter-
ing. By evaluating numerically these three effects
and by connecting them to each other, the present
model allows one to estimate the probability for an
electron, in particular a secondary electron, to
escape from the cluster. It is then possible to
evaluate the effective cluster ionization cross sec-
tion defined in (l. 2).

At the present state of experimental investiga-
tions of clusters under electron bombardment, we
consider the agreement between the experimental
and the computed values is fairly satisfactory.

A serious uncertainty in this model concerns the
two kinds of electron trapping we suggest. For N~

clusters, the ionization cross section should be

FIG. 24. N2 cluster ionization cross section g(N, 8'~p),
computed for electron impact, versus the cluster molecu-
l.ar mass number N, for electron initial energies W',p.
100 and 500 eV. o(P/, 8'@) is normalized to the value of
the corresponding molecular ionization cross section at
the same ej.ectron energy W~p.

very different depending on whether the Coulomb
or dipole field traps electrons inside the cluster.
This uncertainty can be removed only by experi-
mental measurements. The cross section defined
in Eq. (1.1) can be used to compute attenuation by
ionization of a cluster beam, with mass number
Nor /, whatever the cluster vaporization or split-
ting by multiple ionization may be. On the other
hand this cross section may be used to compute
the current of clusters, charged by ionization, only
if cluster splitting by multiple ionization ' and

vaporization are negligible with respect to simple
ionization. Indeed multiple ionization increases
the current of charged particles and reduces their
mass owingto splitting of the multicharged cluster,
and vaporization lowers the cluster mass. We
shall make some brief remarks on this latter prob-
lem.

Depending on their energy, the electrons excite
mainly the electronic, vibrational, and rotational
levels of the cluster molecules. The energy elas-
tically transferred is not sufficient on an average
to break the van der Waals forces binding the
cluster molecules to one another. The electronic
excitation energy probably does not increase the
cluster internal energy because most of the molec-
ular crystals are transparent. Vibrational and

rotational motions affect only slightly the position
of the molecule mass centers inside the crystal
lattice, therefore the crystal cohesive forces are
not much perturbed. However, as these weak per-
turbations sum up at each electron-cluster colli-
sion it can be roughly estimated that a cluster
evaporates or breaks up when the n, l value of the
electron target is greater than about 10" -10' m
However this is not the case of the experiments
previously mentioned. "

The approximate dependence of the ionization
cross section on N ~s for N& 10~"is mainly due
to the secondary-electron trapping. If the electron
energy could be completely transferred to molecu-
lar kinetic energy, the clusters of N& 103 should
vaporize at the first ionizing collision, contrary
to the experimental evidence. Therefore it seems
experimentally proved that the electron energy is
dissipated essentially by mechanisms which do not
affect strongly the cohesive forces of the crystal
lattice.
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A many-body optical potential Z which has been demonstrated to give excellent electron-
helium elastic scattering cross sections is analyzed. It is shown to encompass, yet be more
general than, almost all previous model potentials used in electron scattering and Rydberg-
state calculations. A partial semiempirical form of this potential is achieved. It is shown

how Z can be computed by methods of variation-perturbation theory.

I. INTRODUCTION

The recent numerical results for the properties
of the helium system by Yarlagadda et a/. ' show

the high physical quality of the optical potential Z,
the response A, and the Martin-Schwinger one-
particle Green's function G, which were computed
self-consistently in the generalized-random-phase-
approximation (GRPA) method postulated by
Schneider et al. (This paper will be referred to
later in the text as STY.) These quantities immedi-
ately yielded, in simp/e calculations, highly accu-
rate elastic scattering cross sections, ionization
energies, generalized oscillator strengths (hence
Born inelastic scattering cross sections), ground-
state energies and properties, frequency-depen-
dent moments, and moderately accurate excitation
energies. In a sense these properties have all been
calculated simultaneously.

The general purpose of this paper is to study the
functional form of Z given in STY (upon which the
calculation of Yarlagadda et gf. is based).
(Throughout this work we are implicitly assuming

that the functional form of the STY optical potential
is more correct than the GRPA method that is used
in the calculation. ) This functional form consists
of three terms [Egs. (4. 6) and (4. lla. ) of STY]:
the Hartree-Pock term, the direct polarization
term Icontaining the two-point response function

A(32, 3'2')], and the exchange polarization term
[containing the three-point response function

B(32, l'"2')]. In particular we shall seek (i) ways

of using semiempirical data (on frequency-depen-
dent moments and adsorption coefficients) in con-
structing Z, and from Z, the aforementioned
properties; (ii) alternate methods of computing Z

using the excellent variation-perturbation methods
of Karplus and Kolker, 3 Yaris, ' and Dalgarno and

Epstein; (iii) to demonstrate and interpret the
relation of this Z to the multitude of optical poten-
tials used in elastic electron-atom, -molecule
scattering calculations, in the determination of
Rydberg states of atoms (molecules), and for the

core pseudopotentials in solids (Bethe, ~ Temkin, a

Mittleman and Watson, Lippman et g/. , Laaahn
and Callaway, "' Khare and Shobha, ' Kestner


