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of a detailed model of this complex the ionization
potential' of 0'3, 77 eV, constitutes an estimate
for E~. It is harder to estimate F~, which must
be greater than the K-shell binding energy" 532
eV in the isolated 0 atom but much smaller than

the ionization potential' of 0'6, 739 eV. A rough
estimate of F~ can be obtained with the aid of
Larkins's calculations' of K-shell binding ener-
gies in neon for various degrees of ionization in
the valence shell. These calculations predict that
the K-shell binding energy is about 38% larger for
Ne' (no I. electrons) than for neutral neon. This
percentage change agrees closely with the 39/~ in-
crease in oxygen K-shell binding energy for com-
plete removal of the L-shell electrons. Further,
Larkins finds that after removal of half the neon
I.-shell electrons, the K-shell binding energy in-
creases about 15%. If we assume the same percen-
tage increase in oxygen K-shell binding energy

after removal of half the oxygen L-shell electrons,
we can estimate E~ for 0' to be about 600 eV.
Then F~ —F~ is about 520 eV, an approximate re-
sult that agrees qualitatively with the experimental
value 454+ 30 eV.

The results presented in this paper are consis-
tent with an earlier report~ ot 200-keV Q4r dis-
tributions (where the T stands for "total" ) that
were exceptionally wide compared to Q~r and Q~r
distributions at the same energy. It is now clear
that the Q4r distributions were widened because
they contained double peaking that was obscured
by the poorer resolution available to those mea-
surements.
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Numerical coupled-channel two-state calculations have been employed to yield a reduced-
total-cross-section curve as a function of reduced velocity for the case where the potential
curves lie parallel to one another and there is an exponential coupling between them. This
plot may be used to estimate the energy dependence of the charge-transfer inelastic total.
cross sections for transitions that occur at large internuclear distances due to coupling be-
tween two close-lying states. We have specifically applied the above plot to several alkali-
ion —alkali-atom systems and find reasonable agreement between theory and experiment. The
velocity at which the total cross sections reach their maximum is obtained for the general
case and is found to be in fair agreement with experiment. A comparison between the results
of Demkov and these calculations is also made.

INTRODUCTION

In the problem of understanding the energy de-
pendence of charge-transfer inelastic total cross
sections for the reaction

there generally exist two different types of mech-
anism for the char ge transf er.

The first mechanism is due to the crossing of
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potential-energy curves, with the charge transfer
occurring at the curve crossing. This type of
mechanism predominates in the cases where the
energy separation of the reactants and products
at infinite internuclear separations is large. The
curve-crossing case has been extensively ex-
plored in terms of the Landau-Zener-Stuckelburg
theory, and its limitations and regions of useful-
ness are now relatively well understood. ~

A second type of mechanism can also exist that
will give rise to large cross sections. This occurs
for systems in which several potential curves lie
very close together at large separations. Here,
charge transfer occurs not because of a localized
curve crossing but because the coupling between
the states is comparable in magnitude to the po-
tential-energy separation. A theoretical frame-
work in which to study this very important class
of reactions has been presented by Demkov.

Many reactions fit into this last category, but
probably the best studied experimentally are the
alkali-ion-alkali-atom charge-transfer cross-
section measurements of Perel and Daley. These
are also ideal systems for a theoretical study, be-
cause in most of the cases only two states, the
reactant and product channels, dominate the charge-
transfer reaction. Also, because there exists
such a wealth of data on these relatively simple
systems, theory is forced to understand them be-
fore going on to more complicated multichannel
problems.

In this paper, we are concerned with the prob-
lem of charge transfer at large distances for the
general two-state case. The cross sections and
velocity are presented in terms of reduced units
so that one common plot may be conveniently ap-
plied to this whole class of reactions. The results
are tested against the measurements of Perel and
co-workers on several alkali-ion- alkali- atom
systems, and reasonable agreement is found be-
tween theory and experiment. Moreover, the
parametrization of the position of the cross-sec-
tion maximum is easily understood within this
theory and agrees well with experimental measure-
ments. A comparison with the results of using the
Demkov formula is also made. We find the Dem-
kov formula tends to underestimate the cross sec-
tions in the threshold energy region because of the
neglect of the important region of coupling at large
impact parameters.

II. THEORY

ment H»(R). Here, in essence, we have the op-
posite problem. The two potential curves are
assumed to be parallel with one another, and the
coupling-matrix element is assumed to have an
exponential R dependence. The charge transfer
at low to moderate energies is then found to be
localized at the internuclear separation where the
difference in potential curves is equal to twice the
coupling-matrix element H»(R).

Stiickelberg first looked at this problem for the
case where the coupling-matrix element has the
form C/R'. This form is important in excitation
transfer for an optically allowed transition, s = 3,
or for a forbidden transition associated with a
(s —1)-pole moment. Demkov, however, has spe-
cifically examined the charge-transfer case using
an exponentially decreasing coupling-matrix ele-
ment. We will briefly review the theory of Dem-
kov, then show how its accuracy may be signifi-
cantly increased by using model numerical close-
coupled calculations.

For charge transfer between a positive ion and
an atom, the intermolecular potentials at large
distances may be written as

~;(R) = ~,(-) —o,/2R',

H„(R)= e-"' (4)

The transition probability can then be calculated
as a function of impact parameter using the Dem-
kov formula

P(b) = sech '- sina2 vbV(R, ) . 2 1

(5)
Here, all quantities are in atomic units, and the
radial velocity at a specific impact parameter is
given by

where &~ is the dipole polarizability of the neutral
atom and i = 1, 2 for the reactant and product states,
respectively. Transfer of charge occurs in the
region R, where the coupling-matrix element H»(R)
equals one-half the difference between the inter-
molecular potentials:

H»(R, ) = —,'i V,(R,) —V,(R,) i

=-,'~V(R, ) .
Over the region of transfer, 8, + &R, , it is a good
approximation to set the coupling-matrix element
equal to the simple exponential form

We are dealing here with the problem of charge
transfer at large distances betwc, en two close-
lying states. The formalism is very different
from the Landau-Zener curve-crossing case where
we assume a linear crossing of two potential-en-
ergy curves and a constant coupling-matrix ele-

where vo is the incident velocity. Equation (5) is
accurate for impact parameters b «A, . There-
fore, Eq. (5) neglects an important region of trans-
fer for impact parameters b ~ R,.

Duman has used the Demkov formula to calcu-
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l.2 I I I I I I I I I in the threshold region can be represented in terms
of a reduced velocity

6 1= 2h'P(vo/mhV(R, ) (1s)

0.4—

0.2—

0
0 ].0 2.0
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3.0 4.0 5.0

FIG. 1. Reduced total cross section Q* tEq. (14)] vs
reduced velocity 6 ' [Eq. (13)). The solid line is from
numerical calculations, and the dashed line is from the
Demkov formula.

(8)

The second form, which is applicable at high en-
ergies, is identical with the formula used for
resonant charge exchange. The Smirnov method
is used for calculating the cross sections, ' and it
is found that

q= RvR2o

where Ao is the solution to

(10)

We have derived Eqs. (7) and (8) in a different
may and find an equivalent form for the cross sec-
tion:

-Ox

1

where

late the cross sections for near-resonant charge
exchange between He' ions and alkali atoms. He
has simplified Eq. (6) by using two limiting forms
for the cross sections. The first form, applicable
to low collision energies, i.e. , the threshold en-
ergy region for the cross sections, is given by

q = —,'(1R,'f(v)

where

and in terms of a reduced cross section

q* = q/-,'vR,'

We have explored, using numerical calculations,
the applicability of using a reduced plot of q* as a
function of ~ to estimate the total cross sections.
Numerical calculations are necessary here since
the Duman formulas [Eqs. (7)-(10)]neglect the
transitions occurring around and outside R, . This,
as will be shown in Sec. III, causes the total cross
sections to be seriously underestimated in the
threshold energy region. Variations in the param-
eters &V(R, ), &, and R, were made to see if one
common curve could represent various starting
conditions and also to determine the region of
validity of the reduced curve.

III. REDUCED CROSS SECTIONS

The numerical calculations of the transition
probabilities that are required to compute the
reduced cross sections were performed using the
semiclassical forced-turning-point me thod of
Bates and Crothers. 8 The singularity at the turn-
ing point was removed by utilizing the change of
variables suggested by Bates and Sprevak. 7

Various combinations of AV(R, ), X, and R, were
used to test the validity of employing a common
reduced-cross-section curve. 6 V(R, ) was varied
from 0. 006 to 0. 1 a. u. (0. 16 to 2. 7 eV), & from
0. Sa~'to 0. 6ao, and R, from 7. 5ao to 16ao. The
solid line on Fig. 1 depicts the calculation of the
reduced cross section q~ vs the reduced velocity

In the range of reduced velocity shown, the
solid line is within 10/(, of all calculations. A
numerical summary of the solid line of Fig. I is
given by Table I. The dashed line on Fig. 1 is the
evaluation of the Demkov equation using the lew-
energy formula [Eqs. (7) and (8)]. We find a con-
siderable difference between the numerical calcu-
lations and the lom-energy Demkov formula.

TABLE I. Calcu1. ated reduced cross sections.

0.5
1.0
1.5
2.0
2. 5
3.0
3.5
4.0
4. 5
5.0

vAV(R, ) V, (R,) )'~~
2k Xvo E (12)

For the type of ion-atom charge'-transfer calcu-
lations considered here, it is an excellent approx-
imation to set [1—V, (R,)/E] equal to unity,
which is what we mill do in the rest of this paper.

The impor tant fact to be seen from the deriva-
tion of Eqs. (11) and (12) is that the cross sections

0.03
0.30
0.66
0.95
1.05
l.08
1.07
1.05
1.02
0.99
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FIG. 2. Transition probabilities vs impact parameter
for g =1.0, &=0.3pp DP'N ) =0.02 a.u. , and 8,
=15.35ap. The solid line is from numerical calculations,
and the dashed line is from the Demkov formula.

Around 5 '=2. 0, this difference amounts to almost
a factor of 2.

The reason for the large difference between the
numerical calculations and the Demkov formula
lies in the fact that the transition probability for-
mula given by Eq. (5) does not accurately take in-
to account the transitions occurring at impact
parameters b ~ R,. The transitions occurring here
have a considerable effect on the cross-section
magnitude, since the transition probability is
weighted by the impact parameter in the cross-
sec tion integral

q= 2~1 db bP(b) (»)
The neglect of transitions occurring around b

R, causes the cross sections to be underestima-
ted.

A comparison between the Demkov low-energy
formula [Eqs. (7) and (8)] and numerical calcula-
tions for the transition probabilities is shown in
Fig. 2. For this comparison, 6=1.0, ~=0. 3ao,
6V(R, ) = 0. 02 a.u. , and R, = 15.35ao. The nu-

merical transition probabilities possess oscilla-
tions due to the interference between the two pos-
sible trajectories at a given impact parameter. In
this case, for impact parameters b 10ao, the
random-phase approximation may be used to cal-
culate the cross section. In this approximation,
the rapidly oscillating transition probabilities are
set equal to their average value. When the ran-
dom-phase approximation is applied to the numeri-
cal results shown in Fig. 2, we find good agreement
for b ~ 10ao with the low-energy Demkov formula
(the dashed line) derived by setting the sin~( ) term
of Eq. (5) equal to —,'. In our calculations of the
cross sections we have used the Demkov formula
I Eqs. (7) and (8)] at small impact parameters
where the transition probabilities are oscillating
rapidly. Numerical checks indicate that the Dem-
kov formula is very accurate for low impact pa-
rameters and for rapidly oscillating transition
probabilities.

In Fig. 2 the main difference between the cross

Two of the simplest systems to study theoretical-
ly are the charge-transfer reactions

Li'+ Na Li+ Na' + 0. 25 eV

Na'+ Li- Na+ Li' —0. 25 eV (17)

These reactions proceed primarily via the two
ground states. The nearest excited state is ex-
citation to Li(2P) in reaction (16), which has a
&E of —1.60 eV and only slightly affects the mag-
nitude of this cross section. Both of the above

IOO I I I I I I I I I

OJ

5

O

IOI—
C3
UJ
M
(A
Cf)
O
CL
O

X=O&ao

) =0.5ao'

0.6ao

I I I I I I I I I

0 I 2 5 4 5 6 7 8 9 IO
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FIG. 3. High-energy "ross sections vs the coupling
parameter g.

sec tion calculated from transition probabilities
obtained from the Demkov formula and those from
the numerical calculations arises from the transi-
tion probabilities around b =R,. There is a con-
siderable amount of tunneling outside of R, which
greatly increases the cross section. For the ex-
ample shown by Fig. 2, the Demkov formula
underestimates the reduced cross section with a
value equal to 0. 202, while the numerical calcu-
lations yield Q* = 0. 317.

At reduced velocities greater than & '~ 5, the
reduced curve shown in Fig. 1 cannot be used to
estimate the cross sections. At the higher ve-
locities the collision behaves as if the system is
resonant and a new set of parameters is needed
to represent the collision process. From Eqs.
(9) and (10) we see these parameters are the col-
lision velocity and &, the exponential decay factor
of H,z(R). 1n Fig. 3 are shown the cross sections
obtained by varying X, Eqs. (9) and (10). This
formulation, which strictly applies to resonant
charge exchange, is accurate at the higher veloci-
ties where Fig. 1 is no longer applicable. In
practice, we find that the high-energy cross sec-
tions join with the cross sections calculated from
Fig. 1 at around ~ = 5. 0.

IV. APPLICATIONS

A. Li++ Na
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reactions have been measured experimentally by
Daley and Perel so that it is possible to test the
validity of any theoretical technique.

In order to calculate the cross sections, it was
first necessary to estimate the internuclear sepa-
ration at which charge transfer occurs, i. e. ,
EV(R, ) = 2/I~a(R, ). The calculation of b V(R) was
performed using Eq. (2) with spectroscopic en-
ergy levels, and the theoretical dipole polariza-
bilities obtained from the paper by Dalgarno and
Kingston. The coupling-matrix element calcu-
lation was performed using the formula

(R) fl/RI1/2Rg e-0 ~ 862
12 1 2 (18)

where

R* = —,'(o. +y)R (19)

In Eq. (19), —,o. equals the effective ionizationpo-
tential of the atom of Eq. (1) in the reactant state,
and &y equals the effective ionization potential of
the atom in the product state with all quantities
being in atomic units. In essence, the H~2(R) used
here means that the cross sections calculated for
reactions (16) and (17) will be identical within the
two-state approximation.

Using the above formulas, we find that the
critical distance at which charge transfer occurs,
or where the wave functions change from an atom-
ic to a molecular basis, is A, = 10.63ao. Here
&V(R, ) of Eq. (3) is equal to 0. 00922 a. u.

In a recent paper by Bottcher and Qppenheimer, ~~

the authors have calculated ab initio potential
curves for LiNa' and state that they find a curve
crossing at B= 10.Sao. The cross sections com-
puted from the potential curves are then explained
in terms of a curve-crossing model. This ex-
planation seems very unlikely, however, since
the long-range dipole polarizabilities for Li and
Na are almost identical, so that b, V(R) will be
essentially equal to ~E for internuclear separations
around 10ao to 1lao. The change in character of
the wave functions that the authors attribute to a
curve crossing is most likely the simple type of
long-range interaction being studied in this paper.

The only other quantity needed to calculate the
cross sections is &= 0. 56ao [Eq. (4)] which is de-
termined from the coupling-matrix element [Eq.
(18)] at R, . The replacement of the form of Eq.
(18) by Eq. (4) is valid since the charge transfer
occurs over a narrow range of 8 centered about
R, . Using Eqs. (13) and (14) and Figs. 1 and 3,
it is now possible to calculate the cross sections
and compare them with experiment. The results
are shown in Fig. 4. The threshold and position
of the maximum of the experimental cross sections
are well reproduced by theory. The magnitude of
the cross sections are about 30% below the ex-
perimental ones, which probably indicates that the

IO
E
C3

8
O

z 6—0
~ow4—
CA

cA 2
PVo /

I

O

I I I I I I I

THEORY

I

2

I I I I

4 5 6 7
I

8 9

ION VELOCITY (IO cm/sec)

PIG. 4. Li'+Na and Na'+ Li total charge-transfer
cross sections. The solid lines are from the experiments
of Daley and Perel (Hef. 8); the dashed line is from this
theory.

coupling-matrix element H&~ as given by Eq. (18)
is below the true value by about 50%%uo. H~z could
be adjusted to give an almost perfect fit to the data
but this would not test the limitations of the theory.

The oscillations on the cross sections for the
nonresonant alkali-ion-alkali-atom charge-trans-
fer systems have been explained in a previous
paper as due to anonrandom-phase contribution to
the cross sections caused by an extremum in the
difference potential bebveen the reactant and
product states. ' Such an extremum is found in
the difference potential in the ab initio potential
calculations of Bottcher and Qppenheimer at R
= 4ao which does explain the frequency of the ob-
served oscillations. The explanation given in Ref.
11 for the physical origin of the cross-section
oscillations is different from the simple model pro-
posed in Ref. 12. In this paper, however, we are
not concerned with the oscillatory structure, but
only with the over-all energy dependence of the
cross sections.

The explanation for the slight difference in mag-
nitude of the cross sections observed experimental-
ly for the Li'+ Na and Na'+ Li systems ean be ex-
plained as due to the influence of higher-lying in-
elastic channels. From the correlation diagrams
of Barat and Lichten" it can be predicted that a
II-state potential leading to np excitation will cross
the Z-reactant-state potential for most of the ex-
othermic alkali-ion-alkali-atom reactions, such
as in the case of Li'+ Na. A verification of this
crossing in the LiNa' system is shown in the po-
tential curves of Bottcher and Oppenheimer.
The Coriolis coupling between the Z and II states
for curves crossing around B-6ao can lead to an
additional contribution to the cross sections for
the exothermic reactions. An estimate of the
magnitude of this cross section can be obtained
from the work of McMillan on Li2', who finds the
Z-II cross section increasing from 0. 2&&10 "to
1.Ox10 cm in the velocity region studied

14,15
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Li" +K- Li(2P) +K' —0. 80 eV (20b)
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FIG. 5. K" +Rb and Rb'+ K total charge-transfer cross
sections. The solid lines are from the experiments of
merel and Yahiku (Ref. 15); the dashed line is from this
theory.

Calculations for the K'+ Rb and Rb'+K charge-
exchange cross sections have also been used for
a comparison with the experimental data of Perel
and Yahiku. ' These systems, as in the previous
case, can be handled effectively within a two-
state framework. The energy separation at in-
finity is +0. 163 eV, and the states lie parallel to
one another at large separations.

The calculations were performed in an identical
manner to the Li'+Na system except that the in-
put parameters such as dipole polarizabilities,
energy levels, and matrix elements were changed
to reflect this system. The charge transfer was
found to occur at R, = 12. 50ao where the potential-
energy difference hV(R, ) was equal to 0.00568
a.u. The coupling-matrix element [Eqs. (4) j was
characterized by ~ = 0.469a~'.

The results of the ca.lculation and the experi-
mental data are shown in Fig. 5. Again the cal-
culations underestimate the experimental cross
sections in the area of the maximum, but repro-
duce the threshold region. For both the Rb'+K
and K'+Rb charge-transfer reactions the theory
predicts identical cross sections. The experiment
shows the K'+Rb cross sections to be larger than
the Rb'+K. We explain this as due to the additional
contribution of excitation to the K(4p) state from
Coriolis coupling between the ground Z state and
the ll state leading to K(4P). Detailed ab initio po-
tential calculations will, however, be necessary to
substantiate this claim.

Li'+K- Li(2s)+K'+1. 05 eV (20a)

C. Li +K

The Li'+K system poses a more difficult prob-
lem, because the reaction is dominated by the two
processes

The theory presented above is not directly ap-
plicable to a three-state system; however, it can
give a. good estimate of the relative importance
for both processes of Eq. (20). Moreover, we
estimate that the derived cross sections for each
process will be approximately 30% too large at the
cross-section maximum due to the neglect of the
coupling to the competing channel. At the thresh-
old energies the sum of the cross sections for the
two separate processes of Eq. (20) will give the
same result as a three-state calculation. How-

ever, around the cross-section maximum the sum
of the individual cross sections wiQ overestimate
the true result by about 30%. This figure is es-
timated from the transition probabilities that give
a maximum value for an n-state process as (n —1)/
n, neglecting phase effects.

In the calculations we find the region of coupling
for both processes is centered around 8,,= 8. 3Ga, .
At first glance, one would expect the coupling to
the excited state of Eq. (20b) would occur at a,

larger separation than the ground state and hence
give rise to a larger cross section. However,
when the long-range A potential is included in the
calculations, both processes are given equal weight
since the polarizability of Li(2s) is 165a3O and
K(4s) is 281a~~. The polarizability of Li(2p) will
be larger than that of Li(2s), and, as an estimate,
we have set it equal to the polarizability of K(4 s).
For reaction (20a) the pertinent parameters are
&V(R, ) = 0.0264 a. u. and X=O. 522ao', and for re-
action (20b) the parameters are &V(R,) =0. 0293
a.u. and ~= 0. 509ao'.

The results of the calculations are shown in Fig.
6. It was found that the cross sections for each
of the processes of Eq. (20) were identical. They
are shown by the dot-dashed line labeled "theory
o(2P). " The total cross section, which is simply
double the o (2P) curve, is given by the long-dashed
line. We estimate that this curve is too large by
30%%uq at the maximum, so that theory would again
underestimate the magnitude of the experimental
cross sections3 (solid line) around the maximum.

Although the theoretical total cross section for
all processes is in reasonable agreement with ex-
periment, there is a serious difference between
theory and experiment as to the cross section
leading to Li(2P) excitation. Possibly the reason
for the discrepancy in the magnitude and shape for
this cross section lies in the fact that the theory
should only be applied to S-state atoms and its use
here is invalid. Since only Z-Z interactions are
included by this theory, the neglect of the Z-II
transition to Li(2P) can lead to erroneous re-
sults. Another possibility for the discrepan-
cy in magnitude is that the optical experimen-
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be applied to this problem, and we find the maxi-
mum cross section occurs when

5 i= 2K%.n ~/vn V(R, ) = 3. 1 (22)

M 5
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O 2
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a. (2p)
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0 3 4 5 6 7 8

ION VEI OCITY (lO cm/sec)

FIG. 6. Li'+ K total charge-transfer cross sections.
The solid line is the experimental total cross section;
the short-dashed line labeled 0.(2P) is the experimental
cross section for excitation to the Li(2p) state (Hef. 3).
The theoretical total cross section is given by the long-
dashed line, and the cross section for excitation to the
Li(2g) and Li(2p) states is shown by the line labeled
"theory o.(2p)."

2

tal values for the 2P cross sections are not

absolute, but have been normalized to the slope
of the total-cross-section curve. This procedure
yields a cross-section curve for Li(2p) excitation
that can only be considered an upper limit to the
true Li(2P) cross sections. Possibly some of the
factor-of-2 difference between theory and experi-
ment is due to this normalization procedure. The
lack of agreement in the shape of the Li(2p) cross
section around the maximum is an unsettling factor
for the theory. One possible explanation for the
rapid decrease in the experimental cross section
above 4&& 107 cm/sec is simply the onset of os-
cillations similar to those observed on other al-
kali systems. Since this theory does not predict
any oscillations, this type of structure would not
be expected on the theoretical curve.

B. Cross-Section Maximum

Another problem that the theory can address
itself to is the velocity at which the cross sections
rise to their maximum. Perel and Daley3 were
able to parametrize the experimental results by
the form

~.„=a
I
~E I/I"' (21)

where a equals 22&10 for low-&E processes and
has a parabolic form for the higher-AE pro-
cesses. It appears, however, that the higher-
2 E systems also have a linear dependence but
with a slope equal to 8x10.

The reduced cross sections shown in Fig. 1 may

~= [f(eV)/13. 5I "', (24)

where I is the ionization potential of the electron to
be transferred. Equations (23) and (24) may now

be substituted into (22) with the result

U = 14. 5x 10'(bE/I'~') (cm/eV"'sec). (25)

The theoretical result, (25), is shown by the dashed
line in Fig. 7. There is reasonably good agree-
ment with experiment considering the nature of the
approximations [Eqs. (23) and (24)]. Differences
between theory and experiment should be expected
with the parametrization given by (21), since &Z
= 6V(~) is only a convenient approximation to the
necessary parameter &V(R,). Also, the coupling-
term parameter & should reflect both the initial
and final states of the electron being transferred
in reaction (1).

V. CONCLUSIONS

The method of Demkov has been used to pa-
rametrize the results of numerical total-cross-sec-
tion calculations for systems where charge transfer
takes pla, ce between two close-lying parallel po-
tential curves. The results may be applied t~ a
great number of systems. As examples, several
alkali-ion-alkali-atom systems were chosen for
a comparison with theory. It was found that there
was reasonable agreement with experiment, with
the threshold cross sections well reproduced and
the maximum position in agreement. The theo-
retical results, however, tended to underestimate
the experimental cross sections by approximately
30/o which probably indicates that the coupling-
matrix element should be increased by 50% at
large internuclear separations.

The low-hE formula used by Perel and Daley to
parametrize the experimental results on the veloc-
ity at which the cross sections reach a maximum
[Eq. (21)]has been justified in this work. The val-
ue for the parameter a of (21&obtained from the theo-
retical work is found to be in reasonable agreement

Several approximations are now necessary to
arrive at an equation similar to (21). First, we
must neglect the polarization potentials and assume
that

~v(R)= I~EI

in the region of charge transfer; that is, assume
that the polarizabilities of the reactant and product
systems are not very much different. Second, a
form for ~ must be found. The semiempirieal
result of Rapp and Francis" can be used for the
exponential coupling term with
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with experiment. The nature of the approximations
needed to arrive at (21) have also been elucidated.
This same functional form has been obtained by
Drukarev, '9 who was not able to estimate the value
of the slope for this equation.

One disagreement with experiment lies in the
magnitude of the Li(2P) cross section for the Li'
+K reaction [Eg. (20)]. Although there is agree-
ment as to the magnitude of the total cross section
for all processes, theory predicts a smaller cross
section than experiment for the Li(2P) contribution.
The difference may be due to an inadequacy in the
theory, or due to the normalization of the experi-
mental optical cross section to the slope of the total
cross section.

For many of experimentally observed cross sec-
tions where both the A'+8 and A +B' cross sections
have been measured, it is found that the exothermic
reaction has a slightly larger cross section. With-
in a two-state theoretical framework we would ex-
pect both cross sections to be identical. However,
from the work of Barat and Lichten, " it is evident
that there will be a curve crossing between the
gound Z state and an excited II state that leads to
the products of the exothermic reaction for many
alkali systems. The magnitude of this cross sec-
tion can be estimated from the work of McMillan'
and is close to the difference in cross sections ob-

served in experiments. The contribution of this
additional state therefore will slightly increa, se the
cross sections for the exothermic reaction. We
expect that the above reason explains the difference
in magnitude of the cross sections for the Li'+ Na
and Na'+ Li reactions and for the K'+Rb and Rb'
+K reactions. Experimentally, this hypothesis
may be tested by looking for the optical emission
from the particular nP state.

The oscillations observed experimentally on the
cross sections for alkali charge-transfer systems
have not been a topic of this paper. The explanation
has been given in a previous paper. ~ The oscilla-
tions are due to nonrandom contributions to the
phases in the cross-section calculation caused by
one or more extrema in the difference between the
potentials for the product and reactant states. This
explanation is different from, and should not be
confused with, that given by Rosenthal and Foley
to explain (correctly) the total-cross-section oscil-
lations observed optically on many highly nonreso-
nant systems such as He2'.
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Clusters of condensed matter which are produced under some particular conditions in super-
sonic molecular jets can be ionized by electrons. Measured ionization cross sections show
a sharp dependence on N, the mean number of molecules per cluster. For small clusters
(N &50) the cross sections increase as ¹ for larger clusters as about N~~3. Furthermore
the electron initial energy W'~z, for which the cross section is maximum, increases with ¹ In
this paper we present a model for the computation of the cluster ionization cross sections
which includes the energy losses inside the cluster of both primary and secondary electrons.
The escape probability for secondary electrons is given as a function of their initial position
and energy. This latter is related to the primary-electron energy. Results of these compu-
tations for H2, CO2, and N& clusters are in good agreement with experimental data.

I. INTRODUCTION

The formation of molecular clusters in free-ex-
pansion supersonic jets has been observed by
Becker et aL. ~ For gases such as CO2, cluster
formation occurs above a critical pressure even at
room temperature. Permanent gases such as N2

or H~, on the contrary, must be near their lique-
faction temperature before expansion in order to
form clusters.

As shown by Baoult, Farges, and Bouault and by
Audit' these clusters have a crystalline structure,
and their size is determined by the expansion pa-
rameters: pressure ratio, nozzle-skimmer dis-
tance, nozzle shape and size. Clusters are ionized
(positive charge) by electron collisions'-' and can be
accelerated up to high energies in electrostatic ac-
celerator s.

The ionization cross section we are concerned
with in this paper has to be defined. Because of
ionization, the attenuation of a neutral cluster beam
with intensity Io and velocity v„each cluster con-
taining X molecules, which intersects an electron
target, length dE, electron density n„electron
velocity e, »v„can be written as

dIc = —I,an, (n, /e, )dl, (l. l)

where a(N, W,c) is the cluster ionization cross sec-
tion and 5',0 is the electron energy.

Measurements of o are uneasy due to the spread
in the cluster masses. Generally it is possible to
measure the mean molecular mass number X of
the cluster beam, without knowing f(N), the dis-
tribution function of the cluster mass. The experi-
mental cross section is related to ¹ Therefore
a,„„(N, W~) defined as in (1, l) is actually

a.„„(N, W„)=a.„(N, W. ,)

x &max

f(N)a(N, W.c)l 5 f(N) . (l. 2)
1

Ionization cross sections for hydrogen clusters
under electron impact have been measured by Tay';
for argon and CO~ clusters by Falter ef al. ' These
cross sections are measured at a given electron
energy as a function of the mean value of the num-
ber of molecules per cluster.

The most important features of their results are
the following: (a) At constant energy, the cross
section is proportional to the mean mass number
of the cluster Pup to a critical value, roughly


