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In variational solutions of differential or integral equations the variance integral and variance
sum provide measures of the inadequacy of the trial function. For certain potential-scattering
problems the variance integral can be used to derive rigorous upper and lower bounds to the
phase shift. In more general scattering problems, the study of the variance sum or integral
gives a check on the convergence of the standard variational calculations, and an alternative
criterion for choosing the best trial function. Results are shown for an attractive exponential
potential.

I. INTRODUCTION

The standard variational principles' for scatter-
ing are the extensions of the Rayleigh-Ritz princi-
ple by Hulthen, Kohn, and Rubinow. Similar
methods have been suggested more recently by
Harris and Michels. ' These methods share sever-
al unsatisfactory features.

(a) Convergence of the results can be misleading.
As the number of variational parameters is in-
creased, the results obtained by the standard tech-
niques may converge rapidly to a common value,
but there is no guarantee that this is the correct
value. It is easy to construct an example of a cal-
culation where convergence to the wrong value is
achieved. For example, in studying e-H collisions
at an energy of 0. 005 a. u. (0. 14 eV), we obtained
the results shown in Table I. For each of the
three standard techniques, the phase shift is given
for trial functions with three, six, and 12 parame-
ters. In each case the convergence is fast, and
the three answers for the 12-term function agree
to eight significant figures. However, the correct
value for the phase shift, as given by Schwartz, is
2. 551, in contrast to the value of 2. 396 obtained
by each of these methods. The explanation for
this discrepancy is that the trial wave functions
were constrained so that no matter how many ad-
justable parameters were introduced, one of the
two indistinguishable electrons was always in the
1s hydrogenic state. Thus the result should con-
verge to the one-state-exchange approximation
value, as indeed it does.

TABLE I. Phase shifts of e-H scattering at k =0.1 a. u.

No. of
parameters

3
6
9

12

Hulthen

2. 365 97
2.395 64
2.395 789
2, 395 8182

Kohn

2.355 72
2. 39566
2.395 788
2.3958182

Rubinow

2.341 e4
2.395 64
2.395 792
2.395 818 2

In perf orming this calculation we deliberately
restricted the trial wave functions so that they do
not span the whole function space. In more serious
calculations, of course, one tries to ensure that
the trial functions span the whole space as best
one can. However, the standard techniques are
unable to indicate whether this desired spanning of
the function space actually has been achieved.
Hopefully, the variational theorem ensures that we
have chosen the best possible wave function within
the space spanned by the trial function, but the
variational theorem assuredly does not tell us how

important the rest of the function space may be.
(b) The standard methods do not give upper and

lower bounds on the phase shift. This difficulty
clearly is related to difficulty (a); the problem of
obtaining rigorous bounds will be discussed in Sec.
III.

(c) The wave functions obtained by these methods
may be relatively poor for other purposes, such
as photoionization studies, even though they give
good phase shif ts.

(d) The application of the standard theories to
systems with many electrons and several open
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channels involves very large computations. Most
of the applications to date have been to e-H ore-
He collisions.

(e) The Hulthen method does not always lead to
real solutions, and the Kohn and Rubinow methods
have singularities at certain energies. The prob-
lem of the singularities can be overcome in vari-
ous ways, as will be discussed in Sec. V.

In this paper, we will present the minimum-vari-
ance method as a possible technique for tackling
these problems. This method has also been called
the least-squares or local-energy method. Before
we introduce the method, we will recall some fea-
tures of the standard variational procedures. We
will consider potential scattering, and for simplic-
ity will discuss only the s wave (generalization to
nonzero angular momentum is trivial). The Schro-
dinger equation will be written

M -=—~+ k —~ V(w)) 4 (w) = 0.cf g &Pl

dr

The basis of the standard variational methods is
the Kato identity. " Suppose we are searching for
a wave function 4 (~), exactly solving (1), which

/

asymptotically behaves as

4(~)=cos(km+ &) +cot(q —8)sin(ky+ 6).

p is the scattering phase shift and 0 is an arbitrary
phase factor, which is of ten taken to be zero or

I et 4, (r) be a trial function with the corre-
sponding phase shift g, . Then g and g, are related
through the Kato identity,

cot(g —9) = cot(g~ —8) —(1/k) f@(r)Z@,(r)dr (3).
l'f we write @,(r) = 0 (r) + 5@(x), this identity becomes

cot(q —g) = cot(g —6) —(1/k) fe, (x)g4, (x) dr

+ (1/k) f64'(r)2 &4 (r) dr (4).
The last term on the right-hand side of this ex-
pression is of second order in the error function
54(x), and the first two terms are defined by the
trial function. Thus, as is well known, the Kato
identity leads directly to the aforementioned vari-
ational principles, ~ which then provide a second-
order estimate for the phase shift for any trial
function 4, (r),

cot(q —&)= cot(7l, —&) —(1/k)f4, (~)24, (r)dx.
(5)

The Kato identity is also used in the selection of
the best trial function, that is in the determination
of variable parameters within the trial function.
For example, in the Kohn and Rubinow methods
the sole criterion is that the right-hand side of (5)
should be stationary with respect to changes of all
the trial-function parameters, including 'g, .

When 64(r) is small, the use of (5) often leads

to very accurate values for the phase shift. How-

ever, in the standard methods we cannot check
whether or not N (r) is indeed small. In the mini-
mum-variance method we seek an estimate or, if

possible, a rigorous bound on the error inherent
in a variational calculation. This can be achieved
by a study of the integral f424', which appears on
the right-hand side of Eq. (3). In Sec. III we show
how this integral can be bounded in terms of the
variance integral, which is a function of 4, alone
and is introduced in Sec. II.

II. MINIMUM-VARIANCE METHOD

Consider the following integral, henceforth to be
called the variance integral,

(6)

The function &u(r) is an arbitrary weight function.
This integral is non.-negative and is zero only for
the exact wave function. Thus the value of this
integral gives a measure of the accuracy of any
trial function and the minimization of this value
provides an alternative criterion for the choice of
trial-func tion parame ters.

The integral U[4', ] was introduced into the scat-
tering problem by Kato. ~ He showed that formal
bounds on the phase shift could be obtained in terms
of the value of U[4, ] and the eigenvalues of an
auxiliary equation. In general, it is difficult to
obtain bounds on these values, but Kato has shown
that for potentials of a definite sign these bounds
can be obtained by the comparison-potential meth-
od. Delves and Shimamura have extended Kato's
ideas and discussed the application to more com-
plex problems. In Sec. IG we will show how upper
and lower bounds can be obtained on the phase
shift without the introduction of an auxiliary equa-
tion. The condition that the potential does not
change sign is not required, but it is replaced by
a condition on the str eng th of the potential.

For many-body problems the evaluation of the
variance integral would be extremely tedious.
This leads us to also consider the variance sum

(7)

If the sum includes a large number of points which
are well distributed in configuration space, the
value of the sum provides a useful criterion for
the assessment of trial functions.

The minimization of the variance sum has been
applied to the determination of energies and wave
functions of bound states and autoionizing states
but to the best of our knowledge it has not been
applied directly to scattering problems. In Sec.
IV, we will demonstrate the power of this version
of the method in the context of potential scattering.
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III. UPPER AND LOWER BOUNDS ON PHASE SHIFT

By applying the Schwarz inequality to the Kato
identity, we find

k lcot(q —8) —cot(q, —8)l =
l &u(r)24', (r)dr
i' e(r)

where

(r) = f I
G,(r, r ') V(r ')

I
dr

and y ~ is the maximum value of y(r). Then pro-
vided thaty ~& 1, we have

"~I

@(
- s/a

dr
I
cu(r)Ze, (r)Imdr

(u(r)

~. (»I:~tj)~', (8)

e.„& 1/(1 -y..„).
From the Schwarz inequality (8), we then find

—,'k
I
tanq —tang,

I
(W U[e,])".

1 Xmax

(14)

where

and 4' ~ is the maximum value of i 4(r) ~. On the
right-hand side of this inequality the integral U(4', )
is determined by the trial functions, and can be
made arbitrarily small. The integral W is also
known, and the weight function must be chosen
so that W is finite. The only unknown quantity is

This inequality was presented recently by
Miller, ' who suggested that 4' ~should be replaced
by an upper bound to the trial wave function. This
procedure should in general lead to a reasonable
estimate of the error in the trial function, as was
demonstrated by Miller, but by this replacement
the rigorous nature of the bounds is lost. However,
we can show that for certain potentials one can
obtain a rigorous upper bound on 0

Consider the Lippmann-Schwinger equation for
y(r),

,2ml, , 2m ~
I
v(r')

+ 0

This bound would be particularly useful at high
energies. For example, we can obtain limits on
the error of the first Born approximation~3 by
taking 4, (r) = sinkr. For small k, a better bound
can be found by using the inequality

2Xfl 2m
h k

(18)

Thus we have rigorous upper and lower bounds on

tang, provided that the potential V (r) is sufficient-
ly weak that y(r), as defined in Eq. (13), is always
less than one. Note that there is no restriction
on the sign of the potential.

As an illustration of this technique, consider the
potential

V(r)= ~e -~

Since ~Gp(r, r')
I

& 2m/5 k, we see immediately that

4(r) = @p(r) + f G,(r, r ') V(r')@(r') dr, (io) from which we obtain

Gp(r, r') is the free-space Green's function and

4p(r) is the undistorted wave, i.e. , in the s-wave
potential-scattering problem under present con-
sideration

@o(r) = sinkr,

f 2m o

Go(r, r') =
p sinkr&coskr&,

y(r) & Io ( II I
v( ')

I
r ' «' + r

i I
v(r ')

I
dr

&I
~0 „Ir

With the exponential potential,

y(r) &
p p (1-e ),

2m~

so that

(19)

e ~= l@(r ~)l —1+ IfGo(r, r')v(r')e(r')dr'I

1+4 f I
G,(r, r ')V(r') dr '

—'&+X ~+ m (12)

where r& and r& refer to the smaller and greater
of r and r'. For simplicity, we will take the phase
factor 8, introduced in Eq. (2), to be ——,'w, so that
the same normalization is used in Eqs. (2) and
(io).

Let r ~ be the position at which 4(r) has its
maximum amplitude. By applying the Lippmann-
Schwinger equation at r ~, we find

y ~ & 2m'/)f P . (2o)

We now present some numerical results obtained
for this potential with & = 1, 8 = 2, and 0 = 0. 5.
For these values of the parameters, the smaller
limit on y ~ is given by inequality (20). Following
the example, and personal advice, of Miller, we
used as a trial wave function,

N

4', (r) = sinkr + tang, coskr (1 —e "")+Q c„r"e

(21)

In a brief preliminary calculation we compared
the bounds obtained with several values of &, and
found the tightest limits with n= 1.5. The exponen-
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TABLE II. Phase-shift values for the expoential potential with varying weight functions: A =1, P =2, k =0.5, p =2.4,
Ã=6.

Weight function
parameter

7
0

0. 1
0. 5
0, 75
1.0
1.5

Lower bound

~min

0. 255 219
0. 255 286
0. 255 291
0.255 279
0.254 916

Upper bound

%llctX'

0. 255 526
0.255 457
0.255 453
0.255 466
0.255 830

First-order
estimate

0.255 373 4
0.255 372 6
0.255 371 9
0. 255 372 3
0.255372 6
0.255872 8

Second-order
estimate

Yh

0. 255 8731 1
0. 255 3731 1
0. 255 37311
0. 255 37311
0. 2553731 1
0.255 8781 1

Minimum
variance integral

Umin

5, 9x 10
6. 8x10 io

1.1x 10-'
1.6x 10-'
2. 9 x10-'
1.1xl0 7

tial parameter P was also varied in order to pro-
duce the smallest possible difference between the
upper and lower bounds. The number of short-
range terms, N, was varied from two to 16. The
optimum value of P varies with N, and we present
results for the value of 2. 4 which is most apppro-
priate for N=-6.

In choosing the weight function, the constraint
that 1/~(r) must be integrable, from 0 to ~, led
us to use an exponential e"", mith y positive. While
this function increases with y and so weights the
outer region more than the inner, this effect could
be minimized by taking a very small value for y.

Having fixed the nonlinear parameters and the
weight function, the calculation was carried out as
follows. For each value of the trial phase shift
q„ the linear coefficients c„mere chosen to give
lowest value of the variance integral, U[4', ]. Upper
and lower bounds on tang were then found from in-
equalities (l5) and (20). By varying q„ the least
upper bound and greatest lower bound on tang mere
determined. These limits are shown in Tables II
and III. The value of g, for which the variance
integral is least is denoted by g&, and the minimum
value of that integral is U i„. A second-order
estimate of the phase shift, p2, was obtained by
substitution in Eq. (5), i.e. ,

tan7lq= tang)+ (1/0)J 4((r)Z@t(r) dr. (22)

It should be noted that the right-hand side of this
equation is not stationary with respect to the vari-
ation of any of the parameters in the trial wave

function, since the projection of (H —E)4, onto any
of the basis functions will not be zero, accept per-
haps by accident. In this respect our method is
very different from the standard variational tech-
niques.

In Table II me show the results of variations in
the exponent y of the weight function. The lowest
value for U i„mas obtained with y=0; however,
no bounds can be obtained with this value, since
8' is infinite. The best bounds are obtained with

a relatively large value 0. 75 for y„ this is
primarily because W, being equal to l/y, decreases
with increasing y. It is also interesting that the
first-order estimate is not optimum at y= 0. 75.
However, the variation in q& is slight and the sec-
ond-order estimate is exact to at least eight signif-
icant figures for all values of y.

In Table III we show the effect of varying the
number of short-range terms between tmo and 16.
Since the value of the parameter P mas fixed at
2. 4, these results could be improved by the vari-
ation of p, at all values of N other than six.

In Sec. IV we mill demonstrate the use of the
variance sum for the same example.

IV. VARIANCE SUM

The variance sum X[@,] was evaluated using the
points and weights appropriate to Gauss-Lag~erre
integration. The quadrature points and weights
must be defined in terms of a dimensionless vari-
able. This was taken to be r/ro, where ro is a
scale length. Our procedure was first to deter-

TABLE III. Phase shifts for the exponential potential, with varying numbers of short-range functions: X=1, P =2,
k = 0. 5, p =2.4, y = 0. 75.

No. short-range
functions

N

2
4
6
8

12
16

Lower bound

~min

0. 247408
0. 253 123
0. 255 291
0. 255 322
0. 255 3720
0.255 8729

Upper bound

~max

0. 264417
0. 257 599
0. 255 453
0. 255 421
0. 255 3744
0. 255 8738

First-order
estimate

7jf

0.255 932
0.255 363
0.255 372
0. 255 371
0.255 87311
0.255 87811

Second-order
estimate

rl2

0.255 37131
0. 255 37310
0. 255 37311
0, 255 37311
0. 255 8731 1
0. 255 8781 1

Minimum
variance integral

Dmin

1.7x 10-'
1.2x10 6

1,6x10 9

5.Sx 10
3.7x10 ~3

6.7x 10 i4
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Scale length (rp)
(a. u. )

Phase shifts
First-order (q~) Second-order {g)

1
1

l
3
1

0. 255 9386
0.255373 7
0. 255 380 5
0. 255 400 1.
0.255 400 3

0. 255 9383
0.255373 0
0. 255 373 1
0. 255 373 2
0. 255 372 5

TABLE IV. Phase shifts obtained by minimization of
the variance sum with 12 summation points: A. =1, P =2,
A=0. 5, p=2. 4, X=6, y=0. 75.

integral gives a measure of the accu;acy of the
trial func tion.

In the standard technique one sometimes en-
counters difficulties due to the singularities of the
operator (H —E) ~ within the space of the short-
range functions. In the minimum-variance method,
as described in Sec. II, these problems are com-
pletely avoided, since the operator (H —Z) ~ cannot
have a singularity within any space spanned by
square-integrable functions.

VI. DISCUSSION AND CONCLUSIONS

mine the value of the phase shift qz of the trial
function which leads to the minimum value of the
variance sum. A second-order estimate was then
obtained from Eq. (22). The integral in this
equation was obtained by numerical quadrature
using the same summation points.

We first used 48 summation points and obtained
results identical to those presented above, to at
least eight significant figures. We, therefore,
reduced the number of points to 12. The results
with six short-range functions are shown in Table
IV. The second-order phase shift obtained in this
way is accurate to six significant figures for each
value of the scale length except l. We cannot ob-
tain bounds with such a small number of points,
and can see no rigorous mathematical way of
choosing the best value for the scaling length xo.

V. SINGULARITIES IN KOHN AND RUBINOYf METHODS

It has been realized for many years that the
Kohn and Rubinow methods lead to singularities at
certain energies. Nesbeto has suggested that these
can be. avoided by a judicious choice between the
bvo techniques. He has given a criterion for choos-
ing the method which is more reliable at a paLticu-
lar energy. This leads to discontinuities in the
phase shift as a function of energy, but then dis-
continuities are usually very small. Harris and
Michelss have suggested an alternative technique,
which they call the minimum-norm method, which
gives in a sense an interpolation between the Kohn
and Rubinow results.

The minimum-variance method gives an alterna-
tive technique for avoiding these singularities
within the framework of the standard theories.
The best trial functions can be obtained using the
Kohn and Rubinow criteria and the variance in-
tegral, or sum, calculated for arbitrary linear
combinations of these two functions. The linear
combination which leads to the lowest variance
integral is then used in Eq. (22) to generate the
second-order estimate for the phase shift. This
method is superficially similar to that of Harris
and Michels, but it is not equivalent, and has the
advantage that the minimum value of the variance

We have demonstrated that the minimization of
the variance integral provides a variational prin-
ciple which may be superior to the standard tech-
niques in several ways. In regard to the specific
points discussed in Sec. I we can make the follow-
ing comments.

(i) Spurious convergence can be immediately
recognized. If, as the number of terms in the
trial function is increased, the variance integral
converges to a nonzero value, the convergence
may be misleading. When the addition of more
terms of a particular type leads to an insignificant
decrease in the variance integral, one should look
for alternative ways to extend the trial function.
Similar conclusions can be drawn when using the
variance sum, provided that the number of summa-
tion points is large compared to the number of
variational parameters and that it is well distri-
buted in configuration space.

(ii) Rigorous upper and lower bounds on the phase
shift can be obtained for some potential-scattering
problems, and confidence limits can be set in
more general problems. These confidence limits
would be obtained in the manner suggested by
Miller, that is, from inequality (8) by replacing
4 ~ by the maximum value of the trial wave func-
tion. Probably, this replacement would lead to
serious error only near energies at which resonant
scattering occurs. For narrow resonances the
wave function can become extremely large, and it
is extremely difficult to obtain meaningful bounds
on the phase shift.

(iii) If specific features of the wave function are
required, other than the phase shifts, these re-
quirements can be taken into account in the selec-
tion of the weight function &u(w). For example, in
calculating dipole-length matrix elements the long-
range region should be given greater weight than
the short-range region. In calculating bound-free
transition probabilities it might be useful to in-
corporate the bound-state wave function into the
weight function. We have not yet examined the
utility of this idea, nor can we suggest a criterion
for choosing the best weight function in this context.

(iv) Analytic evaluation of the variance integral
is extremely difficult in most nontrivial problems.
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However, the use of the variance sum involves no
analytic integrations or solutions of differential
equations. The crucial factor is of course the
number of summation points. VYe are presently
investigating e-H scattering to determine how many
points are needed. It is clear that the explicit
inclusion of more than three electrons would in-
volve excessive computation, unless reliable Monte
Carlo methods could be developed. However, with
the use of model potentials or pseudopotentials the
scope for applications is still considerable, for
both electron-atom and electron-molecule colli-
sions.

In summary, we wish to suggest that the study
of the variance sum or integral could be useful in
two respects. First, when used in conjunction
with Kohn and Rubinow methods, as described in
Sec. V it apparently avoids the singularities, gives
an estimate of the possible error, and provides a
check on the convergence of the results. Second,

the minimization of the variance sum. or integral
provides an alternative criterion for choosing the
best trial function.

We recognize, of course, that the results we

have obtained thus far are very limited in scope,
and that the merits of the minimum-variance meth-
od in actual collision problems, especially many-
particle problems, remain to be established.
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We do not include the Schwinger variational principle
since it has not been used as widely as the other methods
listed here. This is primarily because the quantity which
is varied is not quadratic in the trial wave function, and
the solution of the variational equations is difficult.
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