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A projection-operator technique is used to investigate the resonance states of two-electron
systems in the inelastic scattering energy region. Computations are carried out for the P
autoionization states for He and the H" ion in the n =2 to n =3 energy region. The results are
compared with previous calculations and experiments. For the P resonance of He, very good
agreement is obtained as compared with the accurate measurement of Madden and Codling.

INTRODUCTION

The study of the autoionization state of atomic
systems has generated vast interest in the past. '
In the last decade great advances have been made
both experimentally and theoretically. For ex-
ample, the success of the close-coupling calcu-
lation predicted the existence of closed-channel
resonances. The projection-operator formalism
of Feshbach' also puts these resonance phenomena
of a firm theoretical ground. Most investigation
so far are limited to the elastic scattering energy
region where the projection-operator technique
has demonstrated its effectiveness repeatedly.
In the inelastic scattering region, theoretical in-
vestigations are few and only very limited suc-
cesses' ' have been reported, and to my knowl-
edge no projection-operator techniques were ap-
plied. Experimentally, accurate measurements
have been made in this region, for example, for
electron-atom collision. ' For helium, perhaps
the most accurate measurements for resonance
states is the spectroscopy experiment by Madden
and Codling. " For 'P states in the n=2 to n=3
energy region, they observe at least six reso-
nances. No theoretical investigations have been
made to interpret their result quantitatively.

In the present work, we will use the projection-
operator approximation to investigate the P res-
onance states in the n = 2 to n = 3 energy region
for the H and He systems. For 'P resonance
states of helium, dipole transition matrix ele-
ments will be calculated to compare with the ex-
perimental observation.

PROJECT-OPERATOR FORMALISM

decomposition can be made for the optical po-
tential. Using P„, the eigenfunction of QHQ, we
have

(2)

It is clear from Eq. (2) that the closed-channel
resonance arises when the energy E approaches
one of the eigenvalues of QHQ

In the neighborhood of an isolated resonance,
one can study the solution of the Schrodinger equa-
tion as follows: %e define a pair of new projec-
tion operators'

In this case,

(3a)

(3b)

(4)

l. e. )

where

Equation (1) becomes

(E —P HP ) P y = A„P HQ„.

Therefore

(5a)

where 40" is the solution to the homogeneous equa-
tion. Inserting Eq. (7) into Eq. (5a), we obtain

In the Feshbach for malism, the Schr Ringer
equation becomess

(s ssqq qqq~-z) ~e=o, (&)
1

where P and Q are the open- and closed-channel
projection operators, respectively. A spectral

(P„l Hl &04')
E —e„+ ( f„lHP [I/(E- P HP )jP Bl p„)

'

The total wave function is now given by
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The first term on the right-hand side represents
the background continuum. The second term
comesfromthe couplingof P„ tothe continuum. To
investigate the dipole radiation to the ground state,
we need to compute the dipole matrix element
I(+I 'Pl $„&l, where !!»„is the ground-state wave
function, In the present work, we shall neglect
the contribution from the background continuum.
Furthermore, we neglect the coupling term on the
assumption that it is relatively small in the part
of coordinate space where g„ is large. The "oscil-
lator-strength density" becomes

(10)

y„= Z Z C,„,(r~~ r, e-'I-t"z"z»
ham l

x
(
JMl l + 1 ) + 1 = 2)

1
(y»» ~m -&gr»ls+Srz»

Ov m l=0

x
(
JM /+ 1 l &

+ 1 = 2), (14)

where z is the nuclear charge and the second sum-
mation ensures that the 3p -ns- and 3d-np-type
wave functions are properly included. In the pres-
ent calculation J=1, M=O is taken. To use a sim-
pler notation, Eq. (14) can be written

From Eq. (8) we have

r„/2»»
tl( (E e, g )z+ (r /2)z

where 4„ is the shift of the resonance position from
e„and F„ is the width of the resonance state. It
is apparent that I A„l~ is only significant within a
small energy region for small 1„. To compare
with the line intensity we integrate over the neigh-
borhood of a resonance. Assuming 4„and I'„are
essentially constant over a very small energy
range,

dE= —
2 dx=1.1 1

Qg 7T gg) X +

Hence

(12)

TRIAL FUNCTION

Since P„decays exponentially at large distances
the most effective trial function for two-electron
atomic system is probably the Hyllerass-type wave
function. They include the correlation of the two
electrons explicitly. These have been used in corn-
puting c„'s by Bhatia et a/. ' However, for reso-
nances in the inelastic scattering energy region,
the two electrons are further apart; the inclusion
of x» coordinate in the wave function becomes less
important. Other types of trial functions usuajly
used are the Slater orbitals, ' hydrogenic functions,
and Sturium functions. Each method has some ad-
vantages as well as disadvantages. Recently, a
more flexible configuration-interaction trial func-
tion was adopted to calculate the resonances in the
elastic scattering region; excellent results were
reported. Following this choice, we assume

Po= ff o dE=2m (E„-Ea) (pnl rl &s~&

(13)

Although Eq. (11) seems to suggest a Lorentz dis-
tribution of line intensity, this is due only to the
approximation we have made. The interference
with the continuum can change the structure of line
intensity considerably.

hymnal

In the n=2 to n=3 energy region, 1s, 2s, 2p all
belong to the open channel. Therefore,

q=[1-P,(1) —P,(1) —.P (1)]

x (1 —Pl.(2) —Pz, (2) —Pa» (2)) . (18)

The P„,'s are defined as

P„,(1)= A 4„,„(r,) & ( $„, (r,) I

m=-l

and |!I„,„is the hydrogenlike wave function. To
operate these projection operators on our trial
function, we notice that

(.Pi.(1)+P»,(2)] t»(&, m, o', P)

g, (u, 0, o., 1) (m+2)!
$0 (p 1)m+3

L»(0 ~ 1 @(~+ )'
( (18)

1)»»+3

where 5l0 is the Kronecker 5. Similar results can
be obtained for P2, and P». The Hamiltonian of
our system is

H = ——' Vt —z V2 —(z/f'q) —(z/r2) + (1/r&z) . (19)

Utilizing Eq. (18), the computation for the integral
(Q4 !H E!Q+& can be g-reatly simplified.

RESULT AND DISCUSSION

For the lowest P resonance of helium, the op-
timized value for P is close to 3z. To avoid the
secular equation becoming too singular, the second
summation in Eq. (14) is neglected. With a three
partial wave and 18 parameter wave function, we
obtain —0. 3331 a. u. for the energy eigenvalue for
this state. If 35 parameters are included, &„be-
come —0. 33554 a. u. The lowest result -0. 33583
a. u. is obtained by using a four partial wave and '76

parameter trial function. The experiment of
Madden and Codling gives —0. 33294 (+ 0.00150) a. u.
for the position of maximum line intensity. This
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TABLE I. P autoionization states of helium in the n =2 to n=3 energy region (in a.u. ). N is the number of linear
parameters, Pis the value of thenonlinearparameter, and L is the numberof partialwavesused. (—M) indicates (0.1) '.

Level
sequence

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17

76 0.71
75 0.39
75 0.48
75 0.36
75 0.36
75 0.26
75 0.26
75 0.24
75 0.22
75 0.22
80 0.22
80 0.20
80 0.20
80 0.18
80 0.18
80 0.15
80 0.14

—0.335 827
—0. 286 020
—0.282 839
—0. 271 126
—0. 267 505
—0.257 441
—0.251 206
—0. 250 481
—0.248 004
—0. 244 912
—0. 244371
—0.240 497
—0.240 215
—0.239 123
—0. 237 648
—0. 236 924
—0.234350

N„/N~/N~

0.506/0. 482/0. 012
0.761/0. 232/0. 007
0.436/0. 363/0. 201
0.410/0. 548/0. 042
o.22v/o. 589/o. lv5
0.733/O. 255/0. 012
0.570/0. 224/0. 206
0.221/0. 644/0. 135
O. 250/0. 573/0. 177
0.148/0. 349/0. 503
0.701/0. 281/0. 016
0.251/0. 668/0. 081
0.541/0. 204/0. 249
O. 250/0. 568/0. 182
O. 151/0. 345/0. 504
O. 629/0. 358/0. 013
0.164/0. 785/0. 051

I (ft~„l zg+z2l g~)l
3.31(-4)
5.44(- v)
5.o4(-5)
1.Vl(—4)
2. 9v(- v)
4.42(- V)

2. 3O(-6)
9.O3(-5)
2. 50(—8)
1.21(-8)
3.vs(- v)
4. 53(- 5)
1.62(-6)
1.23 (—7)
5.45(—8).. v6(-lo)
1.vv(-5)

Series

(+)
A

(+)
C
A
B

(+)
C
D
A
(+)
B
C

A
(+)

E~ (expt)~

—O. 332 94(15O)

—0. 269 80(46)

—0. 249 86 (46)

—O. 24O 24(46)

—O. 234 93 (46)

Madden and Codling, see Ref. 11. The number in the parentheses gives the standard deviation in the last few digits
quoted.

discrepancy is due to two factors: First, the shift
6„ is not computed in the present calculation; sec-
ond, the resonance position differs from the maxi-
mum-intensity position, i. e., E„,=E,„—I'„/q„.
For this state I'„ is relatively large and q„ is posi-
tive hence, E„,is considerably lower than the
experimental value E ~. In this connection, it is
interesting to note that in Ref. 13 the estimated
value for I'/q is 0.0016 a. u. for this state. The
only other theoretical calculation is carried out by
Taylor and Burke using ls-2s-2P plus 20 correla-
tion functions. Their result gives 0. 0075 a.u. for
the width and —0.334 a. u. for the energy of this
state. Since no closed-channel states were in-
cluded in their computation, the agreement be-
tween the two computations should be considered

satisfactory.
For higher resonances, the second summation in

Eg. (14) is included. In these calculations, we used
up to 75 or 80 parameters in the trial function.
Considerably more autoionization states are ob-
tained as compared with the lines observed in the
experiment. Theoretically speaking, there might
be five possible resonance series in this energy
region. This arises from the linear combination
of Ss np, Sp ns, 3p nd-, Sd np-, 3d n-f-basis. Th-e

observed series should correspond to the most
prominent series. To demonstrate this point, we
need first to classify the energy states into various
series. We then compute the dipole matrix ele-
ment l(g„lzz+z21(„) I for each series, and finally
compare the observed energy positions with our

TABLE II. 3P Autoionization states of helium in the g = 2 to n =3 energy region (in a.u. ) for notation see Table I.

Level
sequence

1
2
3

5
6
7
8
9

10
ll
12
13

0.75
0.69
0.38
0.38

' 0.34
0.32
0.28
0.28
0.24
0.25
0.22
0.205
O. 205

76
76
75
75
75
75
80
80
75
80
80
80
80

l (@„l~,+~, l y„)l'

9.04(- 2)
s.v2(-3)
1.85(-2)
l.00(—2)
1.48(-3)
2.65(-3)
S.64(-3)
4.35(-3)
1.1O(-4)
9.77(—4)
9.3V(—4)
4. 81(-3)
2.26{-3)

—O. 351 790
—O. 310 951
—0.280 094
—O. 278 847
—0.260 328
—0.258 022
—0.255 412
—0.253 502
—0.245 305
—0.244 932
—0.243 748
—0.243 294
—0.242 118

N p/N~/N~y

0.821/0. 178/0. 001
0.180/0. 750/0. 069
0.770/0. 216/0. 005
0.422/0. 541/0. 037
0.205/0. 652/0. 143
0.451/0. 248/0. 301
0.757/0. 234/0. 008
0.375/0. 564/0. 061
0.193/0. 400/0. 407
0.250/0. 582/0. 167
0.340/0. 239/0. 417
0.765/0. 225/0. 010
0.328/0. 0591/0. 080

Series

(+)

(+)

A
C

(+)

D

C
(+)
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TABLE III. P autoionization state of H" in the g=2 to yg=3 energy region (in a.u. ). For notation see Table I.

Level
sequence

0.30
0.13
0.06
0.07

76
75
75
75

~n

—0.062468
—0.058 583
—0.056 109
—0.055 832

E,~ (Burke et al. )'
—0.062 1

E~ (expt. )~

—0.0622 + 0.0007

3p

~See Ref. 7.

0.31
0.11
0.09
0.06

76
75
75
75

—0.068 292
—0.057483
—0.056 332
—0.055 876

'See Ref. 10.

—0.0677
—0.05723

—0.0667 + 0.0007

calculation.
To help us identify each series of resonances,

we compute the contribution from each partial wave
to the normalization. We impose the condition

(0nl 4n) = N&+&z+N&z z, +Nz&+ ~ ~ ~ = l (20)

and compare the ratio of N p p Npg gp Ngy' The
results are given in Table I.

In this table, we list 1V P resonances in the n= 2

to n=3 energy region. For convenience of discus-
sion we classify the five series as (+), A, B, C, D
series. The ground-state wave function g„ is a
65 parameter configuration-interaction wave func-
tion; it gives —2. 9028 a. u. for the energy of the
ground state. We compare the five resonance
states whose level positions lie very close to the
observation lines; these belong to the (+) series.
The dipole matrix elements for these series are
considerably larger than those of the unobserved
states. The only exception is the lowest 8 series,
which has not been reported in the experiment.
This may be understandable since the transition
from the two lowest states in the (+) series are
much more intense and the width of these two
states are relatively large. In general, the agree-
ment between the result in Table I and those of ex-
periment must be considered as very good.

For the 3P resonances of helium, no detailed ex-
perimental observations have been reported. In
Table II, we list 13 resonance states. Since tran-
sition to the ground state is forbidden, we compute
the dipole matrix element to the 2 S state which
has an extremely long lifetime. The wave function

we used for this state is similar to that of the
ground state; it gives —2. 175214 a. u. for the en-
ergy of the 2 S state. This is to be compared with
the most accurate value of —2. 175229 a. u. by
Pekeris ' and by Chung and Hurst. The lowest
resonance calculated by Taylor and Burke gives
—0. 350 a. u. for resonance energy. The result
here for the same state gives —0. 35179 a. u. The
dipole matrix element in Table II seems to suggest
that the transition line here will be more intense
than those observed in the P case. The transition
wavelength should be between 230 to 25Q A.
Since 2 S has a long lifetime, it would be of in-
terest to see this experiment being carried out.

I have also computed the P autoionization states
of H in the n= 2 to n= 3 energy region. The re-
sults are given in Table III. For the lowest P
resonance we obtain —0. 0625 a. u. for the energy
of this state; this is to be computed with the ex-
perimental result —0. 0622 +0. 000V a. u. of Mc-
Gowan et al. Burke, Ormonde, and Whitaker'
use a six-state close-coupling calculation and ob-
tain -0.0621 a. u. No higher members of reso-
nances are reported in their work. For the lowest
P resonance, we obtain -0.0683 a. u. for the en-

ergy as compared with —Q. 06VV a. u. by Burke et
al. The experimental results give —0. 066V
+0. 0007 a. u. In our calculation P values range
from 0. 31 to 0. 06. Four autoionization states are
obtained for triplets as well as singlets. As we
decrease P, more autoionization states appear.
These states, however, are extremely close to the
threshold; no effort has been made to calculate
them.
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In variational solutions of differential or integral equations the variance integral and variance
sum provide measures of the inadequacy of the trial function. For certain potential-scattering
problems the variance integral can be used to derive rigorous upper and lower bounds to the
phase shift. In more general scattering problems, the study of the variance sum or integral
gives a check on the convergence of the standard variational calculations, and an alternative
criterion for choosing the best trial function. Results are shown for an attractive exponential
potential.

I. INTRODUCTION

The standard variational principles' for scatter-
ing are the extensions of the Rayleigh-Ritz princi-
ple by Hulthen, Kohn, and Rubinow. Similar
methods have been suggested more recently by
Harris and Michels. ' These methods share sever-
al unsatisfactory features.

(a) Convergence of the results can be misleading.
As the number of variational parameters is in-
creased, the results obtained by the standard tech-
niques may converge rapidly to a common value,
but there is no guarantee that this is the correct
value. It is easy to construct an example of a cal-
culation where convergence to the wrong value is
achieved. For example, in studying e-H collisions
at an energy of 0. 005 a. u. (0. 14 eV), we obtained
the results shown in Table I. For each of the
three standard techniques, the phase shift is given
for trial functions with three, six, and 12 parame-
ters. In each case the convergence is fast, and
the three answers for the 12-term function agree
to eight significant figures. However, the correct
value for the phase shift, as given by Schwartz, is
2. 551, in contrast to the value of 2. 396 obtained
by each of these methods. The explanation for
this discrepancy is that the trial wave functions
were constrained so that no matter how many ad-
justable parameters were introduced, one of the
two indistinguishable electrons was always in the
1s hydrogenic state. Thus the result should con-
verge to the one-state-exchange approximation
value, as indeed it does.

TABLE I. Phase shifts of e-H scattering at k =0.1 a. u.

No. of
parameters

3
6
9

12

Hulthen

2. 365 97
2.395 64
2.395 789
2, 395 8182

Kohn

2.355 72
2. 39566
2.395 788
2.3958182

Rubinow

2.341 e4
2.395 64
2.395 792
2.395 818 2

In perf orming this calculation we deliberately
restricted the trial wave functions so that they do
not span the whole function space. In more serious
calculations, of course, one tries to ensure that
the trial functions span the whole space as best
one can. However, the standard techniques are
unable to indicate whether this desired spanning of
the function space actually has been achieved.
Hopefully, the variational theorem ensures that we
have chosen the best possible wave function within
the space spanned by the trial function, but the
variational theorem assuredly does not tell us how

important the rest of the function space may be.
(b) The standard methods do not give upper and

lower bounds on the phase shift. This difficulty
clearly is related to difficulty (a); the problem of
obtaining rigorous bounds will be discussed in Sec.
III.

(c) The wave functions obtained by these methods
may be relatively poor for other purposes, such
as photoionization studies, even though they give
good phase shif ts.

(d) The application of the standard theories to
systems with many electrons and several open


