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The Firsov formalism for calculating the electronic stopping cross section has been modified
by {i) giving a precise quantum-mechanical. definition of the electron flux across the Firsov
plane in terms of the bound-state wave functions and (ii) by including the relative motion of the
Firsov plane in the flux calculation. This formalism is then extended in asemiphenomenological
manner to the velocity region where the relative velocity of the colliding atoms is of the same
order of magnitude as the orbital velocities of their electrons. When hydrogenic 1s wave func-
tions are used, three adjustable parameters result from this treatment, one from the modifica-
tion of the Firsov formalism and two from the extension to higher velocities. It is found that
adjustment of these parameters to give a best fit to experimental datayields an expressionwhich
accurately gives the electronic stopping cross section S, for any collision partners, and at all
nonrelativistic velocities. The three parameters are considered as adjustable for the purposes
of this paper, but it is shown here that the low-energy parameter Z is calculable from first
principles. In addition, one of the high-energy parameters a is shown to be a linear function
of the target atomic "radius. "

I. INTRODUCTION

In this paper a formula is presented for the elec-
tronic (inelastic) stopping cross section S, for
atomic proj ectiles penetrating material targets. ' The
formula was originally developed to improve agree-

mentt

between experiment and theory at relatively low
collision velocities between 1s electron atoms.
It has been found, however, that the formula ac-
curately represents $, for collisions between pro-
jectiles and targets having other than 1s electrons
and at all nonrelativistic velocities. The formula
contains three parameters which are adjusted to
give a best fit between experiment and theory. In
general one finds that for those cases in which
various different experiments are in good agree-
ment the formula can be fit to experiment with a
root-mean-square percentage error of -1-2% over
the energy (velocity) range 0-10 MeV/amu. A
brief review of the current status of the theory of
8,. will illustrate the usefulness of such a formula.

Theorists usually recognize three velocity re-
gimes for such calculations: (i) a high-velocity
regime for which the projectile velocity u is much
greater than the orbital velocities (v,) of the atomic
electrons of both the incident atom and the target,
(ii) an intermediate-velocity regime for which u
is the same order of magnitude as some of the

fv, ], and (iii) a low-velocity regime for which u
is much smaller than all the (v,). Binary atomic
collisions are usually assumed in all three regimes.

In the high-velocity regime the incident atom is
stripped of all its electrons as it penetrates the
target, and the Bethe-Bloch theory3 with correc-
tions is applicable. This approach generally
gives agreement between theory and experiment

—1% except in the few MeV/amu region for the
heavier atomic projectiles. In the low-velocity
regime, the incident atom is assumed to retain all
its electrons, and approaches such as those of
I indhard et gl. , and Firsov' "have been reason-
ably successful. Agreement between experiment
and theory is generally within - 20-30/0 in this
regime, although agreement can be improved to
within -4-7/o if certain parameters of the theory
are considered as adjustable (see below). In the
intermediate-velocity regime, the calculations are
considerably more complicated since one can use
neither an impulse (high-velocity) nor an adiabatic
(low-velocity) approximation. Further, in this
regime the average charge state of the projectile
depends on its energy, as well as the target ma-
terial. Corrections to the Bethe-Bloch theory for
simple atomic systems (e.g. , those of Hirshfelder
and Magee'a) lead to reasonable agreement (-10%)
with experiment in this regime, but such calcula-
tions are prohibitively difficult for more compli-
cated atomic structures. At present there is no
basic theoretical treatment which adequately treats
this velocity regime, and only semiphenomenolog-
ical treatments ' '' are available. '

In all three regimes, because of the complexity
of atomic structure. for all except the simplest of
systems, certain properties of the colliding atoms
must be regarded as adjustable parameters to be
determined through experiment. In the high-veloc-
ity regime the mean-excitation potential I~& must
be determined in this fashion. The low-velocity-
regime theory ' predicts $,. = ku. Experiment
shows that S, = 4u~ in this region with p a slowly
varying function of u with value close to unity.
Although theoretical expressions for k are avail-
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able, ' they are often incorrect by - 20-30%, and

g and p are usually determined by a fit to experi-
mental measurements. With k and p so adjusted,
agreement with experiment is -4-7%. '~ In the
intermediate-velocity regime there are a variety
of adjustable parameters which must be determined
depending on the particular approach used. Among
the adjustable parameters are the effective charge
of the incident ion (a velocity-dependent param-
eter), '7 and the shell corrections C/Z which are
necessary when the projectile velocity u is of the
order of the atomic electron velocities. ' With
proper adjustment of these several parameters,
agreement with experiment is generally better
than 8'/p 1n the intermediate-velocity regime.

In summary the three-velocity-regime approach
requires - 5 or more adjustable parameters to
adequately explain the experimentally observed
values of S, , and over-all accuracies from 1 to
8% are obtained. Curves of S, for projectiles, or
for targets, for which there are no experimental
measurements can be obtained in this approach by
noting the regular progression of the various
parameters with projectile atomic number (Z, ) or
mass (A&), or with a target atomic number (Zz)
or mass (A~), and then extrapolating the parame-
ters to the ease of interest. Since each of the
three velocity regimes is treated relatively inde-
pendently of the others, however, there is usually
no accurate way of extrapolating results from one
velocity regime into another.

The semiphenomenological treatment of North-
cliffe and Schilling (NS) should also be mentioned,
although their approach does not utilize directly
the three velocity regimes discussed above. Rec-
ognizing the general similarity in electronic stop-
ping pow er curves, they assume, as a first approx-
imation, that the relative stopping power of two
target materials is independent of projectile iden-
tity at a given projectile velocity. Thus, a set of
stopping cross sections for some particular target
material (chosen as Al by NS) and a set of zelatzve
stopping cross sections for other target materials
would allow one to construct the stopping cross-
section curve for any projectile-target combina-
tion. Their set of curves thus constructed is rea-
sonably successful in giving stopping cross sec-
tions over all three velocity regimes with typical
errors being -10—15%. In certain cases, however,
errors -50-100/o or more are found, particularly
at the lower incident atom velocities (-0. 1 MeV/
amu) or for the lighter atomic projectiles. The
problem of extrapolation from one velocity regime
to another is clearly overcome by the NS treat-
ment; however the reduction in accuracy accom-
panying their approach often negates this virtue.

From this discussion, it is clear that the formu-
la with three adjustable parameters, which is pre-

sented in this paper and which accurately gives S,
in all three velocity regimes, is a distinct im-
provement over the present descriptions of the
stopping cross section. Among the advantages of
such a formula are (i) a formula with only three
adjustable parameters which is move accurate in
the low- and intermediate-velocity regimes tj'g gyp

any other aPP~oach, (ii) a smooth curve which
allows a determination of S, in velocity regions
for which there are no experimental measure-
ments, and (iii) a set of parameters which can be
extrapolated to projectile-target combinations for
which there are no measurements to allow S, de-
terminations for these cases. This list should not
be considered as exhaustive since other advantages
could also be mentioned such as the ease of de-
termining S, by merely entering the independent
variable (velocity, energy) in a, single simple
analytic formula.

As mentioned earlier, the formula was derived
in calculations which were originally intended to
improve the agreement between theory and experi-
ment in the low-velocity, and the lower part of the
intermediate-velocity regimes. The fundamental
physical assumptions which have gone into the
calculations are thus those appropriate to this ve-
locity region, and by and large, classical concepts
are utilized. The basic physical arguments given
are relatively crude, and most certainly not cor-
rect in the high-velocity regime. Nevertheless,
the formula which results from the treatment is in
excellent agreement with experiment and previous
theory over all three velocity regimes. While the
"derivation" must thus be regarded as a prescrip-
tion for determining S„rather than a development
from fundamental principles, the resultant formula
unifies stopping cross-section formulas over all
three velocity regimes with a reduction in the net
number of adjustable parameters.

The derivation of the formula is based on a
modification and an extension of the low-energy
approach of Firsov. A brief discussion of the
Firsov theory and a derivation of the three-param-
eter formula are given in Sec. II of this paper.
Also included in Sec. G is a brief discussion of
the parameters in the formula. In Sec. IG the
formula is compared with the predictions of sever-
al other theoretical approaches for hydrogen
incident on hydrogen and helium incident on helium.
Determination of the three parameters for hy-
drogen, helium, and sulfur atoms incident on a
variety of gaseous targets is presented in Sec. IV,
and discussion and conclusions are presented in See. V.

II. FORMULA

A. Firsov Theory

In the Firsov theory a plane, which perpen-
dicularly bisects the line of centers of two co11iding
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FIG. 1. Geometry for calculations using the Firsov
theory. The relative position vector R is bisected by and
is normal to the Firsov plane. The origin of the g axis is
at atom A which is shown incident on atom B with relative
velocity u and impact parameter b. The vector p locates
a point on the Firsov plane relative to the center of
atom A.

dW~= 4»mu dB~ . (2)

Similarly, the work done on atom A by the elec-
tron flux across the plane from atom B to atom A,
4», is given by dW~, where

and dR~ is the distance moved by atom A.
The minus sign on Eq. (3) arises because the

electrons crossing the plane from B to A original-
ly have an average velocity - u relative to A. The
total work done on the system by forces due to the
electron flux across the Firsov plane is then dW

atoms, is regarded as dividing space into two
distinct physical regions as illustrated in Fig. 1.
All of the electrons on a given side of the plane
are regarded as belonging to the atom on that side
of the plane, and have the same average velocity.
When an electron crosses the plane it changes its
atomic identif ication and transfers momentum
+ mu to the recipient atom. Here rn is the rest
mass of an electron, and u is the relative velocity
of the colliding atoms. The total flux of electrons
across the plane in one direction, multiplied by
+natu, represents a force on the recipient atom re-
sulting in an energy exchange. Integration of this
energy exchange over impact parameters b and
summing over both atoms then gives the electronic
stopping cross section 5,.

Referring to Fig. 1, let 4» be the flux of elec-
trons from atom A to atom B across the Firsov
plane. The force on atom B, F~, due to this elec-
tron flux is then given by

Fg C»flu
The work done on atom h' by this force d W~ as the
atom moves a distance dR~ is then

=dW&+dW~.
Fi.rsov assumes that 4~ = C»= 4, and thus

dW= Cmu (dR~ —dR„)

W(b) = —m u J
"

@dan'

. (5)

The variable x' in Eq. (5) is the negative of the
projection of 5 onto the direction of relative ve-
locity u.

Firsov identifies W(b) as the inelastic energy
loss of the collision. The stopping cross section
S, can be obtained from W(b) through the definition

S, = 2m Jo W(b ) b db .

The essential feature in calculating S, through the
Firsov approach is the determination of the flux
across the Firsov plane. Once that has been ac-
complished one merely evaluates Eqs. (5) and (6)
using the determined flux. Firsov evaluates the
electron flux across the plane in a semiclassical
fashion by assuming a spherical distribution of
electron velocities at every point in space. The
flux d4 across an element of area dA at some point
on the Firsov plane is then given by d4= —,'nvdA,
where n and v are, respectively, the electronic
density and the average sPeed of the electrons at
the point of interest on the plane. Firsov evaluates
n and v using a Thomas-Fermi model of the col-
liding atoms. The total flux 4 is then obtained by
integration over the Firsov plane. Modifications
to the Firsov theory have been presented by Bhalla
et al. , Cheshire et ak. ,

' and Wilson et al. "Al-
though other refinements to the theory are con-
sidered by these three groups, the evaluation of
the flux is carried out in essentially the fashion
outlined above with the exception that more realis-
tic estimates of the electronic density n and aver-
age speed v are utilized.

A semiclassical flux determination for the Fir-
sov calculation is necessary since the quantum-
mechanical formalism gives a flux of identically
zero when bound-state wave functions are used.
This occurs because the flux in both directions
across the plane is included in the total. In this
paper, however, a precise quantum-mechanical
definition of the flux is made possible by defining
a "partial" bound-state wave function which con-
tains only that portion of the electronic motion
which will contribute to the flux in one direction

= @'Pl u' dB
q

where R is the relative coordinate from atom A to
atom B. Firsov further assumes that the paths of
the colliding atoms are rectilinear and that the rel-
ative velocity u is constant throughout the colli-
sion. The total work done by the electron flux dur-
ing the collision is then W(b), where b is the im-
pact parameter for the collision, and
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across the plane. The resultant definition of flux
also takes into account the relative motion of the
colliding atoms, which in effect amounts to a rel-
ative motion of each atom with respect to the
Firsov plane.

B. Flux

Let ((r) be a one-electron bound-state wave
function, where r locates the electron relative to
the center of mass of the atom to which it belongs.
Let y(k) be the corresponding wave function in mo-
mentum space. These two functions are Fourier
transforms of each other with the appropriate in-
tegrals being defined over all k, r space. Thus
for r= (x, y, z), k= (k„, k„k,),

traveling in the "wrong" direction at the point p
have been eliminated from the wave function since
they represent electrons traveling from the B side
of the plane to the A side. According to the Firsov
approach, such electrons "belong" to the B atom,
and that flux should be calculated using the appro-
priate wave function for the 8 atom. Also elimi-
nated from the wave function are those plane waves
which while traveling in the proper direction lack
sufficient velocity to overtake and cross the plane.

When the hydrogenic 1s wave function is used
in Eqs. (8) and (9), and the resultant flux is entered
in Eqs. (5) and (6), one finds a one-electron con-
tribution S, to the electronic stopping cross sec-
tion (see Appendix A), where

p(k)= (I/2m)~'~ f" dx f „dy f e ' 'g(r) dz

(Va)
46

8
vz ~(30m'+ 83m + 74m+ 21)

3(1+ e)'

P(r) = (I/2m)'~~ f dk„ f dk, f"e""y(k) dk, .

(vb)
At some instant let the two colliding atoms be

arrayed as indicated in Fig. 1, and let the z axis
of the coordinate system be chosen as parallel to
R. The origin of the coordinate system is chosen
at the center of mass of one of the atoms, for ex-
ample, atom A. The Firsov plane is thus perpen-
dicular to the z axis of the coordinate system and
at a distance —,'A from the origin (R= IRI). Let p
locate a point on the Firsov plane relative to A and
let the plane be moving relative to atom A with a
velocity w= (zo„, m„u)tat that point. (The motion
of the plane relative to the two atoms is due to the
relative motion of the atoms themselves. )

A "partial*' wave function g. (p) is now defined as

tl, (p) = (1/2m)"' f dk„ f dk, f e"' p(k) dk, ,
0

(6)
with ko= mw, /k. The wave funtion g, (p) thus con-
tains only those plane waves which are traveling
from the A side of the plane to the 8 side, and
which have sufficient velocity to overtake and cross
the plane. The flux of electrons from the A side
to the B side of the plane can then be evaluated with
the usual quantum-mechanical formalism through

(9)

The first two terms in the integrand in (9) repre-
sent the usual calculation of the flux across a sta-
tionary plane using the wave function g, . The last
term in the integrand is a correction to the first
two arising from the motion of the pla;~e. The in-
tegration in (9) is over the Firsov plane.

In defining the flux as above, the spirit of the
Firsov approach has been retained. Plane waves

+ (10e+ 1) arctane' . (10)

In (10) e-=(u/2voZ), where vo is the Bohr velocity
e2/k and Z is the effective nuclear charge. ' The
translatory motion of the Firsov plane (parallel to
the z axis) has been included in (10), but not the
rotational motion. Inclusion of the rotational mo-
tion leads to a nonphysical singularity for small
impact parameters, and therefore it was not in-
cluded. The electronic stopping cross section is
obtained, in the present modification of Firsov
theory, by summing (10) over all the electrons of
the two colliding atoms. This expression is ex-
pected to be valid over a velocity region for which
the basic assumptions of the Firsov approach are
valid.

If the colliding atoms interact significantly over
a distance l during the collision, the Firsov ap-
proach requires that during a time r (= l/u), (i) a
given electron must have sufficient time to cross
the Firsov plane, (ii) it must find electrons of the
recipient atom in the region near the Firsov plane
with which to interact, and (iii) enough energy must
be exchanged between the interacting electrons to
cause the crossing electron to become associated
with the recipient atom. From a classical point
of view, at small g, conditions (i) and (ii) will each
have probability of occurrence proportional to 7/T,
where T is the average orbital period of the atomic
electrons. That is, for short collision times the
probability of finding an electron on any given part
of its orbit during the collision is proportional to
7/T. Further, if one takes the probability of con-
dition (iii) as proportional to the energy exhange,
then at small 7 an impulse approximation yields
probability proportional to 7 . These arguments
suggest that S, of Eq. (10) should be reduced by a
factor proportional to F at small 7 with z-4.

An invented function which has appropriate large
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S,(u) = (Z, + Z,)S,'(u)f (u) . (12)

The parameters a and n appearing in f (u) and the
parameter Z which appears in S,(u) are considered
as adjustable parameters to be determined by ex-
per iment.

Some general observations on the low- and high-
velocity behavior of the formula in Eq. (12) can
be obtained from an examination of Eqs. (10) and

(11), respectively. From Eq. (10) it is easily
verified that the slope of lnS,' vs inn increases
monotonically from 1 at low velocities to 2 at high
velocities. Similarly, from Eq. (11) one sees that
the slope of lnf vs Inu decreases monotonically
from zero at low velocities to -v at high veloc-
ities. Thus, at low velocities lnS, vs lnu will have
a slope which is a slowly varying function of u,
with a value near 1. This is in agreement with
the experimentally observed behavior of S, . '
Whether the function is superlinear or sublinear
at a particular velocity will depend on whether
8, or f has the dominating effect on the change in

slope at that vel. ocity, which in turn will depend on

the values of the parameters a, ~, and Z. In the
high-velocity limit S, mill vary as u ". Since it
has previously been argued that n -4 the stopping
cross section will vary in this limit inversely
with g. to a power -2. The nonrelativistic Bethe-
Bloch formula' predicts that S, will vary as u

&&lnnu in this region with & a constant. Although
the formula given here is not identical with that
of Bethe-B1och, a power-law approximation could
be expected to be relatively accurate because of
the slow variation of lnnu with u. Such behavior
is exhibited explicitly in the curves of Fig. 2 of
Ref. 14, particularly for those ions for which the
maximum S, value occurs at an energy well below
the relativistic limit.

The parameter Z appears only in the expression
for S, and therefore is determined by the low-
velocity behavior of S, since f (u) -1 in this region.
For purposes of estimating Z vat. ues later it will
be useful to note that the low-velocity limit of S,
will be given by

S,- [(Z, + Z,)(16'')/(5 ~n~, Z)] u.

and small r behavior is [1+(T/T)"] '. In terms of
relative velocity this function is f(u), where

f (u) = [1+(au/vo)" ]
' . (»)

In Eq. (11) the parameter a is given by a= voT/l.
Since voT and I each represent lengths of atomic
dimensions it is expected that a-1.

The stopping cross section S, is obtained by mul-
tiplying S, by f (u), and then summing over all elec-
trons on the two colliding atoms. Thus, if Z, and

Z2 are the atomic numbers of the projectile and
target, respectively,

The two parameters a and n occur in that part of

f (u) which is important at high velocities, and
are therefore most sensitive to the high-velocity
behavior of S,. In previous modifications of the
Firsov theory' " the low-velocity behavior of S,
has been calculated from first principles with re-
sults which are in agreement within -10%%uo with ex-
periment. With the flux definition given in Eqs.
(8) and (9) of this paper the agreement of such
calculations with experiment should be improved.
Thus, in principle, one has a method of calculating
Z from first principles.

We will show later in this paper that the param-
eter a correlates well with certain properties of
the target atoms for a fixed incident ion. With
a so determined and Z evaluated as indicated
above, the final parameter v can then be evaluated
from a single high-energy measurement, or from
the Bethe-Bloch formula. ' Thus, while all three
parameters are considered as adjustable in this
paper, one, and perhaps two of them, appear to
be determinable from first-principles calculations.

III. 1s ELECTRON PROJECTILES AND TARGETS

The formula presented in Sec. II for the elec-
tronic stopping cross section S, has been derived
using 1s hydrogenic wave functions. Since hydro-
gen and helium atoms have only 1s electrons in
their ground states, a comparison of the formula
with experiments which utilize these two atoms as
projectiles and targets offers an opportunity to
test the theory against experiment. In addition,
such comparison will show the improved accuracy
of the present formula over other theoretical ap-
proaches. In particular, the case of hydrogen
incident on hydrogen should prove quite illus-
trative since the remarks above concerning a first-
principles calculation of Z are pertinent. That is,
we know that Z= 1 for this case, and only the
parameters a and n remain to be determined.

Figure 2 shows the energy dependence of S, for
hydrogen incident on hydrogen gas over the energy
interval Q-7 MeV. The experimental points shown

there are from the tabulation by Bischel" and the
experimental results of Phillips' and Reynolds
et a).2~ The theoretical curves are from the
Bethe —Bloch theory (with I~, = 19 eV, labeled
BB), the Bethe-Bloch theory with corrections as
calculated by Hirshf elder and Magee'~ (HM), and

the low-energy theories of Lindhard et af.' (LSS),
Firsov ' (F), and Bhalla et al.e (BH) as well as
the results of the present calculation (BH). The
parameters a and n have been determined by a
least-squares error fit of Eq. (12) to experiment
using Z= 1. Values which result are a = Q. 66Q and

n=3. 6Q. It is seen in Fig. 2 that the present ap-
proach gives quite good agreement between experi-
ment and theory over an astonishing range of en-
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FIG. 2. Electronic stopping
cross section vs incident energy
for hydrogen incident on hydro-
gen. The theoretical curves
shorn are from the present pa-
per and Refs. 5-7, 9, and 12.
The experimental points are
from Refs. 13, 19, and 20.
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ergies. The root-mean-square percentage error
b, over this range of energies is 1.5/o. A slightly
better fit can be obtained if Z is allowed to vary
along with a and n, with the results Z=0. 992,
a=0. 653, n=3. 61, and b =1.2%%u~. The fitted value
of Z is very close to the expected value of l.
Since the experimental uncertainty of the low-en-
ergy points is -390, the 1/o difference is clearly
not signif icant.

It should be noted that the values of a and n are
also close to the values of -1 and -4 as is ex-
pected. While it is gratifying that these values
are so close to the expected values, the extremely
good agreement is fortuitous since the arguments
given earlier for the expected magnitudes of a and
n are relatively crude.

With the determined values of a, n, and Z, the
formula given in Eq. (12) is clearly better, over-
all, than any other single approach. It should be
pointed out that the Bethe-Bloch theory is meant
to be applied only in the high-velocity regime,
while the curves LSS, F, and BH are only meant
to be applied below about 0. 025 MeV. Further,
the curves LSS and F have been calculated using
a Thomas-Fermi model of the atom, and mould
not necessarily be expected to be extremely ac-
curate for the case presented in Fig. 2. The
curve labeled BH has been determined by using
the method of Bhalla et al.e with the hydrogen
1s electron wave function. A minimum impact
parameter of zero was assumed however, while
Bhalla et ai. suggested that the minimum impact
parameter might be -1 A. Increasing the mini-
mum impact parameter would bring BH into better

agreement with experiment below 0. 025 MeV.
The formula [Eq. (12)] thus accurately gives

the stopping cross section for this case in all
three velocity regimes, and over-all does so
more accurately than any of the individual regime
formulas. In addition, this case allows a deter-
mination of the parameter Z from first principles,
confirming that such determinations are indeed
possibl. e.

In Fig. 3 similar results and comparisons are
shown for helium incident on helium gas. The the-
oretical curves are labeled as in Fig. 2, and the
experimental data are from Acyl. 2' and Chu and
Powers. ~~ Also included in the determination of
the curve BH was a theoretical point at E=40 MeV
taken from the tabulation of Barkas and Berger. '
The values of the three parameters for curv|. BH
are a= 0.378, n= 3.63, Z= 1.43, and & = 1.4%%uo.

The remarks made concerning the theoretical
curves in Fig. 2 also apply here. Once again it
is clear that the formula. presented in Eq. (12)
gives the best over-all description of S,. Also we
again have an opportunity to check whether Z can
be determined from first-principles calculations.

In order to make such a check the 1s electronic
wave function for the helium atom is required.
A first approximation to the wave function is the
one-parameter variational wave function, but a
two-parameter wave function~4 and wave functions
involving the interelectronic distance ' give an in-
creasingly accurate description of the actual wave
function. The one-parameter wave function has
Z = 1.69 which is 18%%u~ larger than the value 1.43
determined by a fit to experiment. The two-param-
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FIG. 3. Electronic stopping cross
section vs incident energy for helium
incident on helium. The theoretical
curves shown are from the present
calculation and Refs. 5-7 and 9.
The experimental points are from
Refs. 21 and 22.

eter wave function has two values of Z, Z'= l. 19
and Z' = 2. 19. When these are averaged, by aver-
aging 1/Z in keeping with Eg. (13), one obtains
Z = 1.54, which is only 8/0 greater than the fitted
value. An evaluation of Z from the more complex
wave functions is beyond the scope of this paper,
however, it is felt that the trend to increased accu-
racy in Z with improved wave functions indicates
that accurate determinations of Z are possible.

The formula given in Eq. (12) also gives results
of comparable accuracy when fitted to the experi-
mental data for the other 1s electron atom projec-
tile and target combinations. For hydrogen inci-
dent on helium one obtains a = 0. 532, n = 3. 55, Z
=1.46, and b, =1.8%. For helium incident on —,Hz

one obtains a = 0.444, n = 3.67, Z = 1.18, and b,

= 1.4%. The experimental data used to obtain the
values of 6 were taken from Bourland et al. a and
Reynolds et al. with, in each case, a point also
taken at E/M = 10 MeV/amu from the tabulations
of Barkas and Berger. '

IV. RESULTS FOR OTHER PROJECTILES AND TARGETS

The stopping cross-section formula [Eq. (12)]
has been derived using hydrogenic wave functions.
Because of the general similarity in curves of S,
vs velocity for all projectile and target combina-
tions it was felt to be worthwhile to determine how

accurately the formula would describe S, for colli-
sions between atoms having other than 1s electrons.
Quite surprisingly it has proven possible to accu-
rately fit the formula to experimental data for any
projectile-target combination that has been tried,
for incident energies in the interval 0-10 MeV/amu.
Comparisons between experiment and the formula
are shown in Figs. 4-13 for hydrogen, helium,

and sulfur atoms incident on a variety of gaseous
targets. The experimental data to which the curves
were fitted are shown as the filled points, while
the open points indicate other data. The data
shown on the curves for incident hydrogen were
taken from Barkas and Berger, ' Bischel, ' Brol-
ley and Ribe, ' Chilton et al. , Phillips, ' Rey-
nolds et al. , 3 and Swint et al. For incident heli-
um the data shown are from Barkas and Berger, '
Bourland et al. , Chu and Powers, and Weyl. '
For incident sulfer the data are all from Pierce
and Blann. The parameters a, n, and Z, a,s well
as the root-mean-square percentage deviation 6
between the curves and the filled points are given
in Table I for incident hydrogen, in Table II for
incident helium, and in Table III for incident sul-
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I
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10 2

I I I

5 100 2

I I

5 1000 2 5 10 000

ENERGY (keV)

FIG. 4. Electronic stopping cross section vs incident
energy for hydrogen incident on several gases. The solid
curves are from Eq. (12) using the parameters listed in
Table I. The data points shown are from Refs. 5, 20,
28, and 29.
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FIG. 5. Electronic stopping cross section vs incident
energy for hydrogen incident on several gases. The solid
curves are from Eq. (12) using the parameters listed in
Table I. The data points shown are from Ref. 5, 13, 19,
20, and 29.

ENERGY (ke V)

FIG. 7. Electronic stopping cross section vs incident
energy for hydrogen incident on several gases. The
solid curves are from Eq. (12) using the parameters listed
in Table I. The data points shown are from Refs. 5, 13,
20, and 27.

fur atoms.
The agreement between experiment and present

theory is seen to be quite striking in all of Figs.
4-13. In several of the curves for incident hydro-
gen the experimental data lie-5 to 10/~ above the
curve in the energy region -1 to 3 MeV/amu.
These data were not used, however, in obtaining
the curves, and were measured in different experi-
mental setups from the data which were actually
used to determine the parameters of the curve.
The problem of deciding which data to use in deter-
mining the best fit parameters arose in several of
the cases presented here, and is perhaps best illus-
tratedfor the case of hydrogenincidenton xenon,

50

Fig. 4. There, in the vicinity of 500 keV, there
is an overlap of the data from Chilton et al. and
Reynolds et a/. with differences in the rneasmed
values of -13/q. In all regions, however, and for
all projectile-target combinations considered
here one sees that the agreement between the for-
mula [Eg. (12)] and experiment is as good as the
scatter in experimental measurements will allow.

V. DISCUSSION AND CONCLUSIONS

As mentioned earlier, the formula given here
will prove useful in many respects, particularly
for extrapolations to regions in which no experi-
mental measurements have been made. The for-
mula would be quite useful also in extrapolations
from one projectile and target combination to
another. This can be accomplished providing that

20
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FIG. 6. Electronic stopping cross section vs incident
energy for hydrogen incident on several gases. The solid
curves are from Eq. (12) using the parameters listed in
Table I. The data points shown are from Refs. 5, 13,
20, and 28.

FIG. 8. Electronic stopping cross section vs incident
energy for hydrogen incident on several gases. The solid
curves are from Eq. (12) using the parameters listed in
Table I. The data points shown are from Refs. 5, 20,
and 29.
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some regular dependence of g, n, and Z on the
masses (A„A,) and atomic numbers (Z„Z2) of
the projectile and target can be established. It
has already been indicated earlier that Z is cal-
culable, in principle, from accurate atomic wave
functions using the flux definition given here. It
remains then to consider g and pg.

The stopping cross section S, is most sensitive
to the parameters z and n at relatively high veloc-
ities. Because it enters as an exponent small
changes in the parameter n can have the greatest
effect on S, . For example, at a velocity corre-

ENERGY (MeV)

FIG. 9. Electronic stopping cross section vs incident
energy for helium incident on several gases. The solid
curves are from Eq. (12) using the parameters listed in
Table II. The data points shown are from Refs. 5, 21,
and 22 ~

FIG. 11. Electronic stopping cross section vs incident
energy for helium incident on several gases. The solid
curves are from Eq. (12) using the parameters in Table
II.. The data points shown are from Refs. 5 and 26.

sponding to 10 MeV/amu and for the values listed
in Table III, the least sensitive dependence of S,
on n is for sulfur incident on hydrogen. For that
case a change of 0. 1% in n leads to a change of
1.7% in S, On the other hand, a 0.1% change in
the value of g at this velocity leads to a change of
only 0.4% in S, . One could not expect to extrapo-
late values of n with sufficient accuracy to give a
good description of S,, in this velocity region, but
sufficiently accurate g values might prove obtain-
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FIG. 10. Electronic stopping cross section vs incident
energy for helium incident, on several gases. The solid
curves are from Eq. (12) using the parameters in Table
II. The data points shown are from Refs. 5 and 26.

FIG. 12. Electronic stopping cross section vs incident
energy for helium incident on several gases. The solid
curves are from Eq. {12)using the parameters listed in
Table II. The data points shown are from Refs. 5, 21,
and 26.
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TABLE II. Electronic stopping cross-section param-
eters for helium incident on various gases (incident
energies 0—40 MeV).
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FIG. 13. Electronic stopping cross section vs incident
energy for sulfur incident on several gases. The solid
curves are from Eq. (12) using the parameters listed in
Table III. The data points shown are from Ref. 17.

Target
1
2 H2

He

2 N2
1
2 02

He
Ar
Kr
Xe
N20
NH3

CO

CO)
CH4

CRH2

C2H4

C2H6

C3H6

1.1812
1.4301
1.1793
1.3402
1.7352
l. 3602
1.7480
1.7863
1.1492
0.9836
1.1145
1.1840
0.8832
0. 9262
0. 9203
0.8887
0.9168

0.4441
0.3779
0.4130
0.3866
0.3424
0.4108
0.4074
0.4097
0.4038
0.4229
0.4138
0.3940
0.4377
0.4377
0.4311
0.4334
0.4296

3.668
3.631
3.513
3.490
3.449
3.411
3.219
3.243
3.499
3.571
3.501
3.507
3.598
3.557
3.569
3.579
3.562

Root, -mean-square percentage error.

Error'
(%)

1.4
1.4
0.9
1.3
1.3
3.0
1.4
1.1
0.9
0.6
1.4
1.0
1.4
0.6
1.0
1.2
1.8

TABLE I. Electronic stopping cross-section param-
eters for hydrogen incident on various gases (incident
energies 0-10 MeV).

Target
1—H2

He

1
~ 02

Ne
Ar
Kr
Xe
NH3

NO

N20
H20
CH4

C)H2
C2H4

C,I-I,

CO2
C

0.9924
l. 4596
l.4151
l. 8302
3.0862
1.6586
2. 6815
3.0204
1.1316
1.5656
1.5334
1.4434
0. 9506
1.0227
1.0535
1.1328
1.6609
1.5274

0.6585
0.5316
0.5652
0.4925
0.3804
0. 5772
0. 5165
0.4923
0.5855
0. 5164
0. 5344
0. 5280
0.6257
0.6361
0.6022
0.5825
0. 5000
0. 5273

3.613
3.547
3.427
3.404
3.338
3.308
3.104
3.109
3.512
3.445
3.420
3.470
3.538
3.471
3.514
3.492
3.433
3.461

Errora
(Vo)

1.2
1.8
1.7
1.4
0. 9
1.5
2. 4
4. 2
1.4
1.2
1.7
1.6
2. 0
1.1
0. 5
1.9
1.0
0.9

Boot-mean-square percentage err'or.

able. As it turns out, one can actually allow small
errors in either a or ~, and either (but not both)
could be determined by extrapolation. The reason
for this is that an error introduced in S, by errors
in either of the two parameters can be overcome
to some extent by a compensating change in the
other, but small uncorrelated errors in the param-

TA BLE III. Electronic stopping cross-section param-
eters for sulfur incident on various gases (incident
energies 0—100 MeV).

Target
1
2 H2

2 N2

He
Ar
Kr

2. 1727
1.0668
1.6242
0.8523
0.9008

0.1719
0.2178
0.2021
0.2584
0.2637

3.990
3.107
3.194
2.747
2.514

Error
(%)

7.2
2. 5
0.6
3.3
5.1

Root-mean-square percentage error.

eters can lead to large changes in 8, at sufficiently
high velocities as indicated above. Since the cross
section is most sensitive to errors in the value of
yg, it was decided to concentrate on searching for
regularities in the g values which might be corre-
lated with properties of the target or projectile
atoms.

Referring to the discussion after Eq. (11)one
sees that g depends on the collision length l and
another atomic length voT. Each of these lengths
are related to the atomic "size" of both the incident
ion and the target aom. Thus a correlation be-
tween a values and the atomic size of the target and

projectile atoms was sought using various mea-
sures of the atomic size. Through trial and error
it was found that the g values correlated well with
the root-mean-square atomic radius of the target
atoms, obtained as described below.

Each electronic orbital is assigned a radius z,
which corresponds to the radius of maximum radial
charge density. The root-mean-square atomic
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TABLE IV. Values of y calculated for various targets.
0. 52

Target r (A) Target x (X) Target r (A) 0.48

2 02
NH3

NO

N20
H)0

C
CO

0.400
0.482
0.429
0.439
0.429
0. 545
0.468

CO2 0.444
CH4 0.539
C2H2 0.543
C2H4 0.541
C2H6 0.540
C2H6 0.541
C,I-I, 0.543

~ ~ 0

H,ef. 23, gives
function, Ref. 24, gives

He
Ne 0.299
Ar 0.458
Kr 0.427
Xe ~ ~ ~

2 H2 0.529
—,
'

N2 0.460

'One-parameter wave function,
~=0.313 A; two-parameter wave
~=O. 333 X.

0. 40

0. 36

0. 32

0. 28

0. 24

0.2

I

0.3

I I

0.4

r (A)

I

0, 5

I

0. 6

radius r is then defined as the root-mean-square
average of g, for all occupied orbitals. For com-
pounds a value of y is assigned which is the root-
mean-square average of they values forthe constit-
uent atoms, weighted by the number of electrons on
each atom. The y values so obtained are listed
in Table IV. For all atoms except hydrogen and
helium the values of y, were taken from Slater's
tabulation as determined through a self-consistent
central-field method. For hydrogen the value
from the exact wave function was used. For
helium the one-parameter wave function'3 gave a
radius y, = 0.313 A, while the two-parameter func-
tion gave 0. 358 A, a difference of 14/o. Because
of this, and because a central-field model is not
appropriate for the helium atom, 4' 5 results for
helium targets are not included in the discussion
which follows.

In Fig. 14 are shown the g values plotted as a
function of the target atom y values for hydrogen
projectiles. The closed points refer to elemental
targets while the open points refer to compound
targets. With the exception of the open triangles,
which refer to targets of various carbon com-
pounds, the points are seen to fall very nearly on

FIG. 15. Parameter a vs the target atomic radius ~
for incident helium. Data points shown are from Tables
II and IV.

a straight line. The straight line shown in the
figure was obtained by a least-mean-squares error
fit to the filled points only. The slope of the line
is m=1. 21+0.04 and its intercept is b=0. 01~0.02.
The indicated uncertainties for m and b were ob-
tained from the scatter of the points about the
straight line. The open triangles can also be
brought into good agreement with the indicated
straight line if the y value for the carbon atom
is reduced -5-10%. This is in agreement with the
significant rearrangement which is known to occur
for the carbon electrons when the atom is bound
into a compound.

Similar results are shown in Figs. 15 and 16 for
helium and sulfur projectiles, respectively. For
helium the straight line has slope ng = 0.44+ 0.05
and intercept b=0. 21+ 0. 02, while for sulfur these
values are m = —0. 92 + 0. 19 and b = 0. 66 + 0.09.

0.36

0. 68

0.32—

0.28—

a =mr+
0 60 — m = 1.21

b . 0. 01

0.56

0.24—

0.20-

0.52

0.48

0.44

0.40

0.16-

0. 12—

0.08—

0. 36
nr 0. 3 0.4

r (A)

0. 5 0. 6
0.04

0.3 0.4

r (A)

0.6 0.7

FIG. 14. Parameter a vs the target atomic radius y

for hydrogen incident on various gases. Data points
shown are from Tables I and IV.

FIG. 16. Parameter a vs the target atomic radius z
for sulfur incident on several gases. The data points
shown are from Tables III and IV.
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The general remarks given above for Fig. 14 also
apply for Figs. 15 and 16. Again, in Fig. 15 it is
seen that the points for the carbon-compound tar-
gets fall to the right of the straight line, although
the agreement is somewhat better here than in Fig.
14. The scatter in the points in Fig. 16 probably
reflects the scatter in the experimental data from
which the a values were extracted (see Fig. 13).

The results shown in Figs. 14-16 indicate that a
values could be extrapolated from one target to
another quite easily for a fixed projectile. To ob-
tain a values for differenf projectiles one extrapo-
lates the values of nz and b. While a simple rela-
tionship between these parameters and the values
of A, and Z, is not evident from the th. ee values
quoted here for hydrogen, helium, and sulfur pro-
jectiles, a monotonic increase of 5 and a monotonic
decrease of m with projectile atomic number is
noted. Vfith values of m and 5 for other projectiles
one should be able to establish an empirical rela-
tionship from which extrapolation would prove
possible.

Thus, of the three adjustable parameters of the
formula given in Eq. (12), the parameter Z ap-
pears to be determinable from first-principles
calculations, while it seems yromising for a to be
determined from the linear relationships shown
above. The remaining parameters n can then be
adjusted to give the best fit to high-energy values
of S, as determinted from the Bethe-Bloeh for-
mula, or from experimental data. The parameter
I,d, must be determined in order to be able to use
the Bethe-Bloch formula, but the value of S, is
less sensitive to small errors in I,~,. than the
three-parameter formula is to errors in n. In
addition, I,d, can be determined relatively accurate-
ly for any target.

In summary, an analytic formula with three ad-
justable parameters, a, n, and Z, has been given
for the electronic (inelastic) stopping cross sec-
tion S, which accurately gives S, at all nonrela-
tivistic velocities. The three parameters have
been determined for hydrogen, helium, and sulfur
atoms incident on a variety of gaseous targets. It
has further been shown that the parameter Z is
determinable from first-principles calculations,
and that the parameter a is related in a simple

way to the "size" of the target atoms. Finally, a
method of obtaining the last parameter n has been
suggested which utilizes the Bethe-Bloch formula.
The formula given for S, is quite accurate for inci-
dent energies in the range 0-10 MeV/amu and
should prove to be quite useful in obtaining S,
values in energy (velocity) regions for which no
experimental data are available, or for projectile
and target combinations for which there are no ex-
perimental data.

q(j)= 2S/~y /~ (j'p +$2) ~ (A2)

Before these specific functions are used, how-
ever, a general expression for S,' will be derived.
Entering Eq. (8) of the text into Eq. (9) one obtains
the following expression for the flux 4:

APPENDIX

The mathematical steps leading to Eq. (10) of
the text are quite complicated and are presented
here for completeness. Further, as indicated in
the text, a first-principles determination of the
parameter Z should be possible with accurate
atomic wave functions, and the procedure for doing
that will be essentially as presented in this Appen-
dix.

It is desired to use the hydrogenic 1s wave func-
tion in Eqs. (8) and (9) and to enter the resultant
flux in Eq. (6) to obtain the one-electron contribu-
tion to the inelastic energy loss, W(b) This r.e-
sult is then to be used in Eq. (6) to obtain the one-
electron contribution to S, in the mndified Firsov
approach. Equation (6) gives W(b) for the collision
of two atoms; thus the collision of two atoms, each
with a single 1s electron, is considered here. To
obtain the one-electron contribution to W(b) and S,
one then needs to divide the results obtained in
this procedure by 2.

The 1s hydrogenic wave function is given by
g( p) with

-1/2 ~3/2

The constant A appearing in (Al) is given by Z/ao,
where ao is the Bohr radius and Z is the nuclear
charge. Taking the Fourier transform of ~pl as in-
dicated in Eq. (Va) of the text, one obtains the
function&(R) and

pOO + eO p IO + OO OO Woodk„dk„dk, ' dk,
~

dk, dk,' &8+km 2&o
~l ~OO ~a 0 0

(A3)

As indicated in the text the z axis is perpendicu-
lar to the Firsov plane (see Fig. 1) and thus in
Eq. (AS), dA =dxdy. The coordinate system thus
defined is not fixed, relative to atom A, but ro-
tates as the collision between the two atoms pro-

eeeds. In the development that follows, this rotary
motion will be neglected since it leads to a non-
physical singularity at small impact par ameters.
As an argument for doing this one should note that
the Firsov plane is an artifice of the calculational
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procedure, and in the same spirit, the neglect of
the rotary motion of the coordinate system could
be regarded as a further artifice of the method.

Continuing on this basis then, at any given point
the plane is effectively moving in the z direction at
a velocity w, =dz/dt. Thus kp (=miP, /h) is not a
function of location on the Firsov plane and the x
and y integrations of Eq. (AS) can be carried out
formally. For the x integration one obtains

f„e' " "dx= 2mb(ak„), (A4)

where &k„=k„-k „' and 5 is the Dirac 5 function.
A similar result holds for the y integration. After
the x and y integration have been performed the
integrations over k „' and k,' can also be formally
completed with the net result that Eq. (AS) be-
comes

p ao p oo t+ oo

4 = — dk„dk, dk, dk,'
I 0 4 sa s2p ~i Qp

which becomes, using (A5) and (A6) and inter-
changing the order of integration,

S, = —2hu f „dk„ f „dk, f bdb f„dx'4, . (A12)

Let 8, be defined by

S,= f bdb f dx' 4, . (A1S)

Substituting (A10) into (A13) and interchanging the
order of integration then gives

2p y t K' p

K'dK', dK, , [q( ~2K'+ 2K)j

xp*( —', K' ——', K) 1 bdb k f)e' 'd% (A14)
~ p ~a 40

From Fig. 1, the coordinate x' is recognized as
the negative of this projection of R onto the original
direction of motion of

atomic.

Thus, 4z =R =5
+ (x'), and it is noted that 2 is a positive even
function of x'. The expression for kp then becomes

.'" -"'"(k,.k, -2k,)&(k)~*(i '). (A5)
pl Qz vlx dx vlx

dt 4@x dt 4@x
(A15)

One should note that the x and y components of k
and k ' are the same in (A5).

Attention is now directed to the k, and k,' inte-
grations and C, is defined as

C,= j dk, f dk,'e'"'(k, +k,' —2kp)q(k)y*(k '),
(A6)

where K= k, —k,
' . Introducing q, = k, —kp and q,

' = k,
'

—kp and noting that K= q, —q,', (A6) becomes

C, = f dq, f dq,'e' '(q, +'q)y(q, +kp)it (q +kp),
(AV)

where the dependence of y and cp* on k„and k, has
been suppressed in the notation. The product qy~
can now be expanded in a Taylor series as

X
"0 "b/2

eiKg(4 &
2 b2 )n-1/ 2&d

Z2n 1 (A16)

The integrals over 5 and z can now be interchanged
and evaluated to yield

S,= —SiiE
( ), K'dK, dK „„(pit.*)

4 p -K'

and it is noted that kp is an odd function of x'.
This being the case, in (A14) the integration over
x' will give zero for odd p and the equation can be
rewritten as

p 00 ~K'

S =4K — K'dK' dK ( i)
(2n) i I2n

v(q. +k p)q'*(q.'+ k p) =& —', D'l. q (q.)q*(q.')1,
P

where D is the differential operator

(A8) 92

x, , b(K), (A1V)

(A9)

The variable K introduced in the second equality of
(A9) is def inc d as K ' = q, + q,'.

Changing to the variables K and K, and utilizing
(A8) and (A9), (AV) becomes

t K'

O' =Z K'dK' dK
~ 0 ~-K'

where 5(K) is the Dirac 5 function.
If the product yy* is finite at K=0, and has finite

derivatives there f conditions satisfied by the func-
tion (A2)I, then the second derivative with respect
to K can be transferred from the 5 function to the
other factor in the second integrand. The indi-
cated integration can then be performed yielding

g (mu/@)'"
(2n+1) t

xe' *,~ [y(—,K+ —,K ')q +( —', K ' —', K)] . (A10) 82n 82)@)2 g 2

IsKtl2: sKa2 l0l 4
sK~0 K=P

Now, from Eqs. (5) and (6) of the text

S, = —2iimu f b db f „dx ' 4, (A11)

(A18)
where it has been noted that for the arguments
indicated in (A10),
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~9
9+' 8& Bg ' 9+

2fl 2 2
x ' ' '-4' '~

au

Noting now that at E= 0, 2 E ' is the third argu-
ment of both cp and q*, a change of variables to
k, = ~K' then yields

g (mu/2k) ~
(2n+ 1) !

(A19)

The arguments of both y and q&* in (A19) are k„,
k„and k, . Substituting this expression into (A12)
and dividing by two to obtain the oze-electron con-
tribution to S, yields after some simplification

wa h «!
8 2

S,'= &S, =2wku
1

dk„dk
~

~y~»-4 k, dk,

+ 27fku +
( ) i i

dkg dk skag ai 0 z
i 0 i

4
sk

g

(A20)

lt is reiterated that the expression in (A20) is
general and does not depend on the 1s character of
the wave functions. It is the first term of thj.s ex-
pression which could be used with actual one-elec-
tron atomic wave functions for a first-principles
calculation of Z. When the 1s wave functions from
(A2) are entered in Eq. (A20) one obtains

i)a 1 g (-1)"'(2n+3)(n+2)(n+1)na
&~

3(2n+ l)(2n)(2n —1) ) '

(A21)
where ~ = (mu/2k')'= (u/2Z~, )'.

For e & 1 the sum in (A21) converges and an

analytic form can be obtained with the aid of for-
mula (1.517), first equation, from the tables by
Gradshteyn and Hyzhik. ' The resultant formula is

4lf' v, (~0~' 83&' 74&+ Rl)
5m ~ 3(1+e)'

+ (10&+1)arctan e'~a . (A22)

This form for S,' has been obtained for «1. The
evaluation of S,' is extremely difficult if one does
not make the series expansion (As) and it is as-
sumed therefore that the form (A22) is correct
also for q &1.
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The energy distribution of electrons has been measured for ionizing collisions of Ar with

Ar in the center-of-mass energy range of 30-250 eV. The distributions display several
prominent peaks which can be attributed to the autoionization of highly excited atomic and mo-

lecular states.

The study of the energies of electrons ejected in
ionizing collisions of ion and atoms at rest has
shown that these electrons are ejected with both
discrete and continuous energy distributions. ' '
In many cases the definite energies have been cor-
related with autoionizing states of one of the par-
ticles in the collision. The work reported here ex-
tends the measurements for the Ar-Ar system to
low-collision energies that range from 30 to 250
eV in the center-of-mass system. Particularly,
for ionizing collisions of neutral Ar with Ar, the
ejected-electron distributions show a spectrum
dominated by a number of discrete groups with a
surprisingly low continuous background.

APPARATUS

The experimental method' consisted, in brief,
of producing an ion beam of the desired energy, in
collimating the beam with an appropriate lens sys-
tem, and of neutralizing the beam by charge ex-
change. The collision region in which the ioniza-
tion occurs was surrounded by a fine wire grid to
supress the electron ejection produced by ion or
atom bombardment of the walls. Ionization elec-
trons ejected at right angles to the beam from a
region in the center of the grid were selected by
a 90 cylindrical electrostatic energy analyzer and
were counted in a system containing a continuous-
dynode secondary-electron multiplier followed by
a pulse amplifier and a counting circuit. Back-

ground counting rates of this multiplier were as
low as several per minute, thus allowing valid
measurements of 20 per minute, which was the

average value for the 30-eV collision. The ener-

gy spread of the beam was about 2 eV full width

at half-maximum for the 100-eV beam. This
would be about the same for the neutral atom beam,
since the maximum allowable angle of scattering
in a neutralizing collision was about 1'.

The electrostatic analyzer had an effective slit
width proportional to the energy selected. How-

ever, by use of an accelerating system between
the ionizing region and the analyzer, the electron-
energy range was held to about one-half of the
maximum energy observed. In the data shown,
no correction was made for the variable slit width.
The resolution of the analyzing system is indicated
by the sharp rise at the zero of the intrinsic elec-
tron energy. The major part of this rise occurred
in about 0. 2 eV, except for the lowest collision
energies, where the count rate was so low that a
long-time-constant circuit was needed. This cir-
cuit behavior was largely responsible for the
broad peaks in the 30-eV collision spectrum.

The gas pressure at the point of the ionizing
collision was determined from the fraction of the
ion beam neutralized per unit path. Similarly,
the size of the neutral beam was determined from
the loss in the ion beam with gas present in the
neutralizing region and from the geometrical fac-


