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The atomic-beam magnetic-resonance technique has been used to extend the hyperfine-
structure and g-value results of Smith and Spalding to all five members of the 4f 6s I ground
multiplet of ~43 ~ ~Nd. The eigenvectors derived by Conway and Wybourne by fitting the excita-
tion energies are reasonably consistent with the new data. The extent; to which the hfs is af-
fected by small components in the eigenvectors is investigated. Empirical values for the
radial. integrals that appear in the hyperfine structure are compared with predictions based on
nonrelativistic Hartree-Fock and on relativistic Hartree-Fock-Slater calculations. The em-
pirical value found for the dipole integral least susceptible to distortion by configuration in-
teraction is within (1—3)% of the value calculated relativistically. Differences between theory
and experiment are substantial for some of the other integrals, however. The values of the
electric-quadrupole moments of 3' 'Nd are found to be -0.56(6) b and -0.29(3) b, respectively.

I. INTRODUCTION

A. History

The atomic energy levels of Ndr have been of
interest to atomic spectroscopists for some years.
Early papers by Schuurmans~ and Hassan~ estab-
lished most of the lower levels. More recent
work by Blaise et al. ' has considerably extended
knowledge of the level structure of both odd- and
even-parity configurations. Spectroscopic values
of the g factors were obtained in several of these
investigations. Smith and Spalding obtained more
accurate g factors for several of the lowest 'I
states by applying the atomic-beam magnetic-reso-
nance technique to the even-A isotopes. In theo-
retical treatments, Judd and Lindgrens and Conway
and Wybourne made least-squares fits to the ob-
served level energies and thereby obtained eigen-
vectors for the SI levels of 4f 46s2. They then cal-
culated the g values to be expected, including
spin-orbit-mixing, relativistic, and diamagnetic
effects, and showed that the predicted values
agreed relatively well with the experimental ones.
Spalding' then extended the atomic-beam investiga-
tions to the stable odd-A isotopes '~ 'Nd and
measured the hyperfine structure (hfs) constants
in the 'I4 atomic ground state for both isotopes,
and in the 5I~ metastable state of 'Nd in addition.
Good values for the ratios of the nuclear moments,
and approximate values of the moments themselves,
were thereby established. Final. 1y, Smith and
Unsworth measured the nuclear magnetic-dipole
moments of ' ' Nd directly, using the atomic-
beam triple-resonance method.

B. Motivation for Present Experiment

The present experiment can be viewed as a
logical extension of that oi Spaldingv on the hfs of
the odd-A isotopes ' '~ 'Nd. While the first ex-

periment succeeded in obtaining important informa-
tion on the nuclear moments, the present work is
directed toward investigation of atomic-structure
problems. Thus, measurement of the hfs con-
stants andg values for the five members of the
SI term makes possible a sensitive test of the the-
ory of the J dependence of such observables. It is
desirable to view the excitation energy, g factor,
magnetic-dipole hfs constant A, and electric-quad-
rupole hfs constant 8 as four independent observ-
ables of an atomic state, and a single eigenvector
should be consistent with all the information. The
procedure is to see to what extent the eigenvectors
determined from fits to the excitation energies are
consistent with )he other three observables. The
radial integrals that arise in the theory of hfs have
recently been calculated relativistically' ' ' for
Ndr, and it was of interest to compare these with
the values found empirically.

II. EXPERIMENTAL CONSIDERATIONS

A. Apparatus

The apparatus used for the present investigation
is a conventional Rabi-type atomic-beam magnetic-
resonance machine~; the gradients of the inhomo-
geneous magnetic fields point in the same direction,
as proposed by Zacharias. '3 The apparatus has
been described before, ~4 as has the electronic data-
handling system ' used to make possible the ob-
servation of transitions in weakly populated meta-
stable states in the presence of a strong back-
ground.

Briefly, beam atoms are ionized by electron
bombardment, and subsequently mass analyzed
and detected with an electron multiplier, amplifier,
and sealer system. The counts from the detector
are fed to a multichannel sealer. A clock based
on a quartz crystal advances (and resets, as re-
quired) the channel address of the sealer in syn-
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chronism with a stepwise sweep of the rf used to
induce transitions. The sweep can be repeated
indefinitely, and a digital noise filter~6 prevents
nonrandom noise bursts from harming data that
have been accumulating over a long period. It is
believed that it is the sensitivity of the data-han-
dling technique that has made possible measure-
ments in the metastable 'I8 state of ' Nd; the
efficiency of the electron-bombardment ionizer
itself is poor-it probably ionizes less than one

atom out of 10 passing through the detector.
The beam source was a cylindrical oven, —,

' in.
in diameter and —, in. high, with a 6. 3&&0. 3-mm
slit. A sharp-lipped inner crucible, also of tanta-
lum, was used to limit creep of molten Nd. The
oven was heated by elec tron bombardment until an
adequate beam was observed (at about 1500 'C).
The homogeneous "C" magnetic field was calibrated
by observing resonances in an auxiliary K atomic
beam from a separate oven.

9. General Principles

The transitions that are observed with the atomic-
beam magnetic-resonance technique are normally
within individual states of definite electronic angu-
lar momentum J. The appropriate Hamiltonian
for the problem is the sum of the hyperfine opera-
tor 3'„and the Zeeman operator K„ it may be
written'~

BC= hAI J+hBQ„+hCA„+g~ PsH(J, +yI, ), (1)

where A, B, and C are the magnetic-dipole, the,
electric-quadrupole, and the magnetic-oc tupole
hyperf inc-interaction constants, respectively; g&
is the electron g factor for the atomic state; p, ~ is
the Bohr magneton; J, and I, are the field projec-
tions of the electronic and nuclear angular-mo-
mentum operators J and I, respectively; Z « 1 is the

ratio of the nuclear to the electronic g factors,
both in Bohr magnetons; and H is the external
magnetic field. The electric-quadrupole and mag-
netic-octupole operators for a state of definite J
may be expressed~ as

Q„= [2l(2I- 1)J(2J- 1)] [~I ~ J(21 ~ 8+1)
—f(I+1)J(J+1)], (2)

0„=5[4I(1—l)(2I —1)J(J—1)(2J- 1)] (8(T X)

+16(T X) ++5(I J) [-3I(1+1)J(J+I)

+I(1+1)+J(J+1)+ 3] —4I(f+ 1)J(J+1)]. (3)

In calculating matrix elements of Eq. (1), it may
be noted that

(JIFM
~
I ~ J

~

JIFM) = ,'[F(F+1) f(I+I) --J(J+ I)].-
(4)

In the absence of a magnetic field (H = 0), the ei-
genvalues of Eq. (1) may be characterized by the
total-angular-momentum quantum number F (asso-
ciated with F = I +J) and by its z projection M. In
a magnetic field, I' is no longer a good quantum
number, but the zero-field representation is often
retained for convenience; each state becomes a
linear combination of the zero-field basis states
of pure I'. %hen a transition is observed at a
frequency v, the transition energy hv is the differ-
ence bebveen the appropriate pairs of eigenvalues
of Eq. (1).

C. Procedure

Table I lists the excitation energies3 of the var-
ious members of the 4f 6s 'I ground multiplet of
Nd r; all other atomic states lie higher. The rela-
tive number of atoms in a magnetic substate of
each level is also given for isotopes 142, 143, and
145 for the approximate beam-source temperature
of 1500 C. It can be seen that hfs experiments,
which are possible only for the less-abundant odd-
A isotopes 143 and 145, will be more difficult than
Zeeman experiments on the even-A isotope Nd,
and that measurements on any isotope will be very
difficult for the higher metastable states.

Using even-even isotopes, Smith and Syalding
were able to obtain rough values for the g factors
of the states 'I4, 6,, but were unable to detect any
atoms in the I8 state. The first part of the present
experiment was carried out to refine and extend
their measurements. Since there is no hfs in the
even-A isotopes of Nd, the resonance frequency
for a transition is proportional to the magnetic
field, which was precisely calibrated by observing
resonances in an auxiliary beam of K. The re-
sulting g factors for the even-A isotopes (second
column of Table II) have much smaller uncertain-
ties than could be obtained in previous measure-
ments. In Sec. III C, these new values are com-
pared with the theory.

Spalding extended the earlier work to include
hfs measurements on the 'I4, , states of the odd-A
isotopes ' ' Nd. As a preliminary to our work
on the higher metastable states, measurements of
the 4I = + 1 transition frequencies were repeated.
The results are consistent with Spalding's, but
the uncertainty has been reduced an order of mag-
nitude. From these data, accurate values for the
dipole and quadrupole constants A and B could be
obtained for the 'I4, , states by a computer program
based on Eq. (1).

Approximate values for A and B in the I6 state
could then be predicted from the accurate results
for the 'I4, 5 states and the theory of the J depen-
dence of hfs constants outlined in Sec. GI E. Com-
puter predictions of the 'I6&AI" =0 resonance fre-
quencies, based on these rough calculated values
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TABLE I. Relative population in individual magnetic
substates of the low atomic levels of several Nd isotopes.
The populations are normalized to 10 000 for each sub-
state of the 'I4 ground level of 4 Nd, the most abundant
stable isotope.

Excitation
Atomic energy

state (cm ) Nd

Relative population
per atomic substate

'"Nd

5I

5I

5I

5I

5I

1128

5049

10 000

3 997

501

166

561

226

10

153

20

of A and B and on the accurate g~ value observed
in ~42Nd, soon led to observation of these transi-
tions. Because of the strong undeflected beam of
atoms with m~ =0, however, it was difficult to
observe the single-quantum flop-out bF=0, 4M =1
transitions. Instead, a central obstacle was used
to block most of the beam, and double-quantum
transitions (v = AE/2h) were induced. As the field
was increased and the Zeeman spacings became
less even, however, the double-quantum transi-
tions were difficult to induce even with high rf pow-
er.

To solve this problem, the two-frequency tech-
nique of Prior et al. ' was employed. In this pro-
cedure, the central obstacle is used as before to
block the large undeflected portion of the beam,
but the two single-quantum jumps required for an
observable flop-in transition are induced succes-
sively by application of the taboo appropriate rf fre-
quencies. Figure l(a) shows such an observation
in the 'I6 state of ' Nd at H= 200 G. For the ob-
servation, one rf generator supplied the fixed fre-
quency 19'7. 353 MHz, expected to be correct for
the transition (F,M—F', M') = (+, 2

—~~, +~), while
the second rf source was swept repeatedly through
the range represented by the abscissa. Observa-

tion of the resonance was interpreted to indicate
that atoms were successively undergoing the two
single-quantum jumps (~~,~—~, 3

—~,~), which
correspond to the change m~ = 1 0——1 required
for an observable flop-in effect. The roles of the
two frequencies were then interchanged and the
process repeated, as shown in Table III. Such ob-
servations were carried out for analogous transi-
tions in the 'I~ state of ' Nd for F= ~, ~~, ~, and

~, as indicated in Table IV which summarizes the
observed transitions in "'Nd.

A computer program then varied A. and B to pro-
duce a best least-squares fit to the data with the
aid of the accurately known value of g~. The best
fit to these data led to an unacceptable y'= 583,
with a number of residuals exceeding 12 standard
deviations. It was then found that if the computer
were asked to fit only the sum of the fixed fre-
quency and the frequency observed for resonance
(rather than both separately), then all of the ob-
servations could be fitted very well (g = 10). The
conclusion was that we were observing two-quan-
tum transitions rather than successive single-
quantum transitions. Thus, the atom was interact-
ing simultaneously with two unequal quanta such
that hv +hv&=DE, v 4vz. The effect was then
investigated in detail, using the "Sn atom in the
Py state for convenience, and the results were

published. The dashed vertical line in Fig. 1(a)
shows the resonance frequency calculated for the
single-quantum transition (~~, T~ —~9, —,') from the
precise A and 8 values later found from AF = + 1
observations. It was subsequently found that if the
rf level were increased enough, it was possible
(even at 200 G) to observe the double-quantum

(v, = v&) transition hv= 2bE, as shown in Fig. 1(b).
All of the relevant numbers are summarized in
Table III. Other examples of both types of two-
quantum observations are given in Table IV.

The same two-quantum (v, 4 vq) technique was
then applied to the 'I4, 5 states of ' Nd to measure
the g factors. As ean be seen in Table II, the re-
sults are in excellent agreement with those deter-

TABLE G. Observed and calculated values of the electron g factor gz for the members of the 'I ground term. The
values labeled "expt" are weighted averages of those obtained from the even-even isotopes and those from Nd; the cal-
culated values are for the Conway-%ybourne eigenvector description of the states.

Atomic
state

Is

Even-even

O. 603 30(3)

o.90048(4)

1.o6e 93(5)

l.17539(4)

l.245 21(5)

Observed values of gJ
'~Nd

o.6o3 2e(2)

O. 900 47(3)

1.069 90(2)

1.1V5 3V(2)

1.245 2e(3)

Expt.

O. 6O3 29(2)

o. eoo 47(3)

1.o69 el(2)

1.175 38(2)

1.245 2V(3)

Calculated

0.603 02

0.900 41

1.069 81

1.175 13

1.244 79

eryt @ale
gz

0.000 27

0.000 06

0.000 10

0.000 25

0.000 48



HYPERFINE-STRUCTURE CONSTANTS AND. . .

TABLE 11&. Summary of t|jvo-quantum observations of the (p, & y, ~~) transition in the 'I, state of &4'Nt( at 2OO G
The transitions considered are listed in the first column, and the second gives the frequencies calcu].ated for resonance
from the final precise values of A, B, C, and gJ. The right-hand column gives at the bottom the resonance frequency
observed for the usual double-quantum (2hv = ~) method of inducing the transition, and columns 3 and 4 summarize ob-
servations in which two rf signals were simultaneously applied to the rf loop. In each case, the frequency in parentheses
was held fixed, and a resonance appeared when the swept signal passed through the other listed value. It is seen that for
runs 1 and 2, neither of the frequencies applied is consistent with the known energy intervals, but the sum of the two is.
The transitions induced are of the type hv~+hv~ =~, v~ & v~.

Transition

Calculated
resonance
frequency

(MHz) Run No. 1

Observed resonance frequency (MHz)

Two-frequency Single-frequency
technique double-quantum

Run No. 2 technique

($8
't 19 s)

Sum of above

One-half of sum

197.244(4)

195.476(4)

392.720(6)

196.360(4)

0.97.353)

195.355(12)

392.708 (12)

196.354(9}

197.345 (20)

(195.400)

392.745 (20)

196.373 (14) 196.367(7)

l4 3
d 5z

t

N y

hl

I

I

I

I

I

I

I

I

t
I ~ 4&a 4

jyO ~ 0~

LLJ

0
I-

hl

O
O
CV

IA
Ol

O
O
lO

Ol

mined from the even-A isotopes for the states I4 5 6.
Once the 200-G hF = 0 data on the 'I6 state of
Nd had been understood, the computer program

led to values of A and 8 with sufficiently small un-

certainty that the resonance frequencies for AE
=+1 transitions could be closely predicted at low
field. A number of these transitions were then ob-
served, as indicated in Table IV. Several of the
AI'=+1 transitions listed for SI4, 8 are of the flop-
out type.

With accurate knowledge of the hfs constants for
the three states 'I4, , „ the theory of the 8 depen-
dence of hfs constants discussed in Sec. IIIE en-
ables one to predict A and B for the 'I, state of

Nd with some precision. Several AI" = 0 transi-
tions were then observed at 100 and 200 G. Figure
2 shows, for example, the appearance of the
('s, ~—'z, —,') transition in the 'I, state of ' Nd at
200 G. This is a double-quantum single-frequency

(b)
Nd I

7

~ 0
~y 0

~ ~ 0 l ~ e
~ y 0

I
'

I
O O O0 O O
C4 EO

lO C3 40
Ql Cl

APPLlK 0 rf FREQUENCY (MHz)

FIG. 1. Two-quantum observations of the (P, Y~ P, ~~)

transition in the ~I6 metastable atomic state of ~43Nd. (a)
Spectrum obtained when two rf signals, one held fixed and
one swept as shown, were simultaneously applied to the
rf, loop. The observed resonance requires both, and is of
the type hv + hv~ =~, v~ & v~. (b) Spectrum obtained
when a single strong rf signal is applied. The resonance
is of the type 2hv =~.

LLl

I-
e~ ~~a

LIJ m ~ ~y

QO~
aQ

O
O
EO

IO
Ol

O
O

Ol

0
O
O
0
Ol

APPLIED rf FREQUENCY (MHZ)

F16. 2. Appearance of the (P, ~ III), 32) transition in
the I& state of ~+Nd at H=200 G. The time required to
gather the data for the curve was -20 min.
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APPLIE 0 rf FREQUENCY ( MHz)
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I
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IA

O

Flo. S. Data, from a wide sweep used to search for one Zeeman component of the E=if ~ interval in the f& state
of, ~ 3Nd at H=1 G. The zero-field interval is hv=998. 775 MHz. Once the transition had been found, a much narrower
sweep could be used to obtain better statistics over the resonance itself.

observation. Severa. l observations of this type
made possible accurate prediction of the resonance
frequencies for AE=*1 transitions at 1 G. Figure
3 shows a wide sweep at 1 G made to find the
( a', —, —a, —,') transition in ' Nd 'I, . The proce-
dure for the Ia state was virtually identical to that
described for I7 except that the lower intensity
made it much more difficult. Figure 4 shows a
hI' = + 1 transition in the 'I, state of ' 'Nd at 1 G.
Higher-lying states in Nd could not be studied with-
out major modification of technique.

The resonance frequency of each transition in' 'Nd can be accurately predicted from the hfs con-
stants of the same state in ' Nd once the ratios of
the hfs constants for the two isotopes are established
in the ground state, as was done by Spalding. Be-
cause the abundance of ' Nd is lower than that of
'"Nd, it was not possible to observe transitions in
the 'Ie state of the former. Table V lists all the
observations in ' Nd.

In Table VI, the columns la, beled "uncorrected"
give the values found for the hfs constants A, B,
and C from the least-squares computer fits to the
data of Tables IV and V. These fits were based on
Eq. (l). The corrections applied to obtain the final
values will be discussed in Sec. III F.

III. THEORETICAL CONSIDERATIONS AND
INTERPRETATION OF RESULTS

A. Introduction

The position taken in this section is that the ob-
servable properties of the 'I states should be con-
sistent with the eigenvectors for the states if the
appropriate radial integrals are regarded as ad-
justable parameters. The hfs integrals are over-
determined, and sensitive self-consistency tests

l43Nd, 5Z
8

~ ~
o 4 ~

Q

lA
lO
Cl

I

O
CV

IA
IO
ED

APPLIED rf F REQUENCY

O
O

{MHz)

FIG. 4. Appearance of the (7, —
2 $, —~) transition

in the 'I8 metastable state of Nd at H=1 G. This ob-
servation required about 2 h of repeated sweeping, and
is near the present limit of sensitivity. It was not possi-
ble to see the corresponding transition in 45Nd with con-
fidence.

are possible. The eigenvectors, which were de-
duced from fits to the excitation energies of the
states, will thus be severely tested by investigating
the degree to which they are consistent with the
precise hyperfine and Zeeman results. Finally, the
empirical va, lues found for the radial integrals will
be compared with the values recently calculated
by the relativistic Hartree-Fock-Slater technique.

B. Eigenvectors

To obtain eigenvectors for the 'I states, the com-
plete matrix of the Coulomb and spin-orbit inter-
actions is set up for all states of the 4f46s con-



HYPERFINE-STRUCTURE CONSTANTS AND. . .

figuration. The matrix elements are linear com-
binations of Slater integrals F~ and the spin-orbit

Atomic
state

'I4

Transition
{FM—Z'M)
(V, '—(5. !) 200.000 (5)

Observed
resonance
frequency

(MHz)

92.606 {5)

Vobs V
cal c

((), () ))8, ass) 200. 000(5) 185.221(18)*

I5

($ '- —p -g)

((7 5 1$ 8)

(7 1 9 1)

(y, -y —y, —-')

4 --—y --)5 3 7

48 5 $ P)

(0, 8 —y, — )

(f 1 9 3)

($ 1 9 3)

(V, ~—Y, !)
{Pi

5 J5 3)

(()),

2 —(8', -2)
($ 1 $ 3)

(&, ——',—&,-~)
{ ~T )

200. 000 (5) 205. 012(14)*

1.000 (5) 1418.603(10)

1.000 (5) 1258.012 (10)

1.000 (5) 1085.194(5)

l.000 (5) 902. 056(7)

1.000 (5) 710.450 (9)

1.000 (5) 710.362 (9)

1.000 (5) 710.272(9)

200.000 (5) 407. 647 (13)*

200. 000 (5) 407. 650 (18)*

200.000 (5) 407. 645 (22)

l.000 (5) 1264. 956 (9)

1.000 (5) 1138.324(9)

l.000 {5) 1003.410{7)

1.000(5) 861.330(9)

1.000 (5) 713.116(9)

l.000 (5) 559.160(6)

1.000 (5) 559.612(11)

10

(P5 5 P 1)

9 i9 5)

($7 7 77 8)

((7 7 (7 o)

(p,

(p, q —q, —;-)

((5 5 )5 7)

($5 5 P 1)

3

(V —:—()', -s)

10.000 (5)

1 o.000(5)

50 000(5)

so. ooo(s)

50.000 (5)

so. ooo(s)

so. ooo(s)

9.485 (11)

10.580 (12)

47. 7OS(12)

50.090 {11)

53.360 (15)

57 945(15)

64. 760 (10)

100.000 (5) 101.585(20)

100.000 (5) 108.445 (20)

100.000 (5} 118.085(20)

100.000 (5) 132.290 (16)

100.000 (5) 154.810(16)

200. 000 (5) 392.714(20)*

200.000 (5) 196,367 (7)

200.000 (5) 414.010(30)*

200. 000 (5) 207. 044(7)

200.000 {5) 442. 908 (30)*

200.000 (5) 221.445 (7)

200. 000(5) 483. 397{50)~

200. 000 (5) 241.690 (7)

—10

—21

25

—21

10

—10

TABLE IV. Summary of observations in Nd. Most
of the transitions observed are single-quantum jumps.
For those transitions that were observed by ordinary
double-quantum jumps, the actual frequency v = ~/2h ob-
served for resonance is given. For the two-frequency ob-
servations (marked with an asterisk in the table) in which
hv~+hv&=~, v~& v&, the individual frequencies vo and
v& are meaningless and the sum of the two is given instead.

TA BLE IV. (Continued)

Atomic
state

Transition
{F,M E', M')

H

(G)

Observed
resonance
frequency

(MHz)

vobl calc

5I
7

(g, —25

(7 3~9 ))
? 3 9 5

(9 1

(P
7

8

8

(p,

5

8

1

((8 7

5

(p,
1

(Pi 1

(f 8

8)

7)

(5

)7 8)

(8 s)

5)

8)

7)

—V. -2)
8)

5)

~)
i5

8)

)
ii 5

(7 5 9
q7

2i 7

(13 1

((5 7

2i
sr 8

)
13 5

1.000 (5) 476. 973 (7)

1.000 (5) 610.115(9)

1.000 (5) 610.105(14)

1.000 (5) 738.706 (7)

1.000 (5) 862. 768 (12)

1.000 (5) 981.754(12)

1.000 (5) 1094.887(8)

1.000 (5) 1201.440 (13)

200. 000 (5) 227. 125 (15)

200. 000 (5) 239.830 (17)

200. 000 (5) 256. 645 {15)

200.000 (5) 279. 692(8)

200. 000 (5) 313.415 (9)

200. 000 (5) 369.135(15)

1.000 (5) 1194.580(8}

1.000 (5) 1100.280(5)

l. 000 (5) 1000.168(9)

1.000 (5) 894. 862(16)

1.000 (5) 784. 930 (10)

1.000 (5) 670. 840 (6)

1.000 (5) 552. 760(25)

200. 000 (5) 305.642(16)

200. 000 (5) 263.925 (30)

200. 000 (5) 389.635 (13}

200. 000 (5) 339.050 {13)

—13

10

—3

g) 200. 000(5) 281.795(30)

($ 5 ii

(g 8 )(7 5)

(~ ~~ —)
i3 1 i5 3

75 8)

((5

i5 1

Q7

200.000 (5) 250. 090 (15)

1.000 (5) 635. 202(8)

1.006 (5} 635.210 (10)

l.000 (5) 744. 475 (20)

1.000 (5) 744. 480 (20)

1.ooo (5) 8so. oo3(ls)

1.000 (5) 850.025 (25)

1.000.(5) 951.500 (25)

1.000 (5) 951.550 (20)

—18

constant f«. Since only the five levels 'I4, 5, 6,7,8

had been identified experimentally, it was neces-
sary to limit the number of radial integrals treated
as adjustable parameters. Judd and Lindgren,
and later Conway and Wybourne, did this by as-
suming that the Slater ratios F,/F2 and F8/F2
were hydrogenic. They thereby reduced the num-
ber of parameters to two: Fa and g«. The ma-
trices were then diagonalized, and the lowest five
eigenvalues were fitted to the 'I energies by vary-
ing Fa and g4& in the matrix elements. Although
Conway and Wybourne found it possible to fit these
levels to a mean error of only 2 cm ', they pointed
out that lack of knowledge of all higher levels in
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TABLE V. Summaxy of observations in ' Nd. All
observations are of single-quantum ~=+ 1 transitions,
and all were made at H =1 G.

Atomic
state

Transition
(F,M~F', M')

H

(G)

Observed
resonance
frequency

(MHE)

Vobs Vcalc

5I5

7 15 s)

(p 5 18 3)

(T, $ —g, i)

i —0 -2)
(~5, —$

8 -k —4 —2)

(V 4—v' k)

o 5 7 7

7 3 9 5

3)

15 1)

3)

1.000 (5) 886.718(7)

1.000 (5) 783.574(9)

1.000 (5) 674. 000 (10)

1.000 (5) 558.976 (6)

1.000 (5) 439.282(8)

1.000 (5) 439.365 (8)

1.000 (5) 439.452(9)

1.000 (5) 790.653 (9)

1.000 (5) 709.403 (9)

1.000 (5) 623.788 (9)

l.000 (5) 534. 380 (9)

1.000 (5) 441.694(8)

1.000 (5) 346.075 (9)

1.000 (5) 294.405 (25)

1.000(5) 377.568(12)

1.000 (5) 457. 845 (10)

l.000 (5) 535.666(9)

l.000 (5) 610, 673 (12)

1.000 (5) 682. 620 (9)

1.000 (5) 751.110(13)

1.000 (5) 747.027 (20)

1.000 (5) 686. 222(15)

1.000 (5) 622. 352 (12)

1.000 (5) 555. 768 (14)

1.000 (5) 486. 668 (11)

l.000 (5) 415.286 (11)

1.000 (5) 341.540 (17)

—15

—14

10

16

4f Gs, and neglect of configuration interaction and

the smaller magnetic interactions, could lead to
deficiencies in the eigenvectors even though the
energy fit appeared excellent. The eigenvectors
listed in Table VII are those found by Conway and
Wybourne, except that several errors subsequent-
ly found by Conway have been corrected. One
notices immediately that even the least-pure state,
namely ~I8, is 96. 4% pure. The largest impurity
in any 'I state, namely, the sIf'(2) component of 'Is,
is 2. 8%. (The parenthetic numbers in the designa-
tions of this and other impurities listed in the
first column of Table VII refer to the convention
Nielson and Koster ' established to distinguish be-
tween LS basis states of the same S and I . ) Be-
cause of the high LS purity of the 'I states, it is
convenient to retain the designation I, while rec-
ognizing that there are small admixtures of states

of different S and L present. Although the eigen-
vectors (and all calculations in this gaper) are in

the SL scheme, the conventional phrases LS
coupling, LS scheme, LS basis, etc. , will be used.

C. Va1ues of gy

Because the Zeeman interaction has no radial
dependence, g~ values can easily be calculated for
all the basis states, and the g~ values in inter-
mediate coupling follow immediately for states
with specified eigenvectors. The calculation is
particularly simple in the LS scheme because the
cross terms all vanish. The next-to-last column

of Table II lists the g~ values calculated in this

way for the states represented by the Conway-

Wybourne ' eigenvectors of TaMe VII, after
small corrections for relativistic and diamagnetic
effects have been made. The corrections were
made by Conway and Wybourne for the states
I4, 6 and were taken from Judd and Lindgren' for

the other two states. The final column of Table II
gives the difference between the calculated and

observed values (the experimental value is a
weighted average of that observed in the even-A
Nd isotopes and that found from "'Nd). The dif-
ferences, though well outside experimental error,
are remarkably small in absolute terms. The dif-

ferences probably arise from approximations
made in deriving the eigenvectors, as discussed
in Sec. IIIB.

Judd and Lindgren' have given an expression
which should be obeyed by the g~ values of the
states of an LS multiplet. It takes account of the

Schwinger, relativistic, diamagnetic, and second-
order spin-orbit corrections to the g factor. Al-

though it ignores the effects of configuration inter-
action, they are of higher order because the Cou-
lomb interaction is diagonal in S, L, and J. The
relation is

(5)

where for our purpose a and b may be regarded
as empirical quantities. Thus, if they are evaluated
by writing E(l. (5) with each of the experimental

g~ values of the SI4 5,6 states and solving simulta-
neously, then E(l. (5) may be used to predict the

g J' value s of the remaining two states 'I~ 8 ~ The
predicted values are 1.17542(18) and 1.M533(20)
for the states Iv and 'Is, respectively. These pre-
dictions are in good agreement with the measured
values, as may be seen from Table II.

O. hfs Hamiltonian

The hyperfine Hamiltonian specified by Eqs.
(1)-(4), while consistent with all of the present
data, says nothing about the hfs constants A. , 8,
and C, and in fact is unconcerned with any proper-
ty of the atomic state but its total angular momen-
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Atomic
state

'45NdNd

UncorrectedQuantity Uncorrected Final Final

TABLE VI. Uncorrected and final values of the hfs constants A, J3, and C for ' ' Nd. The uncorrected values are
those required to fit the observations by use of the Hamiltonian of Eqs. (1)-(4) in which J is assumed to be a good quantum
number. The final values include small corrections for hyperfine interactions between I states of different J. The cor-
rections are smaller than experimental uncertainty in each case.

Value of hyperfine constant (MHz)

5I

'«s

-195.652(1)
122.608(17)

o.oO1(2}

—153.6V9(1)
115.V41(18)

0.000 (2)

—130.611(1)
119.2S4(23)
-o.oo1(3)

—117.604{1)
129.281 (24)

0.002(3)

—110.476 (3)
143.93V(SV)

—195.652(1)
122. s95(1v)

0.001(2)

—153.6V9(1)
115.V43(18)

o.ooo(2)

—130.611(1)
119.291 (23)
—o. oo1(3)

—117.604(l)
129.291(24}

o.oo2(3)

-11o.4ve(3)
143.9S2(87)

—121.e2s(1)
64.e3v(14)
0.- 001(2)

—95.S35(1)
61.o44(21)
0.001(2)

—S1.195(1)
62. 926 (29)
o.oo4(4)

-v3. 1os(1)
es. 165(3v)

—0.001{4)

—121.628(1)
64.632(14)
0.001(2)

—95.535(1)
61.O45(21)

O. OOO(2)

—S1.195(1)
62. 929(29)
o.oo4(4)

-v3. 1os(1)
68.168(37)

—O. 001(4)

turn O'. Thus while Eqs. (1)-(4) are suitable for
extracting experimental values for hfs constants
and g values from the observations, a more funda-
mental approach is required to interpret the val-
ues found for these constants.

The Hamiltonian for the hyperfine interaction
may be writtena~ as the sum of scalar products of
suitable tensor operators, as

tronic radial properties and are proportional to the
nuclear g factor gr . Sandars and Beck also
showed that if distortions of the a"~"~ by configura-
tion interaction are ignored, the radial quantities
are given by

ao'=D(2Z+1) [2Z(Z+1)F„+2Z(Z+1)E +E, ],
(ea)

~1k) T (h& (6)
a" = -', D(2Z+1)" [-4Z(Z+1)(2Z —1)E„

where the subscripts e and n refer to the electrons
and to the nucleus, respectively. The first three
terms are the only ones of importance; they are
the magnetic-dipole (k = 1), the electric-quadrupole
(k=2), and the magnetic-octupole (k=3). Of these,
the first two are comparable in importance
for' 3'4' Nd and the third is found to be negligible.

Sandars and Beck~' have shown that for a given
0, the electronic factor T,"'in Eq. (6) can consist
of at most three terms for an atom with a single
unfilled electron shell nlN. These parts may be
written as proportional to double tensor operators,
introduced by Judd, a' of the form U'"~' &", where
k, is the rank of the operator in spin space, k,
that in orbital space, and 4 that in the J = s+1
space. The three possible contributions to ~T-,"'

(ot&)A U (1~4-1)P and U (1t&+1)P For the dipole
case, these are proportional to L, S, and

(s C~~')~", respectively, and the effective-dipole
hfs Hamiltonian may be written

N

& .(~1)= Z [ a' 1 —(10)' '
( s C"') '"a"+ a"s, ]

(7)
where the a~~» are quantities which include elec-

+ 4Z(Z+.1)(2Z+ 3)E —(2Z+ 3)(2Z —1)E, ]
(Bb)

a'0 =43 DZ(Z y 1)(2Z+ 1) [(Z+ 1)E„—ZE —F, ], (Sc)

where

D=(2u, i Nl Z)(I &li),

the signs + and —refer to the cases j=l+ & and
j=3 —2, respectively, and p.i is the nuclear dipole
moment, measured in units of the nuclear mag-
neton p. N. The quantities E,,' are relativistic ra
dial integrals given 3 by

E,~. = —2 [ma, (K, K'+2)] J, (P,Q;. + Q;P;. )~ dr,

(1O)
where n is the fine-structure constant, ao is the
Bohr radius„PJ and Q& are the large and small
components of the relativistic radial wave function,
respectively, and K and K' are equal to +(j + —,)

for / =j + —,. The F,,' have the nonrelativistic limit
(x )„, and have recently been calculated'0'" for
Nd y by use of relativistic Hartree- Fock-Slater
wave functions. The nuclear dipole moment p.z,
which occurs in Eq. (9), has been measured in
' 'Nd; the value is
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TABLE VII. SL eigenvectors for the 5I states of Nd I,
as calculated by Conway and Wybourne. Several errors
in Ref. 6 have been corrected by Conway in this table.
In the list of basis states (column 1), the numbers in
parentheses refer to Nielson and Koster's (Ref. 21)
convention for distinguishing between SL states of the
same S and L.
Basis
state

SG

Sy

SD

3M
3L

sK(1)
'K(2)
'I(1)
3S(2)

3a{1)
3a(2)
'a{s)
'a(4)
'GO. )
'G{2)
'G(s)
3+{1)
'x{2)
3s (3)
3r(4)

'L(1)
'L(2)
'K
'i{1)
'I(2)
'I{s)
'a(1)
'a(2)
'Go. )
1G {2)
'G(3)
'G(4)

J=4
0.9879

—0. 0037
0. 0012

—0, 0001

0, 0678
-0.0081

0, 0777
—0. 1138

0. 0028
0. 0120

-0.0074
—0. 0006

0. 0008
—0, 0008

0. 0016

0, 0071
—0. 0035

0. 0037
0. 0112

0. 9932
—0, 0043

0, 0012

—0. 0194
0. 0175

0. 0484
—0, 0039

0. 0583
—0. 0835

0. 0016
0. 0088

-0.0052

0. 0036
0. 0016

J=6
0.9947

-0.0033

—0. 0323
0. 0607

—0. 0287
0. 0248

0. 0277

0. 0350
—0. 0492

—0. 0022
—0. 0031
—0. 0056

J=7
0, 9910

—0. 0130
—0. 0585

0. 1125
—0. 0317

0. 0257

—0. 0043

J=8
0. 9818

0. 0036
—0. 0198
—0. 0830

0. 1683

0, 0055
0, 0200

p, i( Nd) = —1.063(5)p, ~

Thos, neglecting configuration interaction, one
can use the experimental value of p, ~ to evaluate
a, a', and a' theoretically for ' Nd and can
compare the resulting values with those determined
experimentally. However, configuration interac-
tion can be expected to play a non-negligible role.

The electric-quadrupole equivalent of Eq. (7)
can be written in several ways, one of which ' is

X„,.(Z2)

e2r2 —
&2)

~' 2l(I+1)(2l+1) ' ~ b 3

(2l- 1)(2l y 3) b„,

b„, =e'Q&r '&-„, (14)

where Q is the electric-quadrupole moment of the
nucleus and (r ')„, is the nonrelativistic expecta-
tion value of 1/r for the shell nl. In the nonrela-
tivistic limit, the last two terms of Eq. (11) be
come zero, and b approaches the nonrelativistic
parameter b„, . In this limit, we note that the
quadrupole interaction is entirely orbital in char-
acter (k, =0). The quantities b"" are analogous
to the a"'" of Eqs. (6); in the absence of config-
uration interaction, they are given by

bo~ = (e2Q/k)(2l + 1) 2[(l + 2)(2j —1)R„
+(l —1)(21+3)R +6R, ], (15a)

2 e Q z 105(l+2)(/ —l)l(l+1)
5 b (2l+3)(2l+1)(2l —1)

x[(2l —l)R,.—(2l+3)R +4R, ] (15b)

2 e
Q&)) ))s 30)&l )))'

5 A. 2l+ 1

x[- (f 2+)R., (+.'-1)R +3R, ],
(15c)

in which the relativistic quadrupole radial inte-
grals 8&&. are defined as

Rq). = f [P,P;.+QJQ;i]r ch.
0

(16)

If matrix elements of Eqs. (7) and (11) are
taken between two IS basis states of the same J,
it is found that

&f"os LZIFMIX„„(M1)If"~'S'L'~IFM&

The quantities b" and b" are entirely relativistic
in origin, although configuration interaction may
distort the values found for them empirically.
The integrals B,&. have been calculated relativisti-
cally, as for the dipole equivalents I',; but be-
cause there is no direct measurement of Q equiv-
alent to that of p, i, the values of 5'"' cannot be
predicted as closely as can the a & ~ .

The magnetic-octupole equivalent of Eqs. (7)
and (11), which would be needed to predict the 8
dependence of the octupole hfs constants C, is not
required since C was found to be zero to within
experimental error for all five 'I states.

E. Theoretical Values of A and 8

where

~~2 C (2) T (2)
n

=
n

&I, M, =II r&" III& = ,'eQ, --
(12)

(13)

=A«&')«&FMI1 JIJIFM),
(1&)

(I"o&SLJIFM I~&8(E2) I
l c&'S'L'JIFM ) = B(g, g')Q„, I

where (JIFM I I ~ J I JIFM) and Q„are defined in
Eqs. (4) and (2), respectively, and A(g, g')
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=A(4, g) and B(g, p') =B(g', p) are generalized hfs
constants between the indicated L,S basis states.

Examination of the complete expressions~' for the
matrix elements shows that in Eqs. (1'? )

A(g g')- (2 ~)b( SI ~S~I.') ox 30{2J'+1) ' l(?+1)(2l+1)
l~

J(J+1) (2?-1)(21+3)

8 S' 1
x(PQSL)[V""((I"o.'S'I.') I. I.' 2 g"+(gg- l)5(QSL, n'S'I. ')0",

J J 1
(18)

B(y yt) + )
( 1)B«I +J'

(S Sz) ( Ig SI ))f?(R) ))?N tSrI t ) ( + )( + 1) 03

(J+ 1)(2J+3) (2/ —l)(2l+ 3)

SS'1 8 S' 1

+ I- I' 3 (I nSQ)V" '))I n'S'I') b' + I I' 1 (l"nSQ)V" ' [[I"n'S'I') b

J Z 2) J J 2

where

gg= 1+ [J{J+1)—I (I + 1)-~ S(S+ l)][2J(J+1)j ~ (]9)

is the l,and6 value of the g factor (without the
Schwinger correction). The required reduced ma-
trix elements of U' ' and V" ' have been tabulated
by Nielson and Koster, ' and those of V"",V" ',
and V' ' by Yutsis pt al. The 6-j symbols are
given by Hotenberg et al. and the required 9-j
symbols can be evaluated from them.

With Eqs. (18) and the eigenvectors of Table VII,
it is possible to obtain a linear three-parameter
expression for each hfs A and B constant in the
'I term. The results are

A( I4) = 1.395 110ao —0. 012 584a' —0. 395 094a'
A ('I5 ) = l. 098300a" —0. OOV 553a" —0. 098 307a",
A(I6)=0. 929232a i0. 001445a' ~0. 070767a',
A(~IV)=0. 824127a +0.016844a +0. 1'?5873a'',
A( I8)=0.754607ao +0, 03'? 75la~2+0. 245393a'o,

(2o)

B( Ig) = —0. 219874b —0. 070 198b —0. 120 488b

B( Is) =- 0.205 018b 0. 056 402—b —0. 004 426bi',
B(I')=-0.209679b —0. 034566b 0.09529lb ',
B( I7) = —0. 226 221b —0. 000 865b' + 0. 187 251b ',
B(I8)=-0.253605b +0.44140b'3+0. 275257b'i.

(21)
These expressions are for the complete eigenvec-
tors of Conway and Wybourne ' 0 (Table Vil); they
have not been truncated.

F. Corrections for Off-Diagonal hfs

Before the parametrized expressions just devel-
oped for A. and B can be fitted to the observed val-
ues, the resonance frequencies must be corrected
for the perturbations caused by hyperfine and
Zeeman interactions between I states with dif-

ferent J. These corrections result in changes
which are in each case less than experimental un-

certainty. For this reason, the details will be

omitted; the procedure for making the corrections
is given, for example, by floodgate. The cor-
rected values of the hfs constants are given in

the right-hand column of Table VI. No corrections
to the g values were required.

G. Isotopic Ratios of Hyperfine Constants, and the
Hyperfine Anomaly

Once the corrected values of A and 8 have been
determined for each state in the isotopes 4 ' Nd,
ratios of corresponding hfs constants for the two

isotopes can be evaluated. These are exhibited
in Table VIII. Because no resonances were ob-
served in the 'I, state of ' 'Nd, the ratios can be
given only for the four states I4, 5,6,7. The self-
consistency of the results is good. From the en-
tries in the table, the average values are found

to be

A' jA' = 1.608 61(2),

B'"/B"' =1.8964(4) .

(22)

(23)

These results are consistent with those of Spald-

ing, ' but have an uncertainty about 20 times
smaller. They are not consistent with the dipole
ratio l. 608 92(10) obtained by Erickson~o by elec-
tron-paramagnetic-r esonance absorption by tri-
valent Nd ions in monocrystals of LaC1, at zero
magnetic field. The free atom is a much simpler
system, and the values in Eqs. (22) and (23) should

be freer of interpretational problems.
The nuclear dipole moments of the two isotopes

have not been measured with comparable preci-
sion, and consequently a precise value of the hy-

perfine anomaly cannot be given. The most ac-
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curate moment ratio available is

p, ('4'Nd)/ir, ("'Nd) = 1.626(12), (24)

comes

. =(2V V /&)(V/&( '&., (26)

which is obtained from Table III of Smith and
Unsworth. While this appears larger than the
ratio of the hyperfine constants in Eq. (22), the
nuclear moments were measured at strong mag-
netic field, and further correction for off-diagonal
hyperfine and Zeeman interactions within the 'I
term may be required. A direct measurement of
the moment ratio would be very valuable.

The difference between the ratio of the A factors
and that of the nuclear dipole moments gives the
hyperfine anomaly immediately, and the anomaly
indicated by Eqs. (22) and (24) is relatively very
large, about 1/o. However, it is doubtful if the
anomaly actually is this large. Any anomaly would
have to originate in the contact part of the hfs, and
it is shown in Sec. III J that most of the contribu-
tion to this is probably from the relativistic term.
While this term acts like a contact interaction, it
is associated with 4f electrons and does not lead
to an anomaly. The extent of any true contact
interaction, such as core polarization, is indis-
tinguishable experimentally from the relativistic
part and can be inferred only to the extent to which
one can calculate the latter effect.

The ratio of the electric-quadrupole moments
of the two isotopes should be the same as the B
ratio (23); any difference should be extremely
small.

H. Algebraic Signs of Hyperfine Constants

Smith and Unsworth have shown that the alge-
braic sign of the dipole hfs constant A is negative
for the 'I4 atomic state in both 'Nd and '4'Nd.
The signs of the nuclear magnetic-dipole moments
of Nd and Nd are both known to be negative.
With this information, it is easy to establish that
the sign of A must be negative for all five 'I atomic
states in both isotopes. In Eqs. (20), for example,
the orbital term (that involving a") is much larger
than either of the other two. In the nonrelativistic
limit where F„=F= = F, = (r ')&, it can be seen
by putting l = 3 in the first of Eqs. (8) that aor be-

Atomic
state

51

5g

~143/~145

1.608 61 (2)
1.608 61 (2)
1,.608 61 (2)
1.60863 (3)

gyi 43/pi 45

1.8968 (5)
1.8960 (7)
1.8956 (9)
1.8967 {11)

'ABLE VIII. Ratios of the dipole and quadrupole hfs
constants of the isotopes Nd and Nd. It can be seen
that, within experimental uncertainty, the ratios are in-
dependent of which atomic state is used for the measure-
ment.

nd that aors and therefore A both have the same
sign (negative) as p, In the same limit, a'2 also
approaches a„r and a'0 approaches zero. (It should
be remembered that configuration interaction can
distort the values actually observed to some ex-
tent. ) The algebraic sign of B/A is measured ex-
perimentally, and that of B therefore follows im-
mediately.

J. Values of Hyperfine Radial Parameters

Equations (20) and (21) give three-parameter ex-
pressions for the A and B values of the 'I states
for any particular Nd isotope. The parameters
for ' 'Nd, for example, are thus overdetermined
by requiring the expressions to be consistent with
the observed hfs constants of all five A's and B's
in ' Nd. The corresponding results for '4 Nd can
then be obtained from the ratios of Eqs. (22) and
(23). The three-parameter fits for 'Nd are
shown in Table IX, and the parameter values found
are listed in Table X along with other relevant in-
formation. In Table X, the fourth line gives the
parameter values deduced for ' 'Nd by least-squares
fitting expressions (20) and (21) to the corrected
values of A and B (listed in Table VI). The first
three lines of the table will be discussed in Sec.
III L.

It is seen that the five A's can be fitted to within
0. 003% with the three-parameter expressions.
The value found for a differs from that for a ' by
less than 3/0, and the contact parameter a'0 is op-
posite in sign and less than 3% as large as ao' or
a, The three-parameter fit to the five measured
B's is good to within 0. 2%. The reason the A' s
are fitted so much better than the B's is not clear
but is probably related to the fact that contributions
of the type ($ I K„„lrlr ), where g c r)r, can occur only
for the relatively unimportant' ~1 part of the
A' s, but may occur in all three parts of the 8's,
including the dominant term U ' ' . Thus, the
theoretical expressions for the B's may be more
sensitive to small components in the eigenvectors.

It may be mentioned that the differences between
the observed and calculated B values amount to
only 1 or 2 in the fourth significant figure, and the
eigenvectors are given "to only four figures.
It is remarkable that the fits are so good when one
considers that the eigenvectors span only the single
4f Gs configuration. The close agreement is
probably owing to the capacity of the coefficients
a"~"r and b~s"r to absorb configuration-interaction
effects in second order, as shown by Wybourne.

The nonrelativistic part of the quadrupole inter-
action is dominant (b is much larger than b or
br') and is used in Sec. IIIM to extract the nuclear
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TABLE IX. Three-parameter fits to the A and B values observed for five states of +Nd,

Atomic
state

5
I8

~obs

—195.652 (1)
—153.679 (1)
—130.611 (1)
—117.604 (1)
—110.476 (3)

gcRlc

—195.653
—153.679
—130.608
-117.607
—110.475

~o& gcalc

0. 001 (1)
0. 000 (1)

—O. 003 (1)
0. 003 {1)

—0. 001 (3)

122.595 (17)
115.743 (18)
119.291 (23)
129.291(24)
143.952 (87)

BCIlc

122. 528
115.838
119.401
128.989
144. 113

gyobs gcalc.

0. 067 (17)
—0. 096 (18)
—0. 110 (23)

0. 302 (24)
-0.161 (87)

electric-quadrupole moment. In fact, if b ' and
b are set equal to zero (th nonrelativistic limit),
the single-parameter (bo~) expressions will fit all
five 8's to within 1. 5'%%uo for b —566. 0 MHz.

Another way of looking at these data is to use
the measured A's and 8's for the first four states
I4 5 6 7 to evaluate the a'~~& and the 5'&"l, and then to

predict A and 8 for the 'I, state. The 'I, A valuepre-
dicted in this way is within 0. 01% of the experi-
mental value (i. e. , within four standard deviations)
and the 8 value to 0. 7% (12 standard deviations).
That the fit to the experimental hfs constants of
the first four states (within 1-2 standard deviations)
is so much better than that in Tables IX and X for
all five states (within 4-12 standard deviations)
suggests that the eigenvector for the'Is state may
not be as accurate as those for the other four.
The same conclusion is suggested by the g-factor
results of Table II.

The empirically determined parameter values
in the fourth line of Table X may be compared
with the calculated values (last two lines of the
table) obtained by Lewis and by Rosen and Lind-
gren, "who used Hartree-Fock-Slater wave func-
tions and the experimental values for the nuclear
moments of 'Nd. The difference between the
calculated and experimental values is remarkably

small for a: Lewis's result is 1.4/o too small
and that of Rosen and Lindgren is 2. 5/o too large.
The value found' for a ~ from the nonrelativistic
Hartree-Fock value of (x )&, for comparison, is
14%%uo too large. It is well known'3 that the ordinary
Hartree- Pock procedure commonly overestimates
expectation values.

The values calculated relativistically ' for a
and a' are not in such good agreement with the
experimental values, probably because of distor-
tion due to configuration interaction. Thus, while
g is expected to be larger than a, it is found
experimentally to be smaller. The calculated val-
ues~0'~~ of a'o are of the correct sign but (60-VO)%%uo

too large. Whether this is owing to a gross over-
estimate of the contactlike relativistic contribution
of the 4f electrons or to neglect of true contact
contributions through configuration interaction is
difficult to say. Core polarization is expected
to be small in the neutral rare-earth atoms.
Clearly, the behavior of the relativistic radial
wave functions very near the origin is of crucial
importance. When a more accurate experimental
value for p,, (' Nd)/p, ("'Nd) becomes available,
further investigation of the problem would be im-
portant in connection with understanding the ap-
parent hyperfine anomaly.

TABLE X. The hfs radial integrals for Nd. The parameters a~' ' and Q~&& are defined in Sec. III D. The bottom lineof
the table gives the values calculated theoretically by using the previously reported values of the nuclear moments and the
relativistic Hartree-Fock-Slater method. The first four lines give values found by. empirical fits of the theory to the ex-
perimental results, with the integrals treated as adjustable parameters. The four lines correspond, respectively, to re-
taining the single largest, the five largest, the 12 largest, and the 19 largest components of the Conway-Wybourne eigen-
vectors before normalization.

Eigenvector
set
used

Fraction
of strength

retained
(%)

a" i2 a
(MHZ) {MHZ) {MHZ)

Magnetic-dipole parameters
Largest
residual

(%)

y02 $ 13

(MHz) (MHz)

Electric-quadrupole parameters
Largest

bl ~ residual
(MI-Iz) po)

LS limit
Five component
12 component
19 component
Calculated values
Lewis~
Bosen and Lindgren"

~ 96.4
&99.8
~ 99.999
100

—138.6
—144.1

—149.8
—154.6

5.36
5.04

—144.878 —270. 032 10.948 0.1
—140.947 —112.876 0.974 0.2
—140.584 —136.853 3.166 0.003
—140.583 —136.795 3.154 0.003

—548. 585
—557.115
—555. 307
—555. 321

—545
—566

—56.1 30.2

—86. 597 6.067
—32.812 15.223
—36.695 17.816
—36.637 17.795

0.2
0.14
0.2
0.2

Reference 10. "Reference 11.
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TABLE XI. Ratios of hfs parameter values from
Table IX. The bottom three lines give calculated ratios,
and the top four give empirical ratios which differ from
one another only because of different degrees of trunca-
tion of the eigenvectors. The line labeled "19 component"
is for the complete Conway-Wybourne eigenvector with
no truncation.

Eigenvector
set used a"/a"

Parameter ratio
a"/a" bi 3/b02 bi i/b 02

L8 limit
Five component
12 component
19 component

Calculated ratios

Casimir factors
Lewis
Rosen and

Lindgren

1.864
0. 801
0. 973
0, 973

l. 006
1, 081
1~ 073

—0. 076
—0, 007
—0. 023
-0.022

—0. 002
-0.039
—0. 035

0. 158
0, 059
0. 066
0. 066

0. 024
0.103

-0, 011
—0. 027
—0. 032
—0. 032

—0.005
—0.056

Although the magnitude of the calculated quadru-
pole parameters is subject to an over-all scaling
factor (there is no independent precise measure-
ment of Q as there is for p, ), the relative values
can be compared with experiment. It is seen that
while I ewis's calculated values of both b and 5
are of the proper sign, their magnitudes are over-
estimated by about 60%%uo. Part of the problem may
be due to the sensitivity of the interactions U'"'
and U'~" to small impurities in the eigenvectors,
and part to the relativistic wave functions.

K. Ratios of Hyperfine-Parameter Values

Table XI lists several ratios of the hfs radial
parameters. The upper part of the table gives the
empirical results (the fourth line gives the ratios
for the complete Conway-Wybourne eigenvectors
of Table VII), and the bottom three lines give cal-
culated values. It is seen that, in general, the
ratios from parameters calculated '~~ from the
relativistic Hartree- Pock-Slater wave functions
are in much better agreement with experiment
than are those bas ed on the us e of C asimir~' fac-
tors. The latter procedure appears to underesti-
mate the relativistic effects considerably. Both
procedures fail to take proper account of configu-
ration interaction.

L. Effect of Truncating Eigenvectors

Virtually any eigenvector that one can write down

represents a truncation of the actual physical state
of an atom. The Conway-%ybourne ' eigenvec-
tors, which span only a single configuration, never-
theless contain many small terms. It is of interest
to see how important some of the smaller compo-
nents are in accounting for the observed hfs prop-
erties of the 'I states. The first four lines of
Tables X and XI are intended as indications of such
effects. For the entries in the fourth line, the

complete Conway- Wybourne eigenvectors (Table
VII) were used, as mentioned above. They list
19 components for J= 4, 14 for J= 5, 12 for J= 6,
and seven each fox J= 7 and 8. The results in the
third, second, and first lines were obtained by
retaining only the 12, 5, and single largest com-
ponents of the eigenvectors, respectively, and the
eigenvectors were then renormalized to unity.
Thus, the top line is for the .LS-limit approxima-
tion.

Virtually no change in parameter values is found
as the eigenvectors are extended from the first 12
components to the first 19 (only the eigenvectors
for the J'=4 and 5 states are affected). The results
for the 5-component eigenvectors are markedly
different, however, particularly for a' and a' .
This is very surprising when it is noted that these
eigenvectors, even before renormalization, retain
99.8% or more of the strength of each state. The
I.S-limit approximation retains 96.4% or more of
the strength of the states before renormalization
but leads to values of a', a', b', and b" that are
off by a factor of 2. That these parameters are
extremely sensitive to the 3. G%%d impurities in the
states is clear. Even for states very near the I.S
limit, it shows that that retention of only the few
leading terms in the eigenvectors cannot be ex-
pected to lead to reliable values of the hfs radial
integrals.

M. Nucjear Electric-Quadrupole Moments of ' 3 '~'Nd

If we put I = 3 in Eq. (15a), we find

b" = (e'q/I )(~")„=(e'q/49')(25ft„+18ft + 6ft,.)
= —555. 3 MHz, (26)

where we have used the value of g given for ' 'Nd

in Table IX. Because the relativistic (r ')4z values
calculated'0'" for the dominant (U'o"') term in
the dipole interaction are within (1-3)% of experi-
ment, it is reasonable that the corresponding quan-
tity (g 3)02for the dominant quadrupole term (U S2'3)

should also be accurate. The values calculated
relativistically for this quantity by Lewis'o (4. T90ao')
and by Rosen and Lindgren" (4.9'79ao') differ by
only 3. 9/o, The mean of the two for ~4~Nd yields

Q = kb /(4. 885ao )e = —0. 483 b .

This is the apparent value, uncorrected for Stern-
heimer' shieMing. Although the shielding factor
R& has not been calculated specifically for Ndl,
it does not appear'8 to vary a great deal in the 4f
shell and is probably about R+ =+ O. 13. Thus, the
true quadrupole moment is

Q('4'Nd) = [I/(I —0. 13)](—0.483) = —0. 56 (6) b,

where the 10% uncertainty arises primarily from
uncertainty in the shielding factor. The quadrupole
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moment of '4~Nd differs from this by the ratio of
the 8 factors given in Eq. (23). Thus, we have
the result

q(~4'Nd) = —0.29(3) b .
IV. SUMMARY AND CONCLUSIONS

In this experiment, the three observables A, 8,
and g~ have been measured precisely in each of
five atomic states for the stable odd-A isotope' 'Nd, and in four states for ' 'Nd. It has been
shown that the single-configuration eigenvector set
obtained by Conway and Wybournee' by fitting the
excitation energies (an independent fourth observ-
able) are consistent with the measured hyperfine
and Zeeman expectation values to a very high order,
though not to within experimental error. It is
suggested that the eigenvector for the SI, metastable
state may be less accurate than those for 'I4, 6,.
An investigation of the importance of small com-
ponents in the eigenvectors showed that even ex-
tremely small impurities were significant in un-

derstanding details of the hfs observations.
The hyperfine radial integrals obtained by fit-

ting the theoretical expressions to the data are
compared with values calculated by nonrelativistic
Hartree- Fock32 and by relativistic Hartree- Fock-
Slater ' techniques. Although the nonrelativistic
result is in poor agreement with experiment, the

relativistic results agree very well for the dom-
inant hfs dipole integral. Agreement is much less
satisfactory for the two relativistic quadropule
integrals associated mth the operators U(13)2 and
U~~~'~, however. A detailed check of the relativis-
tic predictions for the dipole integrals associated
with(s C ' ') "'and 8 is not practical because of the
difficulty of distinguishing between relativistic and
configuration-interaction effects. The dipole-
parameter ratios a~ /ao'=-0. 022 and a'2/a ~=0. 973
are very close to those reported" for the near-
neighbor atom Sm i, for which a' /ao'=-0. 034 and
a /a = 1 014

An apparently large value is found for the hyper-
fine anomaly, but a final conclusion must await a
more precise determination of the moment ratio
pz('43Nd)/ p I (' 5Nd). The electric-quadrupole mo-
ments of the nuclear ground states of 4 '~ ~Nd

were obtained.
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The usefulness of Hylleraas-type wave functions for variational calculation of three-electron
excited S states is investigated. The four lowest (1s ns) S wave functions for lithium are ob-
tained in the same 57-term basis. The calculated energies are —7.47782, —7.35392,
-7.31837, and —7.30339 a.u. compared to the corrected experimental results —7.47807,
—7.35410, —7.31853, and —7.30355 a.u. The largest part (0.00015 a.u. ) of the discrepan-
cies is due to approximations in the core function. For the lowest S state for lithium a 44-
term basis was used with the resulting energy —5.21240. The wave function was analyzed
in terms of natural orbitals and found to exhibit strong 2s3s-2p3p '"near degeneracy. " The
density for the Li state is significantly correlation contracted in the 3s region.

I. INTRODUCTION

Variational trial functions with explicit depen-
dence on the interelectronic distance coordinates
were introduced by Hylleraas for the He atom. '
These kinds of wave functions were also used for
the lithium ground state, the H~ molecule3 and the
metastable He P' state. Later applications using
electronic computers for two-electron 7 and three-
electron "atomic ions, the Be ground state, '
and the hydrogen molecule" have demonstrated
their usefulness for these systems. Hylleraas
(Hy) expansions have also been used in the calcula-
tion of Bethe-Goldstone-type pair functions in the
many-electron theory of atoms and molecules.

For two-electron atomic ions t'he original ap-
proach of Hylleraas with non-negative powers of
x~q, rq+rq, and v~ —x2 has been extended to more
complicated types of trial functions by Kinoshita, '8

Pekeris, ' Schwartz, Ermolaev and Sochilin, '
Frankowski and Pekeris, and others. Contrary
to Hy expansions these different methods would
lead to very difficult integrals in variational cal-
culations for three or more electrons or in pair
function calculations. It is therefore important to
keep the Hy form when improving the basis sets.
For the two-electron ground state this can be done
by choosing some large parameters in the exponent,

as is demonstrated in Sec. III.
The (1s ns) S states have been calculated earlier

by Ohrn and Nordling and Perkins. " The wave
functions of Ohrn and Nordling were essentially
of the form

y(1, 2, 3) =A,(y(1, 2)y(S)}.

y was optimized by variation of the exponential pa-
rameters in a three-term basis, whereas Q was
taken to be a Hy-type function with only one fixed
exponential parameter. In this paper we will in-
stead optimize the core function by variation of the
exponential parameters of a four-term Hy-type
basis. This optimization is carried out for Li'.
The basis for cp is chosen rather large to make
possible a description of four valence orbitals. In
addition core-valence correlation is included in
an efficient way. This calculation is described in
Sec. IV.

The $', P', 4I' states have been calculated by
Holgien and Geltman using only even powers of
y, , . The cusp conditions of'the Coulomb hole are
of no importance in this case since all electrons
have the same spin. The Coulomb hole exists then
only as a slight modification of the Fermi hole,
which has a flat bottom. Benefitting from the
simplification obtained when using only even powers
of z, , , Holgien and Geltman were able to calculate


