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Pressure broadening by neutral atoms is treated in a time-dependent formalism making use
of generalized cumulants due to Kubo. A thermal-equilibrium initial density matrix is as-
sumed, unlike in previous theories by Baranger and Fano who neglect initial correlations be-
tween atoms; it is pointed out that the wings of the spectrum depend in an essential manner on
these initial correlations. The treatment centers on a time-evolution ope~ato~ U(t) =(Tr~p)
&& Trzpe~~H operating inthe Liouville space of the radiating atom and governing its motion under
the influence of the perturbing gas or bath {Trs is the trace over bath coordinates, p- e ~ is
the density matrix, and H" is the quantum-mechanical Liouvillian: FP( ) = tH, ( )]; H is the
total Hamiltonian. for the system radiator plus bathj; U(f) is written as U(t) =T exp[ifodt'I (f')J,
I (t) =H", +B(t) (T. is a time-ordering operator), where the effect of the bath is contained in
the time-dependent non-Hermitian perturbation R(t) added to the Liouvillian H~" of the unper-
turbed radiator. The operator R(t) is expanded in powers of a "reduced" density equal to the
perturbing-gas density multiplied by the ratio of the fugacities corresponding to mutually in-
teracting and noninteracting perturbing atoms, respectively; the terms of the expansion are
expressed by means of generalized cumulants, and describe interactions of the radiator with
clusters of perturbers. By setting R(t) =R+R(f), where R =—limr „[(1/T)fordtR(t) J, the spec-
trum is written as the sum of its impact approximation, determined by F7, plus a correction
expanded in powers of 8(t), which to first order in the gas density equals the one-perturber
spectrum minus its singularities at the resonance frequencies.

I. INTRODUCTION

Much of the recent work on pressure broaden-
ing is based on the theory of Fano, ' whose ap-
proach is equivalent to that of Zwanzig for treat-
ing relaxation phenomena. Fano assumes that the
initial density matrix is a product of two matrices,
one for the radiating atom (the system of interest)
and one for the gas of perturbing atoms (the bath),
thus neglecting initial correlations between radia-
tor and perturbers. In reality, there always exist
correlations between the particles of a gas, and by
neglecting initial correlations, one allows initial
states in which different atoms are arbitrarily
close to each other and hence have arbitrarily large
potential energies; this can significantly affect the
radiated spectrum, since this extra available po-
tential energy may be transferred to the radiation
field.

In this paper, we assume an initial density ma-
trix which describes thermal equilibrium of the
whole system radiator plus perturbers. The ex-
ponential form of the equilibrium density matrix
allows us to consider it formally as an extension
into imaginary times of the Liouville-spacetime-
evolution operator; this brings about considerable
simplifications in the notation and in the combina-
torial manipulations required to perform the per-
turbation expansions. But the general procedure
used can be applied to the case of arbitrary initial
density matrices.

The spectrum is given, as usual, "by the Four-
ier transform of the autocorrelation function of the

radiating dipole moment. After performing (for-
mally) the trace over bath coordinates, the corre-
lation function is expressed in terms of a nonuni-
tary time-evolution operator U(t) which operates in
the Liouville space of the radiator alone. The op-
erator U(f) cannot be calculated exactly in general;
furthermore, its perturbation expansions, which
can be derived quite straightforwardly, do not con-
verge uniformally with respect to t, and conse-
quently cannot be truncated. One therefore seeks
to express U(t) in terms of quantities which have
usable perturbation expansions. Two different ap-
proaches suggest themselves naturally, when one
notices that in the absence of the bath, U(t) = e't"~,
where H," is the Liouvillian of the unperturbed ra-
diator, and the Fourier transform of U(t) is U(up)
= —i(&c —i 0 —H",) . In the first approach, we write

U(t)=T exp[i J' df'L(f')], &(f)=H",+R(f) ~

(l. I)
where T is a time-ordering operator, and L(t)
is the radiator Liouvillian to which is added a
time-dependent perturbation R(t) representing the
effect of the bath; in other words, to the "frequen-
cy" H," is added a time-dependent part, and since
we deal with operators, the exponential is time
ordered. In the second approach, we write

t U(w) = [v —H,"—C(&u)]

in which the effect of the bath is contained in the
frequency-dependent C(~). In these two approach-
es, we solve, respectively, for R(f) and C(e) in
terms of U, and deduce their perturbation expan-
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sions, which we expect can be truncated, directly
from those of U. In this paper, we shall concen-
trate mainly on the first approach; a detailed study
of the second "resolvent" approach will form the
subject of a forthcoming paper.

Much of the paper is devoted to deriving the den-
sity expansions of U(t) and R(t). Actually, the ex-
pansion parameter is not the gas density itself, but
a "reduced" density n equal to the gas density
multiplied by the ratio of the fugacities correspond-
ing to mutually interacting and noninteracting per-
turbing atoms, respectively; a strict density ex-
pansion can be obtained by then performing the
density expansion of the interacting gas fugacity.
The "reduced" density expansion of R(t) is ex-
pressed in terms of generalized cumulants due to
Kubo, and its terms describe interactions of the
radiator with clusters of perturbers.

At large times, R(t) tends to a constant R-=limr „[(1/T)Jo dt R(t) j upon which may be super-
posed oscillatory terms due to the formation of
radiator-perturber bound states; the non-Hermi-
tian operator R represents a complex frequency
simulated by successive collisional phase shifts.
It is R which, resulting from the cumulative effect
of many collisions, causes the successive terms in
the density expansion of U(t) to diverge as increas-
ing powers of t, thus forbidding one to approximate
U(t) by truncating its expansion. On the other
hand, the oscillating part R(t) —= R(t) —R represents
the effect of perturbers while in close proximity to
the radiator, and one may expand U(i) in powers of
that quantity, and from this construct a density ex-
pansion of the spectrum; the first term of that den-
sity expansion is the impact approximation to the
spectrum, which is essentially independent of the
initial correlations; the second term is the one-
perturber spectrum minus its singularities at the
resonance frequencies, and it depends in an essen-
tial manner on the initial correlations between the
radiator and the perturber. Together, these two
terms constitute the spectrum in the binary-colli-
sion approximation.

In Sec. II, the basic expressions and definitions
are given. In Sec. III, the general expressions of
R(t) and C(&u) are derived, and by treating R(t) as
a perturbation, the spectrum is written as the sum
of its impact approximation plus a correction x-
panded in powers of R(i). In Sec. IV, some sim-
plifying notation involving imaginary times is in-
troduced. In Sec. V, R(t) is expanded in powers
of the radiator-perturber interaction and the re-
sult expressed in terms of cumulants. In Sec. VI,
cluster expansion methods of the equilibrium the-
ory of fluids' are used to expand U(t) in powers of
the "reduced" density, and the corresponding ex-
pansion of R(t) is then deduced and expressed in
terms of cumulants. In Sec. VII, the physical sig-

nificance and structure of the "reduced" density
expansions are discussed. Sections VIII and Ix
are more specific to pressure broadening, unlike
the preceding sections which can apply to a large
class of relaxation phenomena; in Sec. VIII, the
average over the irrelevant translational motion
of the radiator is performed, and in Sec. IX, the
spectrum is written to first order in the density,
valid in the binary-collision limit.

Throughout this paper, the frequency and the
time ~ are considered conjugate variables in the
sense that for any function f (T), the function f (&)
is defined by

f(&)=f d7& ' f(~) ~

I(u)) = f" dT e '"'I(~),
0

I(7') = Tr pD(v)D = Tr DpD(7')',

where

(vH D -&AH

(2. l)

II being the Hamiltonian for the whole system ra-
diator plus perturbers, and

p HBH/Z Z Tr -BH

is the thermal-equilibrium density matrix. Equa-
tion (2. l) is rewritten in the form

I(T) = TrDpe""

where, for any operator A, the Liouville-space
operator A" is defined by its action on any oper-
ator B:

this notation is due to Kubo '; H" is the quantum-
mechanical Liouvillian. Expression (2. 2) may be
viewed as a correlation function, or alternatively~
as the average value of D(7) when the initial den-
sity matrix is Dp, where D represents the effect
on p of an impulsive interaction with radiation at
time zero.

II. BASIC EXPRESSIONS AND DEFINITIONS

A. Lane Shape

Let us consider a radiating atom, the "radiator, "
immersed in a gas of other atoms, the "per-
turbers, " there being N perturbers in a volume 'U.

The power radiated at the frequency & is denoted
(«u /&c )H 'Hel(~), where c is the velocity of
light and Re denotes the real part. Rel(~), or
simply I(&u), is referred to as the spectrum or
line shape; it can be expressed'7 as the Fourier
transform of the autocorrelation function of the
radiating dipole moment operator D (units are
chosen such that h= l):
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B. Time-Evolution Operator

The underlying physical picture here is that of
a small system s, the radiator, in interaction
with a large system of very many degrees of free-
dom, the perturber gas, or bath S. %e are in-
terested in the correlation or expectation value of
operators (the dipole moment) which pertain to s
alone; the bath is relevant to our problem only in
regard to the influence it has on the state and time
evolution of the Observed system S. As in ordi-
nary quantum mechanics, it is convenient to de-
fine an operator U(7) which governs the time evo-
lution of the (open) system I considered; this time-
evolution operator can then be studied separately,
independently of what are the observables of 8 one
is interested in.

Inspection of Eq. (2. 2) suggests the definition

BH-/Z

PB 8 B/ZB

Z Tr -QH

Zg=—Tl g 8-gH

Using the fact that H~ commutes with H, and with
operators which pertain to the radiator alone (so
that HBD=0), we can write Eq. (2. 2) in the form

I(7)=Tr, 'Dp, B(7)e" ~D, (2. 6)

where

B(~) p, '=-(Tr, p e"H") e "Hs

= (Z, ZB/Z)»B pB(e'"o e '")

would be more natural to let V be the system-bath
interaction alone, but the interperturber interac-
tion V~ is included in V for convenience in the
later expansion into powers of the gas density.

The following density matrices are now defined:

U(r) =—(TrB p) TrB pe"", U(0)= I, (2. 3)
X(et T 8et THO)' (2. 't)

where TrB (Tr, ) denotes the trace over bath (sys-
tem) coordinates. Then

I(r) = Tr, DoU(r)D,

where

(2. 4)

C. Interaction Representation

The time-evolution operator U(r) is now ex-
pressed in a kind of "interaction representation, "
which is more practical for performing perturba-
tion expansions. The Hamiltonian H is first
written in the form

H= Hs+ Ha+ V= Hp+ V

Hp=H~+H~,

where H, is the Hamiltonian o.'. the radiator alone,
and

g=—Tlg p Tr 0'= 1

is the reduced density matrix describing the state
of the radiator at time zero; we note that by the
lemma of Appendix C, 0 is a function of II, . Equa-
tion (2. 4) is of the same form as (2. 2), but with
the density matrix p and the Liouville-space time-
evolution operator e" replaced by correspond-
ing quantities o and U(v) which operate in the space
of the radiator alone.

The bath operator B(r) contains all the effect of
the bath on the radiator, and it would equal 1 if the
radiator and bath did not interact'; at w = 0, B(7')
consists of an impulsive interaction B(0)= p, o,
which changes the initial-density matrix of the ra-
diator from p„what it would be in the absence of
the bath, to g, its actual form. As ~ increases,
B(7) describes the effect of the bath on the subse-
quent evolution of the radiator.

The bath operator B(r) can be expanded straight-
forwardly into powers of the system-bath interac-
tion strength, which may be taken as V,~, or as
the perturbing gas density, which determines the
average strength of the interaction. All quantities
of interest will be expressed in terms of B(r), and
their perturbation expansions deduced directly
from those of B(r).

In terms of B(7'), the time-evolution operator
U(r) has the expression

U(~) = B(0)-'B(~)e*'". . (2. 8)

III. GENERAL TREATMENT

A. Equation of Motion for U(t)

The time-evolution operator U(t) satisfies the
(trivial) equation

is the sum of the one-perturber Hamiltonians; V
is the interaction between atoms:

—U(t) = U(t) = U(t) [U(t) ' U-(t)];
dt

this can be rewritten (note that H," is the value of
U

' U in the absence of the bath):
N

v= v„+ v, =Z v„+Z v.. . (2. 5) —U(t) = t U(t) [H,"+R(t)], U(0) = I,d (3. I)

where V,&
is the interaction between the radiator

and the j th perturber, and V, &
the interaction be-

tween the zth and j th perturbers. In general, it

where

B(t)-=(I/t) U(t)-' U(t) —H,"
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contains the effect of the bath on the evolution of
the system. In terms of B(t), R(t) has [by Eq.
(2. 8)] the expression

R(t) = (I/z) e-"" B(t) ' B(t)8"" (3 2)

(3.3)

R(t) = e""~R(t)e ""s .

from which the perturbation expansions of R(t) can
be deduced from those of B(t).

For future reference, we note that

—„, B(t) = zB(t) R(t),

(3. 6)

Let v, be a time such that when t) 7'„R(t) es-
sentially assumes its asymptotic value R (here .ve

neglect the possibility of radiator-perturber bound
states), or equivalently, U(t) essentially equals
A 8" where

A=-T exp[i f dtR, (t)) .
In the binary-collision limit, 7, would be the mean
duration of a collision. The asymptotic value of
U(v) determines U(~) in the vicinity I(d —~, l«w,
of resonance frequenc -.s w„namely, U(~)
= —zA(~ -2); this yields the impact spectrum

B. Solutions I(,((()) = —i Tr, DoA((() -2) D . (3.V)

Equation (3. 1) has the formal solution (1.1), in
which T. (T ) orders operators such that their
time arguments increase from left to right (right
to left).

The operator R(t) will be seen to tend to a con-
stant as t- ~, on which may be superposed oscil-
latory terms due to the possible existence of bound
states between the radiator and perturbers; we
may accordingly write

R(t) = R+R(t), (3.4)

where

R=limr „T ' J dtR(t)

is the average value of R(t), and

U(~) = A e'"+AN(~),

where"

N(&) =(T exp[-i f dt R,(t)] —lee"~;
thus

(3 3)

The non-Hermitian operator A introduces a skew-
ness into the Lorentzian line shape, in addition to
that arising from the interference of overlapping
lines'; it is usually treated to lowest order in the
density, i.e. , set equal to 1. In the adiabatic
theory of pressure broadening, the counterpart of
A is well known and its main effect is to produce
an asymmetry in the line. '3

The operator U(v) may be written

R(t) = R(t) R-- U((u) = —zA((u —2) +AN((d) . (3. 9)

is an "oscillating" term which reflects, at small
values of t, the details of the time evolution dur-
ing radiator-perturber collisions, in addition to
containing the long-lived oscillations due to bound
states.

An expression of U(~) more useful than (1.1) can
now be obtained by treating R(t) as a "perturba-
tion" added to the time-independent operator

Z =- a,"+R

in Eq. (3. 1); setting

R, (t) = e'" R(t) e-'"-
we have

U(~) = T exp[t f dtR, (t)) e"~

It will be seen in Sec. IX that to first order in the
gas density, AN(~) yields the one-perturber spec-
trum to which are substracted its singularities at
the resonance frequencies.

C. Resolvent Form

Rather than include the effect of the bath in a
time-dependent perturbation added to the system
Liouvillian„we may also introduce it as a fre-
quency-dependent operator added to H", in the un-
perturbed resolvent —i((d —z 0 —H,"); this form,
which is that obtained in Fano's theory, ' is now
briefly discussed (in this section, the frequency &
is understood to have a small negative imaginary
part —i 0).

Let us set

= e"~+i dt e(z~ R(t) e'" "~
0

+ zz f, dt f,'dt e" r R(t')

i U((()) = [(() —H,"—C((())]

solving for C((d), we have

C((d) = (d —H", —[zU((d)]

(3. 10)

x e((z z')c R(t) e-((Y z)g + (3 5)

One may interpret this expansion as a sum over
histories in the usual manner, with an "interaction"
R(t), and an "unperturbed" time-evolution operator
e"~ governing the "average" motion of the radiator
in the bath.

( 1

( -H")U( )
(3. 11)

Vfe introduce the quantity

(M(~) ) =- ((d —H",) [z U((d ) —(u) —H",) '] ((u —H",),
(3. 12)
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which vanishes as the system-bath interaction
tends to zero, since it is proportional to iv(io)
minus its value (o& H—",) in the absence of the
bath. We then have

which is Fano'so Eq. (20), but without any assump-
tions on the density matrix. The operator (M(o&))
also has the expression

(M(o&)) =i(&o —H",) f d7'[B(0)-'B(r) 1]

i ((u H &( Hx) (3. 14)

which may be used to deduce the perturbation ex-
pansion of (M(+)) and hence that of C(o&) from the
expansion of B(7). To first order in the density,
C(&o) and (M(&u) ) are equal [by (3. 13)] and given by
the right-hand side of (S. 14), with B(0) replaced
by unity and B(r) by its first-order approximation.
This first-order expression for C(o&) (but with p
= p, pz) is used by Smith et al. as a starting point
for numerical calculations. '

An alternate expression of U(o&) is obtained by
setting

evolution operator.
We first rewrite expression (2. 7) of B(T) in the

form

B(q-) = (Z, Zz/Z) Trz pe T o exp[- f db V(- ib)]

x T, exp[i f dt V(t)"] (4. 1)

where

V(-ib) = o o Ve o —ei(-i»"o Ve-«-io&"o

V(t)
— iiHo Ve i&Ho-

[note that for any two operators A and B: e" Be ""

= (e""oVe ""o)"= V(t)"]; the operator T, orders the
V(t)" such that their time arguments increase from
left to right, and T, orders the V(- ib) such that
the arguments 5 increase from right to left. De-
fining the operation T ~, which compounds the
two previous operations in addition to putting all
V(-ib) to the left of all V(t)", we also have

B(r) = (Z, Z»/Z) Tr&& pz T, ,

x exp[- f db V(- ib) + i f dt V(t)"] .

Another, more suggestive, form is obtained by de-
fining the complex-time variable z = t+ ib, and the
function

i U((u) = [o& —8 —D((g)] ' (3. 15) W(z) =— V(z)"= V(t)" on the real z axis

in which the operator D(&u) vanishes with R(t); us-
ing Eq. (3. 9), we obtain where

=— V(z) = V(t+ib) off the real axis, (4. 2)

V(z) —eig8o Ve-igzo

We then write

(4 3)

= (o& —&)((1—& ') —Z [-iN(o&) (o& -Z)]'A '] .
n=j

(3.16)
We note that Eq. (3. 15) implies the following non-
Markoffian equation for U(i):

—U(r)=iV(r)a+i f'dt V(t) D(~ t), -
dt 0

(S. 17)
v(O) =1.

With reference to Eq. (S. 17) we may speak of
D(o&), or N(o&), or R(t), as representing the non-
Markoffian effects, and of (+ —Z) as being the
Markoffian approximation to iv(o&); but this distinc-
tion is somewhat artificial since U(7) also satisfies
the Markoffian Eq. (3. 1).

IV. COMPLEX-TIME NOTATION

B(~)= (Z, Zz/Z) Trz pz T,.exp[i f dz W(z)],
(4.4)

where j;odz denotes the integral along the contour
shown in Fig. 1, namely, from -iP to 0 along the
imaginary z axis, and then from 0 to ~ along the
real axis; the operation T,. orders the W(z) such
that when read from left to right, the arguments z
proceed from —iP to 7 along the contour.

It will prove convenient to define the operation

( ~ ~ ~ )=- Tr p T (. . .), (1)=1, (4. 5)

which contains the complex-time-ordering operatio~
in addition to that of averaging over the bath vari-
ables. Then

B( )=T(Z, Z/Z»)(e p[ixf' dz W(z)]) . (4. 6)

In order to simplify the manipulations required
to perform its perturbation expansions, the bath
operator B(7) will now be written in a compact
form by taking advantage of the exponential nature
of the equilibrium-density matrix and considering
it as an extension into imaginary times of the time-

0

plane

FIG. 1. Complex-time
integration contour defining
f'„dz
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In expressions (4. 4) and (4. 6), we may consider
—ip as representing an "initial time" at which the
particles of the gas, radiator, andperturbers, are
uncorrelated, i. e., the density matrix is a product
of one-particle density matrices; as time pro-
ceeds along the imaginary axis from —iP to 0, the
particles "interact" thus building up the correla-
tions contained in the density matrix at the Physical
initial time zero; time then proceeds along the
positive real axis. The complex-time-order ed ex-
ponentials may be expanded and interpreted in
terms of Feynman diagrams, with interactions oc-
curring at imaginary times influencing the initial
state (at time zero) of the radiator, and those oc-
curring at real times affecting its subsequent evo-
lution.

From expression (4. I), it is seen that B(7) tends
to zero as 7- ~, for as 7 increases, the possible
values of the phase Jo dt V(t)" become more and
more spread out, so that the average of its expo-
nential tends to vanish.

V. EXPANSION IN POWERS OF THE INTERACTION V

x 7, exp[i f dtR(t)]

=B(0) T, exp[i f dtR(t)], (5. I)

The operator R(t) has been introduced as a quan-
tity which, unlike U(w) or B(7), is expected to have
perturbation expansions that converge uniformally
with respect to t, and can therefore be used as a
basis for eventual approximations. The expansion
parameter will usually be the strength of the sys-
tem-bath interaction, which can be taken directly
as the interaction V, or alternatively as the per-
turbing gas density, which determines the average
strength of the interaction. The expansion in pow-
ers of V is of more general applicabibty, and is
briefly treated in this section; the density expan-
sion, which is of use only if the bath is a gas, as
in our problem, is derived in Sec. VI.

In order to obtain the expansion of R(t) into pow-
ers of the interaction V, one must introduce (4. 6)
into (3. 2), and expand the result into powers of V.
But actually, the expansion of the logarithm of an
expression of the type (4. 6), namely, the average
of an exponential function, defines well-known
combinatorial objects called cumulants; Kubo has
extended the theory of cumulants to include time-
ordered exponentials, and the explicit expressions
and properties of the cumulants of the type we use
are given in Appendix A.

In terms of cumulants, we can immediately
write

B(r) = (Z, Zz/Z) T, exp[i f ., dz R(z)]

={(Z,Zz/Z) T, exp[i J dzR(z)])

where

R(z) = &exp[I f' dz' W(z')] W(z) ), , (5. 2)

and the cumulant average &), is defined in Ap-
pendix A. We thus have, according to Eq. (3. 3),

e""~R(t)e ""~=R(t)= &exp[i f Cz W(z )] V(t)"),.

the second equality following from the fact that H,
and H& commute with p~, so that the operators

fHx~ cancel each other by the cyclic property of
the trace Trz [recall HO=H, +Hz, and the defini-
tion (4. 5) of the operation ( )). We have finally

R(t) =
& exp[i f, dz W(z —t)] V"),

= ( V)" +i J dz [& W(z —t) V")

-
& W(z - t) ) ( V")]+ ~ ~

+i'f' dz, f"dz, "J'" 'dz,

x & W(z, . t) W(z, , - t)-

x W(z, t) V") + -. (5.4)

If it can be assumed that successive interactions
W(z) are statistically uncorrelated when separated
in real time by more than some correlation time
7„ then theorem (Al) of Appendix A implies that
the kth-order cumulant in expansion (5. 4) vanishes
when its two extreme interactions are separated
by more than k7, (for then there is at least one
time interval larger than 7, between two successive
interactions, which separates the 0 interactions
into two uncorrelated groups). In passing from
R(t) to R(t), the interactions have been time trans-
lated such that the last interaction always occurs
at time zero, and all the interactions must there-
fore be clustered near that time. Thus nothing is
added to the multiple time integral in Eq. (5.4)
when t increases beyond k~„ in other words, the
kth term of the expansion becomes independent of
time after t= kr„and it is therefore concluded
that R(t) tends asymptotically to a definite limit.

The above discussion is based on the assumption
of a finite correlation time between successive in-
teractions; whether this is the case or not is in
general not easy to establish with certainty, though
intuitively it seems a reasonable assumption; but

= e""s&exp[i J dz' W(z' —t)] V"), e-""s;
(5. 3)

in time translating by —t all operators in the cum-
ulant bracket, we have used the relation

&H W( )&=& ""'(ll;W(;-t))
'

t,H "&g W-(-t) ) tt H-
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w=Z w„+Z w„= Z w„„,
/=1 fQ w&v

(6 1)

where p, and v take the values s, 1, 2, .. ., N, and
for notational convenience we put "s & 1." Defining

f,„=exp[i J dz W„„(z)-]—1, (6. 2)

we have

F(~) exp[i f =dz W(z)]= Q (f,„+1).
-N 0&v

(6. &)

one can exhibit cases where a correlation can ex-
ist between two successive interactions separated
by any amount of time, as will be seen in Sec. VIII
when discussing center-of-mass motion of the ra-
diator. The expansion in powers of the density will
provide a much sounder basis for discussing the
behavior of R(t).

%e note that V is the sum of radiator-perturber
and perturber -perturber interactions, as defined
initially in Sec. II; but we may also think of V as
being only the system-bath interaction V,~, and of
H~ as being the total Hamiltonian for the bath. This
latter definition of V is of wider applicability than
the one we have chosen, which is really useful only
when a density expansion is intended.

VI. EXPANSION INTO POWERS OF THE GAS DENSITY

The radiator immersed in the perturbing gas suf-
fers collisions with individual perturbers or with
clusters of perturbers; the interaction between
atoms during collisions can be so strong as to pre-
clude treating it as a perturbation, as in Sec. V.
If, however, the perturbing-gasdensity is low

enough, collisions may be sufficiently unfrequent
as to render the average interaction of the radiator
with the bath small, in which case the gas density
recommends itself as an expansion parameter. But
independently of these considerations, the density
expansion of R(t), besides providing an approxima-
tion scheme, is the most natural way of expressing
R(t) in order to reveal its physical structure; in-
deed, the successive terms in the density expansion
of R(t) correspond to collisions of the radiator with

clusters of perturbers of increasing size, and thus
represent the elementary physical processes by
which the radiator interacts with the bath.

In order to perform the density expansion, we

shall use graph methods of the type used in the
equilibrium theory of classical fluids, and the
relevant definitions and lemmas are grouped in
Appendix B.

A. Expression of B(r) in Terms of Labeled Graphs

Referring to the respective definitions (2. 5) and

(4. 2) of Vand W(z), we can write

B. Elimination of Graph Components Not Connected to
Radiator

Clearly, the radiator is affected only by per-
turbers which are "connected" to it; we therefore
seek to isolate graph components not connected to
the radiator by first rewriting the sum (6. 5) over
all graphs as follows:

N

F(7') = I'(s):-"'+Qi'„„,(s, j):-"' '

+ Q [Zi',.„(s,i, j)]=-"'"+ ~ ~ ~,

where F(s) is the graph consisting of the radiator
alone, and = "' is the sum of all graphs not con-
taining the radiator, and $I' „(s,i, j, . . . ) is the

sum of all connected graphs containing circles
s, i, j, . . . , while =""~' "' is the sum of a/l

graphs not containing s, i, j, . .. . In other words,

m% )'1&)3&

g(s, sg ~ "~ sm& (f y 1) (6. 6)

{Ss/1s ~ a ~ s J ) ~

where the product Q, &„"is
p. and v to the exclusion of s, j1,.
g 1"„„„(s,j„.. . ,j ) is the sum of
nected labeled graphs of vertices
for instance,

over all values of
. ~ )j ) and
all distinct con-
~ j1~ ~ ~ ~ ~ jmi

ZI' (s, i, j)=f gfgy+f yfo+fsgfly+fstfsyfty

is represented graphically in Fig. 3.
Because the quantities g„"~""' ~'(f„„+1)and

QI'„(s, j&, . . . , j ) depend on mutually exclusive
sets of atoms, the average () of their product
equals the product of their averages; we then have,

assuming all perturbers to be identical,

Note that the time-ordering operator included in the
operation () entangles together the different fac-
tors f„„in a product.

Expression (6. 3) is of a form familiar in the
theory of the virial expansion for real gases, and

we shall make use of the same graphical methods
to represent products of f„„'s: we draw a white

/
circle labeled s representing the radiator, and a
black circle labeled j to represent the jth pertur-
ber; a factor f,„ in a product is then represented
by a black line joining the circles representing the

p, th and vth particles. An example is given in
Fig. 2; note that a graph can be viewed and written
as the product of its connected parts. In terms of
these labeled graphs, Eg. (6. 3) is written

F(7') = sum of all distinct labeled graphs .(6. 5)

According to Eq. (4. 6),

B(7)= (2 + /z) (F(T)) . (6.4)
F(7) = Z [Nl/(N —m)imf]

m-"0
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1 4
~ ~ ~ y ~ ~

5 3 7 8

FIG. 2. Labeled graph representing the product

fs fA2f45f 56f46 ~ .

[ZB /ZB](N-m)

where H~ '=- H~+ V~ is the total bath Hamiltonian,
ZB&r) -=Trsexp(- pHB&r)), and the subscript (N- m) on
the square brackets indicates that all quantities in-
side refer to the perturber gas minus gyes perturbers;
the operators H~ '" and H~ have vanished since
nothing on their right-hand side depends on the
perturber coordinates.

Now, [ZB]&„)=Z(™,where Z, —= Tr, e "i is the
partition function for a single perturber, and

[ZB '](„„)= [ZB ']&„)e ", (6. 6)

where ]U, is the chemical potential for the perturb-
er gas; (6. 6) follows from the fact that N» m, and
the relation

8
ln[ZB ](N) PP '

Thus, taking the limit N ~, V- ~(u is the con-
taining volume) with N/u=nB, the density of the
perturber gas, we obtain:

B(~) = (Z, Z&')/Z) 2 (n'/ki)
a=0

)& (ZI'„„(s, 1, . . . , m)) (E(7))"'
(6. 7)

where (E(~)&"' ""—= (g„,'„'"" (f,„+1));by com-
paring with (6. 3), we see that (E(r))"'( )' equals
the function (E(v) ), but with the coordinates of the
radiator and of m perturbers deleted. Thus [cf.
Eqs. (6. 4) and (2. 7)]:

(r& &r&& . x
(E(7))"~'" '=[Tr p e8HB8-8HB e(vHB e-ivHB]

C. Expression of 8{v) in Terms of Irreducible Graphs

We could now obtain the density expansion of R(t)
by introducing (6. 9) in (3 ~ 2) and expanding the re-
sult in powers of n; but it is more enlightening to
first make use of a well-known lemma of graph
theory and write the sum (6. 9) as the average of
an exponential function, so that we can then make
use of cumulants to obtain R(t).

It is convenient to first attach a weight n~ to
each black circle (i. e. , perturber) in the connected
graphs I'„„(s, 1, . . . , k) so as to absorb the fac-
tors n" g" in expansion (6. 9); from now on then, all
graphs are understood to be "weighted" graphs in
the above sense. By the lemmas (B2) and (B3) of
Appendix B, Eq. (6. 9) becomes

= „(exp[2' I'„,/o(r„, )]&, (6. 11)

where the graphs here are unlabeled graphs; the
symmetry numbers o(I') and the irreducible graphs
I'„, are defined in Appendix B. The sums g I' are
always over all distinct graphs of the type indi-
cated, consisting of one white and some or no
black circles, except for the sum g I which ex-
cludes the graph consisting of the white circle
(i. e. , the radiator) alone.

In order to simplify notation, we define
primed graphs

r' = I"/o(1");

then

„(~'I'„„(s, 1, . . . , k)) is well defined.
The expansion (6. 9), and all "density expansions"

derived in the sequel, are in powers of the "re-
duced" density n, in order to obtain expansions in
powers of the density n~, n must be expanded inpow-
ere of nB in these expansions [n = nB(1 + anB + ~ ~ ~ )].
Over-all multiplicative constants in B(7 ) (e.g. ,
Z, ZB&r)/Z) play no role, and we shall omit writing
them in future.

x„(~'Zr..„(s, 1, 2, . . . , k)&, (6. 9)

where the operation

„(~ ~ ~ ) =—1xm ( ~ ~ ~ ) = lim Trps T ~ ~ ~

as g - ~ (6. 10)

B(7') = „(Zr'...,&
= „&exp[2' I"„„]).

D. Density Expansion of R{t)

We can now write

B(7)= T,„exp f dz
. d

(6. 12)

n = nB (Z( 8") = n-B (Z,/Z, ' '),

where Z)r' —= e 8"= [ZBr']&N)/[ZBr'] &N» is the inverse
fugacity for the perturber gas; note that Zq' is the
fugacity of the "noninteracting" perturber gas.
We observe that since the interatomic interactions
are assumed of short range, the eon@ected graphs
I"„(s,1, . . . , k) are of order U 8, so that ZIC. S. gr (s, t,f).



C UMU LANT EXPANSIONS AND PRESSURE BROADENING. . .

FIG. 4. Example of a
c(I'»,) cunlulant.

x „&.exp [D1"'„,(z)] ),(r ), (6. 13)

where the graphs I'(z) have bonds f,„(z)
=exp[i f ', adz. W(z )] —1, and col'», ] indicates cum-
ulants constructed on the irreducible graphs: For
in stallc e

is represented graphically in Fig. 4; the operation
(d/dz), defined in Appendix A, equals the ordi-
nary differential operator (d/dz), with the differ-
ence that when operating on a product, each dif-
ferentiated factor is displaced to the right of all
other factors.

We thus again have Eq. (5. 1), this time with

ii(0=()/~) (d—, ) .(mv(E'~', „(())).„,„, ((). (4)

(6. 15)

that is, R(t) = e""~ R(t) e ""sis the derivative
(d/dt) of the sum over all connected graphs, on
the irreducible components of which are built (or-
dinary) cumulants. Returning to labeled "un-
weighted" graphs, we have

~ .(~'Zr..., (s, 1, k)) tr„,) (6. 16)

=(n/i) &f'.,&+ "—.
2$4SP )

"-«(2.fa f12+61oaf la+f, l f,a) &

-2 -«f.l) -«f„) + ~ ~ ~ . (6. 1V)

One may return to the noninteraction represen-
tation by first writ;ng each quantity ( g'„r&'„f„„)as
the average of a sum of e-bonded graphs y
= g("&)„e,„, where e„„=f„„+1= exp[if;adz W„„(z)):

«) =&&'"'y& .
Now,

&y) =Z "eazs(Tr z aH ellH ) e &la(s

where Zz=—Tr&e &, k is the number of perturbers
in the graph y, and

&falfsaflafsa&c(rl„) = &fsl oaf lafsa&

2 ((falfsafla) (fga ) +(fga ) ( fslfsafla ) )

gH& being the sum of the Hamiltonians of. the k per-
turbers in y, and the sum g(,"&) „ is over the e bonds
in the graph y. Note that the graphs y can be of
any type, and (u" y) may diverge in the limit z- ~;
it is only the sum (gag( ' y), where I' is connected,
which has a proper limit.

VII. DISCUSSION OF DENSITY EXPANSION

In order to discuss the physical significance of
the various quantities entering the density expan-
sion, it is convenient to express the quantum-
mechanical quantities in a form which provides and
can be analyzed with reference to a classical image
of the gas; this can be achieved by use of Feyn-
man's path-integral formulation of quantum mech-
anics, or more simply by the use of small wave
packets which follow approximately classical tra-
jectories. The latter method is less rigorous and
of less general applicability than the path-integral
method, but it suffices for the qualitative discus-
sion we want to give.

The products of Liouville operators f,„ in our
expressions operate on gl I1D, where I1 is the unit
operator in the space of perturber j, and D is the
radiator dipole moment operator. We can write

I1 = Z„f da r1 d k1
~
r1, k1,' n) ( r1, k&, n ~(,

where i r1, k1,' n) is a minimum uncertainty Gaus-
sian wave packet ' centered at (r1, k1) in the phase
space of perturber j (r is the spatial coordinate and
k the momentum), and n labels the internal states
of the atom; the unit operator in the space of the
translational motion of the radiator is also written
in that form. In order to keep the discussion sim-
ple, we assume that the atoms do not undergo col-
lision-induced electronic transitions (adiabatic as-
sumption), so that a single-particle wave-packet
product z""g,. l r&, k, , n,. ) follows a unique tra-
jectory in phase space and does not become, under
the effect of collisions, a superposition of packets
with different internal states which may follow
different trajectories (since the internal states of
the atoms affect the dynamics of collisions). Be-
cause both l ) and ( l in the Liouville wave packet
l r~, k~, n~; t) (r1, k~, nj,' t l follow the same
unique trajectory, we can speak of the trajectory
followed by the Liouville wave packet. Allowing
for the possibility of collision-induced transitions
introduces interference effects between different
"paths, " arising from the cross terms in l ) ( l

if each of l ) and ( l is a superposition of states,
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f„.(t)l g ) &g l

= iT exp[i f, dz W„„(z)f

"(v..(t)l(& &Pl —le& &@l v„„(t)); (7. 1)

for this expression not to vanish, the two particles
must be interacting, that is, the packets I l, (t) )
=e ""&IS~) and 1$„(t)&must be colliding at time

In order to separate the intrinsic time behavior
from the "free" time evolution, we perform a time
translation which brings the last intera"tion V„„(t)"
to time zero, and define

= T. exp[i f, , dz W~„(z)j V"„„, (7. 2)

where the integral j,~, dz is along the contour of
Fig. 1 displaced by t to the left, and with 7 = t.

Since the collisions last only for a finite time t„
the collision duration, only the interactions W„„(z)
with Her & —t, are nonvanishing, since the collision
must end at or after time zero for V",„not to van-
ish. Thus when t is increased beyond t, , nothing
is added to the phase f,~,dz W~„.(z), that is, m,'„
becomes independent of time and equal to m~, „.'

but does not alter the basic discussion.
The discussion given in this section is not in-

tended to be rigorous; its purpose is to indi-
cate the physical significance of the various quan-
tities e.itering the density expansion of R(t), and to
reveal the physical structure of R(t). We neglect
the possibility of bound-state formation between the
radiator and perturbers.

A. Significance off „-Binary Collisions

Let g = P, P„be a product of two single-particle
wave packets, depending, respectively, on the co-
ordinates of particles p and v, and let us consider
f„,(t) operating on the Liouville state I g ) &g I':

which is a more familiar form for defining a T ma-
trix.

B. Operator R(t) to First Order in the Density

- ftHO " ttHS
g1 ) (7. 6)

where 0„ is the Hamiltonian of the pth particle,
&o"=-H. +H.. 0'"=-e. +&„+~„„, ~, =-»,e
and Tr& is the trace over the coordinates of per-
turber 1; note that Z, is proportional to U, so that
Iim('U/Z, ) as U- ~ is well defined.

According to (V. 3), the asymptotic limit of R u'(t)
is (excluding bound states)

R"'( )=n(u /Zg) Tr, e'"~m,"g,'

this is, the result first obtained by Baranger~ and
then rederived by Pano, s both assuming from the
start a zero-correlation initial-density matrix.
It is seen that the initial correlations do not affect
R"'(~), and R(~) in general, which determines
the impact part of the spectrum; but they do affect
R(t) at small times [and also the bound-state part
of R(t)], and conse&luently the initial correlations
affect the wings of the spectrum (and the bound-
state spectrum), as discussed in Sec. IX.

(7. 6)

C. Irreducible Graphs

Any graph 1"=g,'r&' f„„canbe written in the form

The expression of R(t) to first order in the den-
sity, designated R"'(t), is given, according to
(6. 16), by

R"'(t) = (nit). «f, (t) &

X XitH (+ t )
-iEH

that is,

R"'(t)=n «m,', &

=niim(e/Z, ) Tr, e '"&[e ""'o e~' e '"' e""0 J

0
m,'.„-' "~-m„"„=T exp[i f dt V(t)"J V" . (7.3) r =g'"' [f '

dz„„f„.„(z„„)J

m~ =lim - ftHO ft(Ho+ v~v&x+x
PV gp P (V. 4)

We note that the imaginary-time interactions do
not appear in ng"„„,' that is, if the collision of par-
ticles p, and v occurs a sufficiently long time after
the "initial" time, then they cannot be correlated
at that initial time since they are far apart from
each other, and the densitymatrix is a product of
one-particle matrices, so that the int raction rep-
resentation density matrix e~' I" ~'e ~'~t' ~+~I ~'

becomes unity. The operator m „„has the struc-
ture of a T matrix, and it may be called a Liouville-
space T matrix for the scattering of particles p,

and v. Note that provided it is not entangled with
other operators by the time-ordering operation in-
cluded in & &,

(V. 7)

m'„„(z')-=(1/i)e'"' ""of„.(z)e '"' ""0,
and the product 0,'"&'„ is over the particle pairs con-
nected by a bond in the graph 1 . It is argued in
Appendix D that if l is irreducible, then
&g,'"&'„f„„(z,„)) vanishes unless all the collision
times Hex„„are clustered together; thus, an ir-
reducible graph corresponds to a collision of the
radiator with a cluster of perturbers, which may
be called an elementary system-bath interaction.
Let us call t~ the maximum duration of such a col-
lision, and consider
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( ~ )=(I/') ( -""or(t) ""o)

D. Density Expansion of B(r)

According to (6.12), we can write B(7 ) in the
form

B(r)= (exp[ J dzZ i",„(z)I), (7.8)

which is analogous in form to expression (4. 6),
with W=p„&„W,„.replaced by (1/t)X'r, '„; this cor-
respondence between 1,'„and V„„emphasizes the
role of T", as an "elementary" system-bath inter-
action. Expanding (V. 9), we have

00 fT 7

B(~)=Z(1/I ])Z' Z'" 2' dg) ~ ~ ~

k=o
k -ig

dz„(r,'. ,(z, )r,'.,(z, ) . I",'.,(z,) ),
(7. 10)

where g,
'

r& denotes the sum over all irreducible
graphs; each l~ represents a collision of the radia-
tor with the bath, and (D", , f",.,(z,. ) ) represents a
succession of 4 collisions; these are integrated
over all possible sets of collision times, then summed
over all possible sets of P collisions, and finally
summed over )», :B(7 ) thus represents the sum over
all possible histories of the radiator in the time
interval —jp to v. As is well known, the expansion
of B(v) in powers of V has a similar interpretation,
which can be visualized in terms of Feynman dia-
grams; but the expansion (V. 10) has a more im-
mediate physical meaning, for its "elementary"
interactions represent actual physical processes,
unlike the "interactions" V(t) which are a concept
introduced precisely to allow interpreting the per-
turbation expansion as a sum over histories, but

do not represent actual physical processes.

(&,8')& (v, v)

xm v (z, )] m,'„(0)); (7 8)

because of the factors m'„„(0), only collisions oc-
curing around time zero contribute to (V. 8), and
we see that as t increases beyond t~, nothing is
added to the integrals; thus, when t+& tr, (mr )
becomes equal to (mr" ), which can be termed the
averaged T matrix for the multiple collisions rep-
resented by the irreducible graph I'. We note that
(mr" ) is given by (V. 8) with the lower integration
limits replaced by —~, and each m o'(z') replaced
by m"o(z'); again, the initial correlations disap-
pear in the large time limit, since then the "initial
time" occurs long before the collision, so that the
radiator and the perturbers involved are far from
each other and uncorrelated at that initial time.

E. Density Expansion of R(t)

In order to see the physical significance of the
successive terms in the density expansion R = g~R +),
we first consider the case of very low densities,
ai which (almost) only binary collisions occur, and

then consider the corrections corresponding to
multiple collisions that must be made as the den-
sity is increased. In the binary-collision limit,
only the binary irreducible graphs f,~ are retained,
and since the collisions are well separated and

therefore time deentangled, we have (II, f„(z,.))
= II; ( f„(z;)), so that

B(~)=+ (1/I ])J „dz, f
».- &f.~(zi) & (f.&(za) )

= T, exp[ f;, dz (f s(z) &1
' (7. 11)

&f.;f;; +f.gf;;+f.;f.;f»» & «f.;f.; &
—T &f.» & &f.; »

must be added to the independent collision factor
T„(f„.) (f,~), the second term representing the
effect of time entanglement, and the first term
the effect of possible interactions between the
two perturbers. The sum of (V. 11)plus all
these corrections can be seen to be what the ex-
pansion of T„exp[if,odz (R"'+R' ))t yields.

Similarly, the higher-order terms in the density
expansion of R represent corrections arising from
multiple collisions of corresponding order. Thus,

(Q,(") I', , (z, ) &,]r, »
is a correction correspond-

ing to the overlap and time entanglement of the

collisions I'„,&, and it vanishes if they do not

actually overlap, i.e. , if the times Hex,. are not

clustered, for this case is already accounted for in

terms of lower order in the density. We can de-
fine, in analogy with (7.2) and (7. 8),

t(m', ).=- (e ""or(t)e""o&.I„ (V. 12)

which has an expression similar to (V. 8), but with

the m, „'s replaced by mr 's, and ( ) by ( &,«„,»

The limit (mr" ), may be called the connected aver-
aged T matrix for the multiple collision F, com-

comparing with (7. 5), it is seen that the first-order
term in the density expansion of R(t) represents
the effect of mutually indePendent binary collisions.

If now the possibility of triple collisions is in-
cluded, the sum over all histories must include
that possibility in addition to binary collisions.
The sum (V. 11)does include the possibility of over-
lapping binary collisions, but it treats them as in-
dependent; thus, for each triple collision in a par-
ticular history of the radiator, a correction
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posed of several overlapping F„,collisions. We
note that it would not be possible to define a T ma-
trix with only the ordinary average ( ) of T.; for
then nothing forces the different collisions to over-
lap in time, and no definite limit would be reached
at large times.

The expression of R(t), given by (6. 15) and
(6. 16) can be written

where

p
—e «('Hg/-g

We may substitute for B(r) its expression (6.12),
and obtain

and in the limit t- ~,

= (exp[i f „dt's mr"', (t)] Dmr"', ), ( r )-,

VIII. TRANSLATIONAL MOTION OF RADIATOR

The time-evolution operator U(7) operates in the
space of the radiator, which includes its transla-
tional and internal coordinates; since the dipole
moment operator D pertains only to the internal
motion of the radiator, we can immediately per-
form the average over the translational, or cen-
ter-of-mass (c.m. ), coordinates. We have

H, =K, +H, , (s. 1)

where K, is the c.m. kinetic energy operator, and
H, the Hamiltonian for the internal, or electronic,
motion of the radiator. We can then write Eq.
(2. 6) in the form

where

mf (ti) e)t'It«) 0 e-)veg

The structural similarity between expressions
(7. 14), (5.4), and (7.3) suggests calling R(~) a
connected averaged T matrix for the interaction of
the system with the bath. Note that the initial cor-
relations do not appear in R(~).

In the above discussion, it was assumed that no
bound states are formed between the radiator and
perturbers; the effect of bound states is not diffi-
cult to assess in the first-order term R"'(t), to
which they add terms oscillating forever, but their
effect in the higher-order terms is very compli-
cated. We note that if we choose V= V g and Hp
= 8, + H~

' = H, + H~ + V» we can obtain an expansion
similar to (6. 14)-(6.16), but with only irreducible
graphs of one perturber; each term in this expan-
sion still depends on the density through H~ '. Such
an expansion seems better suited to treat the ef-
fect of radiator-perturber bound states, but this
will not be discussed here.

B,(r) = B,(0)T exp[i f dtR, (t)], (8.4)

where R, (t) has the same expression (6. 15) as
R(t), but with all the bath averages & ) replaced by
the bath and translational average.... (&=-..«»=»... p. .T.p. 7 ();
effectively, the translational coordinates of the
radiator have been included in the bath, the sys-
tem of interest consisting of only its internal co-
ordinates. Alternatively, we may consider R(t)
as an "interaction" between the internal and trans-
lational motions of the radiator, as is suggested by
Eqs. (3.1) or (1.1) with

L(t ) = if,"+ii", +R(t);
with this point of view, we rather substitute ex-
pression (5. 1) of B(r) into (8.3), which yields

R, (t) =, (exp[i f., dzR(z)]R(t)) «„), (8. 5)

where the cumulants, ( ),(„) are constructed
with the interactions R and the average, ( ).

We note that the bath-c. m. average z, & ) of
a product of irreducible graphs, representing col-
lisions of the radiator with different clusters of
perturbers, does not in general factorize when the
collisions do not overlap in time: This is because
each irreducible graph depends on the c.m. coor-
dinates of the radiator, and furthermore, even if
successive collisions are separated by a large
time, they can be correlated, for the perturber
velocity distritribution seen by the radiator depends
on its own velocity and thus on its last collision
(the velocity distribution of the perturbers is iso-
tropic in the laboratory frame of reference, and
therefore anisotroyic in the frame of the moving
radiator). This intercollision correlation causes
an observable effect in collision-induced spectra';
their effect on ordinary spectra is much smaller
and probably negligible in general.

The correlation function I(r) is given by

where

I(r)= Tr, Dp, B,(7)e""~D, .
.

B (7) = (B(r)),

(s. 2)

(8.3)

0'. —Tre Tlgyp ~

U, ( )=ra, Tr, Tr'ape"" =B,(0) 'B,(r)e""&;
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U(1)(&) ~ (1) e(r&~
e e

—i f dte" &R")(t)e ""~e""' (9. 1)

where the superscript (1) indicates quantities cal-
culated to first order in the density, and the sub-
script e means that R is replaced by R, every-
where. The second term in (9. 1) is

(P (() 1)e(YH+ + if dt (tee R(2)(t) ((r t)eq-
e Z 8

= Z(~) —[~.")—1+v(0)]e"""

~ j''dg &t&, R &&&

where

Z(T) -=ns, (f„(v )+1)e""~

=n(1/Z, Z, )e~"~ Tr, Tr e ~"' e""'
(9.2)

is the time-evolution operator in the presence of
only one perturber; the Fourier transform of Z(r )

defines the one-perturber spectrum

I„,„,(up) = Tr, Dp,Z(ur)D . (9.3)

Thus, to first order in the density, .he spectrum
is

I((d) = i(,((d)+ i.„„„((d)+K(~),

where

I, ,((d) = Tr, D(),")A,")[i((u —H", —R,"')] 'D

is the impact spectrum, and

(9.4)

K(~) = Tr.Dp, [i(~,")-1+m(0)) (~ —H,"- iO)
'

+i(ur —H,"—i0) R,' '
(&o —H", —iO) ]D .

The spectrum equals the sum of the impact and
one-perturber distributions, plus a correction K((d)
which diverges at the resonance frequencies (the
eigenfrequencies of H,"). We note that the sum

I„,„~(~)+K((d) is regular at the resonance fre-
quencies, since its Fourier transform, the second
term in (9. 1), vanishes at large values of v; thus,
the role of K((d) near the resonance frequencies is
to cancel out the singularities exhibited by the one-
perturber spectrum. In the wings, the role of
K(~) is to cancel the wings of the impact spectrum
Rei(, ((d); indeed, one sees readily that to first
order in the density, , Hei(, (&u) and —ReK((d) are
equal when the frequency ~ is such that

we have again for U, (~) the expression (3.6), but
with R replaced by R, everywhere.

IX. SPECTRUM TO FIRST ORDER IN DENSITY

To first order in the perturbing-gas density, the
time-evolution operator U, .(~) is given by [cf. Eqs.
(3.5)-(3.8) with R replaced by R, ]

~ (~ —H", ) 'R,"'
~ «1, so that at those frequencies,

the spectrum is given by the one-perturber dis-
tribution [note that we only need consider the real
parts, since the power radiated is (4~ /3c )
xv 'Rei((u)].

We notice that the one-perturber spectrum de-
pends on the initial correlation between the radia-
tor and the perturber through the density Inatrix
e "' =e '"~'"&'"~&) contained in expression (9.2).
The effect of this initial correlation is most easily
seen by referring to the quasistatic (or statistical)
approximation to the line shape'; according to that
approximation, the intensity radiated at a given
frequency is proportional to the relative probability
for the atoms to be in configurations which, if
frozen, would cause the radiator to radiate at that fre-
quency. This probability depends on the interatomic
potential through the Boltzmann factor. Neglecting
initial correlations, that is, neglecting V,

&
in

e ~, results in replacing the Boltzmann factor
by unity in the guasistatic spectrum. This can
significantly affect the spectrum, especially in the
far violet wings which usually result from close-
packed configurations, the probability for which is
greatly exaggerated if one neglects the Boltzmann
factor wht:se role is to discriminate against those
large potential-energy configurations.

X. CONCLUSION

our treatment centered around the time-evolu-
tion operator U(t) which governs the motion of the

radiator under the influence of the bath. Though

U(t) possesses perturbation expansions, these do

not converge uniformally with respect to t, and

cannot serve as approximation schemes; U(t) must
therefore be expressed in terms of other quantities
which have perturbation expansions that can be
truncated. There are several possibilities, and

we have mentioned two, relating to our operators
R(t) and C(&u), respectively. These two operators
are different from each other, and treating either
of them to a given order in some parameter, such
as the (reduced) density, does not constitute iden-
tical approximations, but yields different expres-
sions for the spectrum. For instance, it wiQ be
argued in a forthcoming paper that by treating
C(up) to first order in the density, one effectively
neglects the effect of multiple collisions, whereas
we saw that the same approximation on R(t) is
equivalent to treating aQ radiator-perturber colli-
sions as independent from each other (though possi-
bly overlapping in time). This is strictly correct
in the binary collision (low-density) limit, but it

may also constitute a reasonably good approxima-
tion at higher densities where multiple collisions
occur with a non-negligible frequency; that this
may be the case is well known in the adiabatic the-
ory of pressure broadening, o where this indepen-
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dent- collision approximation allows us to under stand
such experimental features as the pressure shift
of the wing structure (e.g. , satellites), and other
fine structure in the wings which arise from simul-
taneous collisions of the radiator with more than
one perturber ao
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APPENDIX A: CUMULANT EXPANSIONS

l. Preliminary Considerations

=g(0)exp( f

dt's

'g-) .

Comparing

F =[I+(G-I)P'G=Z (-1)" '(G-1)" 'G
tg-1

with

—lnG =Z (-1)" 'n ' —(G —1)",
dt

we notice that we can write

F.(t) = G(t)-' G(t) = — »G(t),
dt

(A5)

When one expects a.function G(r) to behave (per-
haps only asymptotically) as the exponential of a
simpler or more accessible function, it is appro-
priate to concentrate one's attention directly on

where the arrow on (d/dt) means that when oper-
ating on a product of operators, the differentiated
operators must appear to the right of all other
operators in the product; e. g. ,

lnG=ln[1+(G-I)]= -g (I —G) /u .
~=1

(A1)
(

d 0

ABC= BCA+ACB+ABC
dt

If G(7 ) is an operator, lnG as defined by (Al) still
satisfies G=e", but in this case, one would ex-
pect G(r) to be given by the time order-ed exponen-
tial of some operator F(t) rather than by an ordi-
nary exponential e '", which is rarely or never
met in physical problems [unless A(r) =T Il, where
8 is independent of r], for the reason probably that
the derivative of such a function is extremely com-
plicated if A(t) and A(t) =dA/dt do not commute
(since, e. g. , dA /dt=A A+AAA+AA~). It then
seems appropriate to write G(r) in the form
Texp[f'dtF(t)j, where T is a time-ordering opera-
tor, and to concentrate one's attention on F(t).

Writing then

If G(r) is of the form G(r)= (8 "'), where ( )
is some linear operation such that (1)=1, the
terms of the expansion of lnG or I". in powers of
X(r) have interesting properties and are called
cumulants.

2. "Ordinary" Cumulants

I.et X, , i=1, 2, . . . , be operators, and ( ) an
operation such that (II,. X,.) are also operators and
such that (1)=1. For definiteness, we may think
of the X, 's as stochastic variables, and ( ) a
statistical average. I et ), be arbitrary scalar
parameters; the cumulants (X,X2 ~ X, ),. are de-
fined by the relation

G(r)=G(O) T exp[f dtF (t)J

=T exp[f dtF (t)]G(0),

we deduce from the-equivalent equations

(A2)

(e"";)=a@(Z Z Z "Za, a.~1 ~p)1~PP~

(A6)

—G(t) = G(t) = G(t)F„(t)= F„(t)G(t) (As)

in other words, (Xq~x;2 ~ X;,), is the coefficient
of X;,X,a

~ y; in the expansion of ln(exp Q', X,.x,.)).
Equation (A6) is written more compactly as

that

F (t)= G(t) G(t), F (t)= G(t)G(t) (A4)

(eE)((x; ) e~(( E);x;

Explicitly, the cumulants are given by

(Av)

here T. (T ) orders operators such that their time.
arguments increase from left to right (right to
left). Note that we. re(luire the existence of G(t) ',
or detG 4 0; the e(luivaient condition g(t) vo is re
quired in order to define the logarithm of a scala~
function g. In this latter case, an expression simi-
lar to (A2) —(A4) is obtained by writing

(e(e)=e' "' =aaa~ )ae(O)e ae —)ag(e))dt

(X,X "X)=SymZ(-1) (m —I)!
m=1

where the sum g~( ) is over all partitions of the
set $1, 2, . . . , k) into m subsets J, , i =1, 2, . . . , m,
and Sym denotes symmetrization with respect
to the X,.'s and with respect to different factors
(II:;X,. ) in a product. We give a. few specific
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examples:

(x).= (x), (x'), = (x') —&x&s,

(x'), = (x') --.'(&x')(x)+ &x) (x'))+2{x)',
(x,x, ), =-,'((x,x, ) —(x, ) &x, )+(x,x, ) —(x, ) (x, )),
&Xixsxs), =Sym(&xixsxs) —&Xixs & (Xs) —&Xixs) (Xs)

&Xl) &X2Xs)+2&xi) &Xs& (Xs)) (AQ)

We note that the cumulants (X,Xs. . . Xs) are lin-
ear in each of their arguments.

The set of operators X, may be labeled by a con-
tinuous parameter rather than by a discreet index.
%e have for instance

Ln&e~[ f' dfx(f)] &= Z f 'df, f "dfs" f"s 'df„
&=1

From this relation, it is seen that the cumulants

&II,X, (t;)&,. have the same expLicit exyressions as
the ordinary cumulants (II;X,), with the corre-
spondence X,- X,(f, ), .an.d the difference that in
each product II,&Q~~,X~(fi)) of expression (A8),
the factor &lI,X,(t, )) containing the fargesf time
argument is displaced to the right of all other fac-
tors. A few specific exampLes are [ti & ts&ts, and

we write X,. (t,.)=X, for short]:

(x,x, ). = (x,x, )- (x, ) (x, ),
&XSXsX1&g &Xsxsx1 & &XsXs & &Xl &

—(X, ) (X,X, ) —(X, ) &Xsxi&

+(Xs) (Xs) &Xi&

+«, ) «, ) «, &. (A14)

x&X(t, )X(fs) X(f,)).

= (exp[ f dtX(f)] 1&, . -
3. e+ Cumulants

(A10)

The c- cumulants seem to have first been intro-
duced by Kubo. 8

4. "Cluster" Property

Let now

where T„ is the time ordering and ( ), some
statistical average. The cumulants
&Xys(ts) Xi„,(t» i) ~ ~ ~ X&i(t, )&, are defined by

&exy[ J

dt's,

.~I.,(f)X,(f)] &

= T,, exp( J'df, J"df, f '" 'df,

xg Q. . .Q ~ (fi). . . ~
Jp- &fs

x&&„(f,) &„(fi)). ) (A11)

The most interesting property of c- cumulants,
from which they derive their importance, is a
kind of "cluster" property, which says that the
arguments of a cumulant must be "connected" (or
"clustered" ) for it not to vanish. We first define
the notion of connectedness in the sense to be used
here.

( ) independence. Two sets of operators
(X, :iE I) and (Xi:jc7) are said to be & ) indepen-
dent if the & ) average of a product of operators
from both sets factorizes into the product of the
averages ( ) of the operators from each set; in
other words, the sets X,. and Xi are & ) indepen-
dent if for any set L~IU J,

&exy[f dtx(t)]&

=T, exy(f dt&exp[ 1 dt'X(t')]X(f)&, )

= T, exp((exp[ f dfx(f)] —1), ], (A12)

where 7, orders the cumulants such that the
Emgest time argument in each increase from left
to right.

The c- cumulants are related to the ordinary
cumulants by means of Eq. (A5):

(exp[ f dt'X(t')]X(f) )

exp dt'X t' -1, . A13

where Tg, - orders the cumulants such that the argu-
ments t, increase from left to right. Thus the
cumulants &Q, Xy, (f, )&, are the coefficients of

g [dt, Xi, (t, )] in the expansion of (d/dt).
ln(exp [f'dt's&Xi (t)xi(t)]&. Equation (All) can be
written more compactly, setting gz X&(t) X&(t) =X(t):

ferns J EJ'nL,

If a set of operators cannot be divided into two or
more ( )-independent sets, it is said to be (
connected.

The ( ) independence is an extension of the no-
tion of statistical independence. For instance, for
the sets X, (t, ) and Y, (t, ) to be ( ) independent,
where ( )=-(T },, the X's and Y's must be statis-
tically independent on the one hand, and also they
must not be time entangled, that is, all the time
arguments of one set must be smaller than all the
time arguments of the other set.

Theorem 1 (Kubos). We now have the fundamen-

tal theorem: If the X s in a cumulant &II,X, ).
are not ( ) connected, that is, if they can be
divided into two or more ( )-independent sets,
then the cumulant vanishes.

Proof. Let the two infinite sets of operators
X, (t), i=1, 2, . . . , and F, (t), j=1, 2, . . . , be
statistically independent, and let &,(f) and iii (t) be
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arbitrary scalar functions. Denote

x-=f, dt's, ~,.(t)x,.(t),

Y= f-dt's, ~, (t)Y,(t),.

We then have

=[T, exp(&e" —1), )] [T, exp(&er —1), )]

= T, exp(,&e —1), + &sr- 1), ), (A15)

and also

&e"'"&=T, exp(&ex'" —1), )

= T, exp(&e —1), + (e —1,',

+&(e" —1)(e —1)),. ) . (A16)

Equality of (A15) and (A16) implies the vanishing
of the term &(e" —1) (e"—1)) mixing the two & )-
independent sets X, (t;), t; & a and Y&(t& ), t& & a,' since
the functions x,(t) and z, (t) can be ma. de arbitrary,
this implies in turn the vanishing of all c- cumu-
lants containing both X~(t&)'s and YJ(t&)'s.

Note that the ordinary cumulants do not have the
property theorem 1, unless all quantities of the
type &II,X,. ) commute with each other, in which
case, of course, the ordinary and e- cumulants
are identical.

5. Interpretation

The cumulant expansion may be viewed as an ex-
pansion in orders of correlation: Retaining only
the cumulants of order &k is equivalent, according
to theorem 1, to assuming that there are no &

connected groups of more than h operators X, (t,.),
or that they may be neglected. If, for instance,
we assume that X(t) is never correlated with itself
at different times, we have

&exp[ f dtX(t)])=1+2 f dt, f 'dt, f ' 'dt, -

x &x(t,)x(t, ,). . . x(t, ) ) (Ale)

-I+K f dt, f " 'dt„&x(t„)) &x(t„,)) ~ ~ &x(t,))
X1

(A18)

=T e~[ f'dt&X(t))]= T exp[ f'dt &X(t)), ],
(A19)

that is, only the first-order cumulant is retained.
If one includes the possibility of pairwise correla-
tions between values of X(t) at different times, and
adds corrections to (A18) corresponding to each
possible combination of pairs of operators, one ob-
tains

&exp[f dtX(t)]&-T exp[f dt&X(t)),

+ f dt f dt' &X(t')X(t)), ],
which includes the second-order cumulant. The
higher-order cumulants are interpreted similarly.

In physical problems, it often occurs that the
operators X(t, ), i=1, 2, . . . , are & ) connected
only if "clustered" in time; in this case, the prop-
erty theorem 1. implies the uniform (with respect
to i) convergence of the cumulant series. The
cumulant expansion can thus be viewed as a pertur-
bation expansion in powers of X, which can be
truncated, unlike the direct expansion (A17) which
is generally not uniformly convergent and therefore
cannot be truncated.

We shall use graphs of the type shown in Fig. 5,
consisting of one white circle, some (or no) black
circles labeled by numbers, and one (or no) black
line connecting each pair of circles. A graph may
be viewed and written as the product of its con-
nected parts. Physically, the white circle repre-
sents the radiator, the black circles represent
perturbers, and the lines connecting circles indi-
cate interaction between the particles represented.

2. Unlabeled Connected Graphs

From here on, we consider only connected
graphs of one white circle and some (or no) black
circles.

When it is not necessary to know sehich particles
are represented by the black circles, the attached
labels can be removed, with the understanding that
distinct black circles correspond to distinct parti-
cles. It is clear that distinct labeled graphs may
yield identical (i. e. , topologically equivalent) un-
labeled graphs, as shown for instance in Fig. 6.
Let the symmetry number o(I') of a graph I' be the
number of permutations (including the identity) of
its black circles which leave the graph unchanged,
i.e. , do not change the bonds. For instance, the
graph of Fig. 6 has symmetry number 2. Clearly
then, an unlabeled graph of j'j black circles cor-
responds to h!/o(I') distinct labeled graphs. Thus,
when it is permissible to remove the labels, we

j 2 4
ii FIG. 5. Example of a labeled graph.

3 5

APPENDIX B: GRAPHS, SOME DEFINITIONS AND
PROPERTIES

In this Appendix, some definitions and properties
of graphs commonly used in the equilibrium theory
of classical fluids are stated and adapted to our
particular needs.

1. Labeled Graphs
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ten as the + product of its irreducible parts.
We can define the + powers of a graph:

FIG. 6. The distinct labeled graphs &~, ~2, and ~3 cor-
respond to the same unlabeled graph F.

have the relation

(Bl)

for convenience, the zeroth * power of a graph or
of a sum of graphs is defined as the graph consis-
ting of the white circle alone. We can then define
the * exponential:

exp~ I' —= Z I"*/k! .
x=0

We have the lemma

where I' „is an unlabeled connected graph of one
white and k black circles, and the sum is over all
distinct labeled graphs which are topologically
equivalent to I'„„. We also have

(B2)

where the sum on the right-hand side is over all
distinct connected unlabeled graphs of one white
and some (or no) black circles.

where the sum g I'„„is over all distinct connected
graphs of one white and some (or no) black circles,
and g I'„, is the sum over all distinct irreducible
graphs of one white and one ox move black circles
(the graph consisting of the white circle alone is
excluded in the sum g ). All graphs here are un

labeled graphs.
Proof: Any graph I' of one white and some (or

no) black circles can be written in the form

3. Articulation Circles; 1-Irreducible Graphs

An m'ticulation circle in a connected graph is a
circle such that its removal separates the graph
into two or more disconnected parts. A connected
graph which contains no articulation circles is said
to be 1 irreducible; we have (a) in a 1-irreducible
graph, there exist at least two distinct paths con-
necting each pair of circles; (b) in a 1-irreducible
graph, each pair of bonds belongs to at least one
closed non-self-intersecting path in the graph.

We shall say that two graphs Fj and F~ are at-
tached by their respective black circles i and j, if
we simply superpose these two black circles, or
equivalently, if we form the product F,F& and iden-
tify the black circles (i.e. , the perturbers) i and

j. Note that any graph can be constructed by suc-
cessive attachment of 1-irreducible graphs, the at-
tachment circles being the articulation circles of
the given graph.

4. Irreducible Graphs; ~ Product

If the white circle in a connected graph is not an
articulation circle, then we say that the graph is
i rxeduci hie.

We define the ~ product of two connected graphs
I'& and I'& [each consisting of onewhite circle and
some (or no) black circles] as the graph I', *I'~
which contains one white circle, and such that upon

removing it, the graph separates into two discon-
nected parts, one of which is 1, minus its white
circle, and the other F~ minus its white circle.
This type of product is illustrated in Fig. 7. Any
connected graph with one white circle can be writ-

where the product 1I,' is over all distinct irreduci-
ble graphs of one white and one or move black
circles (the irreducible graphs not contained in I'
appear with exponent zero). Clearly,

(the o&'s take account of permutations within each
irreducible subgraph, and the p,. f's correspond to
the complete interchange of black circles between
identical subgraphs). Thus,

= exp„(Z,'. r,g/a, ) .
In our problem, the function represented by the

+ product of two graphs equals the product of the
functions represented by the individual graphs; we
can therefore omit the * in (B3), with the under-
standing that the I"s stand for the functions repre-
sented by the graphs.

APPENDIX C

The following lemma is required for the discus-
sion of Appendix D.

Lemma. ' Let H(1+) be the Hamiltonian for a
system of N particles interacting with each other
via two-body forces, and let H((N kj) be the-
Hamiltonian for a subsystem consisting of N- k of
the particles. Then H((N-kj) commutes with
Tr'"f(H(NI), where f(H/N)) is anyfunction of H((N)),
and Tr'" is the trace over the coordinates of the 4

other particles:
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FIG. 7. * product of
two graphs.

is a scalar

APPENDIX D

[Tr"f(H(N}), H((N- k})]= 0,
or in other words, Tr"'f(H(N}) is a function of
H((N kj).—

Physically, this says in effect that the sum over
all possible positions of 4 particles provides a uni-
form background which does not affect the motion
of the N- k other particles. Specifically, we may
think of H((N}) as being the Hamiltonian for a group
of atoms consisting of a total of N nuclei and elec-
trons, and H((N k}) as -corresponding to one atom
of one nucleus and N- k —1 electrons.

P~oof: Let

v=( z i(z v)
be the interaction between the two subgroups of
particles, V„. being the interaction between parti-
cle i of the N —k-particle subgroup, and particle j
of the other subgroup; then, H((N})= H((N-kj)
+ H((k})+ V, where H((k}.) is the Hamiltonian for the
k-particle subgroup. We have

[Tr "'f(H(N}), H((N —k}.)]

= Tr'" [f(H(N}), H((N —kj)]
= Tr'"' [f(H(N}), H((N}) —H((k}) —V]

= —Tr'"[f(H(N}), H((k})+ V] .
Now,

Tr'"'[f(H(N}), H((k})]= &„(11I[f, H((kj)] I

where
~ 11) is a complete set of eigenstates of

H((kj) of energies E„. We also have

Tr'"'[f, V]=ZTr,.[Tr' ~ 1f, V„.],
where Tr~ is the trace over the coordinates of par-
ticle j, and Tr'~' ' the trace over the k —1 other
particles in the k-particle subgroup. To complete
the proof, we show that Tr,. [A, V;1]= 0 for any
operator A. This is obvious since the trace Tr~
can be expanded in terms of a complete set of
states of particle j, with particle i as origin [if
g„(r, ) is a complete set of states, so is p„(1& —r, )];
then

Tr,. [A, V1,] =2 (A„„(V;1)„—(V,1) „A„}=0,
m, n

since

( V„.).„= f d1; P„*(1'& —1';)V;Z(1; —X, )$„(r1—1';)

We argue in this Appendix that if 1 is an irre-
ducible graph, then (g„'&'„f,„(z,„))is nonvanish-
ing only if the times Re(z„) are clustered together.
We first consider the case of only two perturbers,
which gives a simple illustration of the general
arguments used.

Two-Perturber Irreducible Graphs

The two-perturber irreducible graphs are f»f,2

and f„f,2f,2 ~ Let us consider first (f,1(t1)f12(t2)),
which can represent collision processes of the type
shown in Fig. 8; clearly, this quantity vanishes if
t2 & t„ for then the last interaction is V,2(t2)", and

nothing on its right-hand side depends on perturb-
ers 1 or 2, or in fact on any perturber; the last
interaction must always involve the radiator for an
expression not to vanish: This expresses the fact
that the radiator is not influenced by what happens
to a perturber after it is through interacting with
it.

Let now t, (s, 1; 2) be a time such that if the radi-
ator starts to interact with 1 at some given time,
then it will (almost) certainly have ceased inter-
acting with 1 after a time t, (s, 1; 2) later [we do
not take t, (s, 1; 2) e1lual to the binary collision
duration because of possible recollisions due to
the presence of perturber 2 (see below)]. Then,
if t, &t, (s, 1;2) and t2&t, —t, (s, 1;2), the operator
f,2(t2), in which the last interaction occurs at t2, is
time deentangled from f,1(t,), in which the first
interaction occurs later than time t, —t, (s, I.; 2);
we therefore have (H2 -=H1+H2, H —= H1+H2+ V12,

-oH '2
12 T 128 )

8H 12
Z» (f,1(t1)f12(t2) ) = »»e '"' T f.1(t1)f»(t2)

= Tr»e- '"~'f»(t2)f, 1(t1)

88 ei12B "(H-12 H H)e-'12 0 f 1(t1)

= —Tr1[(Tr2e '" )H1e "'"'f.1(t1)1 i

the operators H2 have vanished since nothing on
their right-hand side depends on 2, and H' " has
also disappeared since TrA" B= 0 by the cyclic

S

(c)

FIG. 8. Possible collision sequences corresponding to

fs ~A 2.
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property of the trace; now, by the lemma of Ap-
pendix C, 0& commutes with Tr&e, so that
again by TrA" B= 0, the expressions above vanish.
This expresses the fact that on Ne ave~age, the
radiator is not affected by, or does not "see," the
history of a pe rturber before it starts interacting
with it; in other words, the state distribution of a
perturber between collisions is always the same
(thermal equilibrium). We have thus argued that
(f $(ff)f/2(f2)) vanishes unless f2 lies between
f, —t, (s, 1; 2) and t, .

Recollisions, ' %e mentioned above the possibility
of recollisions; indeed, we could have, as shown
in Fig. 8(c), two s-1 collisions separated by a
1-2 collision. One can see that the probability for
the second s-1 collision to occur a long time after
the first is small (note that we are in three dimen-
sions!) ~ To obtain an estimate, we may assume
that after its collision with 2, 1 can be heading in

any direction and with any velocity within the range
defined by the temperature; let us consider a
sphere of radius vt, where 7i is the mean velocity,
centered about the region of the first s -1 collision;
For the second s-1 collision to occur a time t after
the first, 1 must cross the sphere at the same
place as s, the probability for which is - t; 1

must also cross the sphere at the same time as s,
and the range of velocities allowed for 1 to cross
the sphere at a specific time is -

g '. Hence the
probability for the recollision to occur a time
after the first collision is - t 3

~ Thus, in general,
widely separated recollisions have a small prob-
ability, and the interaction between two atoms will

always be considered as one collision, even if on

finer analysis there are several collisions involved.
Let us now consider (f„(t,)f,a(ta)f, z(ts)}. If the

various collisions are widely separated in time,
we have the following possibilities (note that as
before, the latest collision must involve the radia-
tor for the expression not to vanish): The 1-2 colli-
sion may occur before both the s- 1 and s -2 colli-
sions [Fig. 9(a)], or in between these two colli-
sions [Fig. 9(b)]. As for the recollision cycle of

Fig. 8(c), and by the same arguments, these three-
collision "rings'* must be clustered in time to have
an appreciable probability. Note that in both
cases, the two extreme collisions may be corre-
lated, even if separated by a large time; the latter
case represents the simplest example of the reac-

S

4f

s"

FIG. 10. Example of a
collision ring and the cor-
responding graph.

tion of the system on the bath being acted back on
the system after a possibly long time.

2. Arbitrary Irreducible Graphs

To argue our proposition in general, we first
notice that any irreducible graph can be constructed
by starting from some 1-irreducible graph con-
taining the radiator, and then attaching to some
of its black circles other 1-irreducible graphs,
and then still other 1-irreducible graphs are at-
tached to those, and so on (cf. Appendix B for the

definition of 1-irreducible graphs, and the opera-
tion of attaching together two graphs). Now, if Y
is a1-irreducible graph, then II,'T&'„f„„(t,„.) is
clustered in time; this is because any pair of bonds

f„in a 1-irreducible graph belongs to at least one
closed path, or ring, in the graph (cf. Appendix

B3), and each "ring" of collisions (e.g. , Fig. 10)
is clustered in time, by the same type of arguments
as used in discussing the three-collision rings of
Fig. 9. It then suffices to show that if
(II,'&',f„„(f,„)}is clustered in time, where I' is a
connected graph containing the radiator, then

(II ',.'p 8(f ~)II,'", '„f„(f,„)) is also clustered in
time, where Y is a 1-irreducible graph which does
not contain the radiator, and which has one and

only one perturber in common with F (i. e. , Y is
attached to I'); this will prove the proposition by
induction. Since the argument refers mainly to the
last interaction times in Y and in I", we consider
rather (Y(t2)I'(tq)): Again, t, must be smaller than
tz since the last interaction must involve the radia-
tor. Let t,(I'; Y) be a. time such that if the first in-
teraction in 1" occurs at some given time, then al-
most certainly, all interactions in I' (under the
possible influence of Y which may cause recolli-
sions, etc. ) will have ceased after a time t, (I'; Y)
later; in other words, t, (I'; Y) is the duration
of the multiple-collision I', under the possible
influence of the perturbers in Y.

U now f&&t,(1; Y) and tt& f& —t,(I'„' Y), the two
graphs Y(ta) and I'(f, ) are time deentangled, and

&Y(f~)1'(f&))=»,p, Y(f2)I(f )

Now, any f-bonded graph T =II,', '„f„„can be writ-
ten as a sum of e-bonded graphs y =II,'"&'„e„„,where
e„„=f,„+I=exp[if tttW~ „(z)dz], th. atis, Y=g'T~y, and

(f) 880~ -gH ttH - t t"Ht

FIG. 9. Possible collision sequences corresponding to

~sifslf2 ~

where H is the sum of the Hamiltonians for each
perturber in y, Ho —=Pt~&Ht &

and H =H P+0+&V+&&~
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the su)n g„&, being over the e bonds in y. We then
have (Zt t r = T r „rexp[ —p(Hs'+ &s )], Ils & =

lies -If ):
Tr p Y(t )I'(t ) =Z 'Tr p y(ta)&(tt)

g 1 Tr [ s( 8)) + H)) )

sss)) s ss s))a-H (Ifw QA) e-i s Hj) Z (f )]

=-Z Z ' Tr [e '"o (Tr„,e '"
)

x H,".s-"s"
& r(t, )],

where H,- is the Hamiltonian of perturber j which

we take as the perturber common to Y and I', and

Tr~ &
is the trace over the perturbers of y minus

perturber j, the trace over which is included in
Tr~. Now, by the lemma of Appendix C, IIJ com-
mutes with Tr, ,e ~, so that the expressions
above vanish. Thus the interactions in Y must
overlap in time with those in j. ; this expresses the
fact that the graph 1 minus perturber j is not in-
fluenced, on the average, by the history of per-
turber j before interacting with it. This completes
the argument to show that if 1" is an irreducible
graph, the interactions in (I') are clustered in
time; we have excluded the possibility of bound
states between the atoms.
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