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Laboratory-frame and body-frame treatments are combined using the l-uncoupling trans-
formation which had served to interpret the absorption spectrum of H2. Application of a phase-
amplitude procedure converts the Schrodinger equation to a Volterra-type integral form,
which reduces to a Born-like approximation when the long-range interactions are weak. Atten-
tion is directed to features of low-energy collisions that must be considered by a realistic
theory. This paper develops a formalism that can take advantage of different simplifying fac-
tors in different ranges of the electron-molecule distance. Detailed developments and appli-
cations are deferred.

I. INTRODUCTION

The scattering of low-energy electrons of mole-
cules has traditionally been formulated either in a
laboratory frame of coordinates or in a molecular
frame (called "fixed-nuclei" or "body" frame).
Even though both approaches have been utilized ex-
tensively, their connection does not seem to have
been understood widely, as emphasized in recent
reviews. ' Actually the two approaches utilize
alternative expansions of the electron-molecule
wave function. This fact, pointed out by Bottcher, ~

permits the development of a comprehensive theory.
The alternative expansions are related by a quan-

tum-mechanical frame transformation, which was
developed in the context of photoabsorption by
molecular hydrogen. ~ This H~ work, to be called
FH, pointed out that the final-state interaction in
the ionized e+ H~' system is treated appropriately
in the molecular or in the laboratory frame de-
pending on whether the e —Hz' distance is short
or long. This final-state interaction is the same
as occurs in e+ H~' collisions. The relevance of
these remarks to the general problem of electron-
molecule collisions has been mentioned in pre-
liminary notes. 4 The present paper lays a basis
for their systematic exploitation.

We start by emphasizing that the interaction be-
tween an electron and a molecule exhibits quali-
tatively different features when their distance lies
in different ranges. At large distances the in-
teraction is weak and nearly central and permits
the angular momenta of electron and molecule to
remain uncoupled. At intermediate distances the
interaction is sufficiently strong and noncentral to
couple their angular momenta, whereby the elec-
tron effectively partakes of the molecular rotation;

in this range the interaction is still represented
adequately by a potential-energy function. At
short distances the electron penetrates the mole-
cule and is effectively incorporated in it to form
a negative-ion "complex" (unless its energy is
much higher than that of molecular electrons);
this complex must be treated as a many-electron
system.

In view of the complications of the problem as
a whole, it seems essential to take advantage of
any simplifying feature that may be available in
each range of electron-molecule distances. To
this end we shall not seek any single representa-
tion of the eigenfunctions of the complete system,
because a representation which is realistic and
suitable in one range becomes unsuitable in another
range. Instead we shall consider separate rep-
resentations appropriate to different ranges and
connect them with one another at appropriate tran-
sition points between each range and the next one.
In this paper we seek formulations of the Schro-
dinger equation appropriate to different ranges,
quantitative criteria for identifying the ranges and

their boundaries, and formulas for connecting the
eigenfunctions obtained in adjacent ranges.

From this statement of our point of view we
proceed now to survey how existing approaches fit
within it. The concluding part of this introductory
section will then outline the content, scope, and
limitations of the present paper.

The laboratory-frame approach utilizes a set of
base channels labeled by the rotational quantum
number j of the molecule and by the orbital and

spin quantum numbers (l, s) of the electron. The
total angular momentum J= j+ l+ s is a collision
constant, of course. Introduction of the electron-
molecule interaction couples different channels
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with the same J value. The formulation by Arthurs
and Dalgarno' represents the interaction by a po-
tential function V(r, 3 ), where r is the electron's
radial distance and 3 its angle with the molecular
axis; they then derive a system of coupled equa-
tions in the radial wave functions of the electron
for the various channels. These equations are
similar to the close-coupling equations for elec-
tron-atom scattering; their solution yields the ro-
tational-excitation cross sections. In principle,
the only approximation in this approach should lie
in the formulation of the interaction potential; in

practice one is forced to truncate the system be-
cause of its large size. The effects of truncation
are not severe for large x where the potential V is
weak and nearly central. . Indeed the laboratory-
frame approach is appropriate to this range where
l and j are approximately good quantum numbers;
it is not appropriate at shorter ranges where many
base states with different (l, j) quantum numbers
are required for a realistic description of the sys-
tem.

The body-frame approach bypasses this diffi-
culty by solving the scattering problem initially
without reference to molecular rotation, in accor-
dance with the Born-Oppenheimer approximation.
In the case of a diatomic molecule, to which we
direct our main attention, a constant of the motion
is the angular momentum component along the in-
ternuclear axis I J 8 I represented by a quantum
number A or A. The existence of this constant
simplifies the treatment. The effect of the colli-
sion upon molecular rotation is treated in a second
step of calculation, as a by-product of the colli-
sions; we shall describe this step in detail. The
assumption necessary here is that the electron
moves much faster than the nuclei; this is the usual
Born-Oppenheimer approximation of molecular
theory, but is often called an adiabatic approxi-
mation (or "adiabatic-nuclei" approximation) in

the context of electron collisions.
The relation of the electron's velocity to the

nuclear motion is a matter we wish to stress.
When the electron is close to the molecule, within
its strongly attractive field, its velocity is high
and approximately independent of nuclear motion.
However, at large distances x, the phase of the
electron's wave function depends on the integral
of its velocity up to r (as illustrated, e.g. , by a
WEB procedure). This phase is thus sensitive to
the partition of the total energy between the elec-
tron and the molecular vibration and rotation, un-
less the electron is very fast. As an index of the
importance of this partition we consider the phase
k&„x of a free-electron's wave function, when the
electron is at the distance x from a molecule with
rotational and vibrational quantum numbers j and
v. Since variation of j or v affects the wave num-

Region A Region B

Region Aa = = Region Ab~

+Core Region= = Region of potential- field interaction~
(ma ny-electron

(electron correlations are disregarded)
treatment)

I I

ro r, r~

distance of electron from molecule

FIG. 1. Diagram showing quantum numbers relevant
to different ranges of electron-molecule distance x. The
abscissas are not drawn to scale.

ber k&„expressed in atomic units by a small amount,
the dependence of k&„x upon j and v remains small
until ~ is fairly large, again in atomic units. One
can and should use a body-frame formulation, that
is, in essence, a Born-Oppenheimer approxima-
tion, while the dependence of the wave function on

k,.„x and that. of k&„x on j and v remain negligible;
at larger x one can no longer afford to do so and
switching to a laboratory-frame description is
called for.

The range of r values where a body-frame for-
mulation is appropriate was called region A in
FH, while region 8 indicated the range where the
dependence of the wave function on j is essential
(Fig. l). Wave functions constructed separately
for the two regions belong to representations char-
acterized by the quantum number A in region A
and j in region B. (The quantum number j is often
replaced by N when coupling with electron spins
is disregarded. ) The quantum-mechanical frame
transformation that connects these representations
constitutes the l-uncoupling transition from the
Hund-coupling case b to case d and is described in
Sec. II below.

Note that region A does not extend outward quite
as far for collisions between an electron and a neu-
tral molecule as it does for electron-ion collisions.
The reason is that the electron wave function does
not depend sensitively on k&, wherever the elec-
tron-molecule interaction V is much larger than
—,'k&„, when V includes a Coulomb potential 1/r,
region A extends automatically at least as far as
x -k,„a.u. In the absence of the Coulomb inter-
action, which is strong and amenable to analytic
treatment, a study of the extension of region A re-
quires some detailed analysis. In this paper we
only note for purposes of orientation that region
A extends roughly over x~10 a. u. in the field of
neutral molecules, because at x-10 a. u. the quad-
rupole and polarization potentials are of the order
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of 10 ' a.u. (-100 cm '), which lies between ro-
tational and vibrational energies.

In this paper, Sec. II reviews the relevant sym-
metries and the l-uncoupling transformation. Sec-
tion III formulates the Schrodinger equations ap-
propriate to regions A and B for an electron in
the field of a neutral diatomic molecul. e; here, as
in FH, we disregard the nuclear vibrations. Sec-
tion IV extends the formulation to include the in-
fluence of vibrations. A procedure for the nu-
merical solution of the SchrMinger equations,
through regions A and B, in the presence of multi-
pole and polarization potentials is developed in
Sec. V. However applications are practical tests
of this procedure are left for other works. ' Sec-
tions VI and VII show how to obtain a scattering
matrix and thence integral and differential cross
sections from wave functions constructed by the
procedure of Sec. V. Emphasis mill be laid here,
as in FH, on the simplifications that result when
the long-range interactions are negligible, in which
case the solution of the Schrodinger equations in
regions A and B is trivial. The immediate result
of this treatment amounts only to a rederivation
of the adiabatic approximation resultse in the con-
text of frame transformations. Its real purpose is
to provide a point of departure for calculations that
evaluate and take into account the actual effects of
long-range interactions. The analytical develop-
ment of this paper refers for simplicity to an elec-
tron collision with a neutral molecule in a 'Z' state.
A partial extension to molecules in other states is
outlined in the Appendix.

This paper does not consider explicitly the elec-
tron-molecule interaction at short ranges, i. e. ,
in the "core" region where the electron penetrates
the molecule. Instead, it represents the effects
of this interaction through the values of a set of
eigenfunctions over a sphere of radius xo surround-
ing the molecule. These values serve as initial
boundary conditions for the outward integration of
the region-A Schrodinger equation at x& ro. In
principle the values at ro should be obtained theoret-
ically by a separate solution of the Schrodinger
equation in the core region, but in FH and in other
analogous situations' they have been obtained from
analysis of photoabsorption experiments. The
radius xo should be so chosen that the electron-
molecule interaction is fairly represented by a po-
tential V(r) for r ~ xo; in other words, coxxela
tions between the incident electron and the molec-
ular electron-due to antisymmetrization or to
Coulomb forces —should be negligible for ~ & x~.

The importance of electron-electron correla-
tions at x & x~ can be estimated from the following
considerations. The problem of constructing theo-
retically the rel.evant eigenfunctions at r=r0, and
in particular their logarithmic derivatives, is es-

sentially equivalent to the problem of evaluating
discrete levels of the electron-molecule complex,
that is, of evaluating the electron affinity of the
molecule. General experience with quantum chem-
istry indicates that it is seldom realistic to ap-
proach such calculations by a single-electron mod-
el. Accordingly we feel that a realistic study of
electron-molecule interactions within the core re-
gion requires taking into account correlations as
one does in theoretical spectroscopy. (The term
"theoretical spectroscopy" means, in this paper,
the calculation of discrete spectral level. s. The
substantial equivalence between calculations of
short-range scattering functions and of discrete
spectral levels is implied by quantum-defect pro-
cedures though it remains to be demonstrated in
detail. )

Yet another aspect of electron-molecule colli-
sions which awaits detailed development is the
treatment of the resonances due to virtual excita-
tions of the rotational and vibrational motion. Here
we shall only address ourselves to direct rotational
and vibrational excitations, even though it should
be straightforward to combine the approach of this
paper with the treatment of rotational autoioniza-
tion in FH.

II. SYMMETRIES AND TRANSFORMATION

Constants of an electron-molecule interaction
are represented by the total angular momentum
quantum numbers J and M; also constant are the
parity I under inversion of all electron and nuclear
coordinates and-for homonuclear diatomic mole-
cules-the parities under inversion of electrons only
(g or u) and under permutation of nuclei (s or a).
We shall also regard as constant the spin quantum
number S, which equals —,

' when the target molecule
is in a singlet states, and the quantum number
X(K=1+j). In fact, we shall, for simplicity, dis-
regard the electron spin altogether and identify K
with J and also A with ~. The orbital quantum
number l of the incident electron is a good quantum
number only at large radial distances x. Restrict-
ing ourselves to collisions with diatomic molecules,
we shall use an additional parity quantum number
g = +1 which combines with J to yield the inversion
parity in the form I= q(- 1)~. The quantum number
g relates, as we shall see, to the transformation
of the molecular wave function under reflection
through a plane containing the internuclear axis
Jt -=(8, p).

We are particularly interested in pairs of mutual-
ly incompatible quantum numbers which correspond
to pairs of noncommuting operators. One such pair
consists of j and A which correspond, respectively,
to the angular momentum of the target molecule,
and the component of K along B—or, which is the
same, to the component of the orbital momentum
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14!((/) ( I}&+/4!((9&
JN JAE ~ (2)

assuming that the target molecule is in a 'Z' state.
The other type is classified by the quantum number
A, represents r in the body frame, and is defined
by

X'gz"'(r" R) =lI'(~(8' (/&')D~~'(8 &)

.n I, .(8', (')D"..'(8, e)l
l

"",(3)
(8&&(l+ 5~0)

where the D~~) are symmetric top wave functions.
(The D functions, and hence X(z(„"&, are defined
only for J ~ A; note also that X"~"' vanishes for
A=p and g= —1, and it reduces to a single term
for A=0 and )i=+1.) To determine the effect of
coordinate inversion on the wave function X con-
sider that this operation (i) changes the electron
body-frame coordinates (3, p ) into (3, —p ),
i.e. , applied to Y» the reflection o„at the body-
frame coordinate plane (x z },

o„(x'z') I', &!(8', q") = (- 1) I',
&!,

(8', (»'),

and (ii) changes the set of Euler angles ()!t&= 0, 8, P)
connecting the laboratory and body frames into
(»- g= », »-8, (t&+ )(), i.e. , replaces D~(~„' (8, P) by
(- 1) ' D ~(8, (&&!). Inversion thus interchanges the
two terms of (3), to within the factor )I(-1)~, show-
ing that X is an eigenvector of I,

I X(&&(«& g( 1)I/X(&i!«& (4)

The sets of functions 4' and X are connected by an
orthogonal transformation U discussed in FH, name-

A

1 ~ R. Another pair of incompatible variables, the
vibrational quantum number v and the internuclear
distance R, will be considered in Sec. IV. (For a
homonuclear molecule in a Z~ electronic state,
only even values of j occur in s states of nuclear
permutation and only odd values in a states. )

The eigenfunctions of total angular momentum to
be used in our problem depend on the direction of
the molecular axis, R -=(8, P), and on that of the
colliding electr on, r -=(3, ((&)

-=(3, !/& ), where the
unprimed coordinates pertain to the laboratory
frame and the primed ones to the body frame. As
in FH we consider two types of rotational wave func-
tions. One type, classified by the quantum number

j, is defined by

@~&I'(r,R) =Q y', „(3, (//)T, „(8,p)

x(lm, jM —ml I j J~),
where the Y are ordinary spherical harmonics and

( ~ ~ ~ [ ~ ~ ~ ) is a Wigner coefficient. This wave func-
tion is the same as was used by Arthurs and Dal-
garno'; its parity under inversion of all coordinates
is

ly,
X((&(!&) Q C(!&J) U((J!&)

JN g J'N gii

for g=+ 1,
A —Pp 1p «««p cC

(Sa)

j= I&-&I+» I&-&1+2 " &+I-I
for g = —l.

A —i)2)«««pcC
(Sb)

Therefore the matrix U is (2+ 1) &( (2+ 1) for )1=1
and 2&(2 for )l= —1. The factor 1+)I (-1)~-'-' of
(7) vanishes unless the parity eigenvalues in (2)
and (4) coincide; this property verified that the
transformation U commutes with the inversion I.
The orthogonality of U can be derived from the
orthogonality of the matr ice s (IZj0 ( I -A, JA)
taking into account that

(-I)'-'-'(Izj olf -A, zA)=(I zq o
l

I A, z-A).

III. LABORATORY- AND BODY-FRAME EQUATIONS

In accordance with the discussion in Sec. I, we
represent the interaction between an electron and
a diatomic molecule by a potential energy V(r, 3 ),
for x~xo, i, e. , outside the core, as though the
molecule were a rigid axially symmetric body. We
do not represent explicitly the position coordinates
of the electrons in the molecule, or the doublet
spin state of the combined electron and molecule,
or the antisymmetrization of all electron coordi-
nates. All these elements could be added to the
treatment of this paper without affecting its re-
sults.

The axial symmetry is manifest in the body
frame; hence V depends on the primed coordinate
3 but not on p . In this section we disregard the
dependence of V on the internuclear distance B, as

where the tilde denotes the transpose. The ma-
trix elements of U are given by

1 1
U '~"'= (-1) ' /(I J''Oll —A JA)

[2 (1 g )])/z ~

(7)

2j+ 1 / . . 1+ )I(- 1)
(IA, gollgZA

( ( ~ )l)/z .

(7a)

This formula is a generalization of the one derived
in Appendix A of FH (where &i was taken to be + 1,
and j and I were taken to be odd), and may be de-
rived in a similar manner. (An alternative deriva-
tion can be extracted from the Appendix of the pres-
ent paper by setting A = 0 and )I= + 1.) The dimen-
sions of the matrix U depend on the values of g and
of the number 2=min(I, J). We have
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well as the vibrational part of the molecular Hamil-
tonian. The Hamiltonian of the system is then
represented, in atomic units, by

~=~,——,
' v'; + v(r, g'),

where BC, is the rotational part of the molecular
Hamiltonian; the eigenvalues of K, are Bj (j+ 1)
if one disregards rotational. stretching.

Following Arthurs and Dalgarno' the laboratory-
frame treatment represents an eigenfunction of $C,

) J ), J, and parity by the superposition

(x(lAn)
~

v~
x(l'An&) G(zn)(y) 0 (i4)

Here it is important that the equations are inter-
linked in A and in / by separate terms. The ma-
trix elements of $C

(x",„'"'~x;„jx",„'"')=Bg, ir,",'n&I(j+ i) U ~&,'P&,

(is)
are diagonal in 1, g, J, and M and independent of
x and M. The interaction matrix elements

~'n' (r i Il) = P r 'F" n'(~) C("'(r It)
lj

(io)

(x()An)
~

v(& ~1)
~

x(l'An&)

= f d+' y')A(~' &') V(&. S') F) A(&', (('') SAA

[The index q serves, even in the laboratory frame,
to characterize the parity I=)i(- 1)~.] Substitution
of this expansion reduces the SchrMinger equation
with the Hamiltonian (9) and energy eigenvalue E
to the system of coupled equation in the radial
eigenfunctions g:

+ g (@,"„"iVic,"' ') F,','l", &(r)=0. (11)

The matrix element

(c(,»l vl 4('„'~'&) s„„,s„,s„„,
= f dr f dIl 4,"„""(~, It) V(~, s') C(,)'„~')&(~,Il)

(i2)
is a function of r, diagonal in J and M and indepen-
dent of M owing to invariance of V under rotation
of all coordinates, which leaves 3 unchanged. The
potential V is also invariant under the inversion
I of all coordinates. Accordingly the matrix ele-
ment (12) vanishes unless (l+j)- (l +j ) is even,
whereby the system (11) interlinks only functions
E,'&"' with the same J and with /+j values of ihe
same parity, I=( 1)'l= ll(-1-) . For homonuclear
molecules in Z' states, the parity of j is fixed by
the nuclear permutation symmetry (s or a); there-
fore the system (il) interlinks only functions
E~,&"' with I values of the same parity.

A body-frame treatment represents the eigen-
functions of (9) by the expansion

g(n) (~ ~ Il) Q ~-) g(J'n) (~) X(lAn& ()„ Il)
sx

This expansion reduces the SchrMinger equation
to a system of radial e(luations alternative to (11),
namely p

1 d~ l(l+1) (~n)( )2 d~R+ 2~8 lA

= (lIi~ v~ i'Il) s„, (16)

are diagonal in A, g, J, and M owing to invariance
of V under the relevant operations; moreover they
are independent not only of g and M but also of J.
For homonuclear molecules the potential, V is an
even function of cos3; hence the matrix el.ements
(16) vanish also for odd values of l —l .

The wave-function expansions (10) and (13) are
related by the transformations (S) and (6) which
connect the 4' and X functions. The same trans-
formations connect the radial functions I' and |",

F( Jn) (~) Q 'G(zn) (~) p( lÃn)

(Jn&(/) g F('J'n&(~) II (l Jn& (16)

The systems of E(ls. (11) and (14) are thus for-
mally equivalent. Their respective appropriate-
ness for integration in region 8 and in region A.

emerges from the properties of the matrix ele-
ments of 3C„and V in the two regions.

In region A. , the matrix elements of $C„, are
negl. igible as compared with those of V, since the
rotational constant I3 is of the order of 19 4 a. u.
at most. Disregarding $C„„in this region splits
the system (14) into separate systems for differ-
ent values of A, each system being independent of
J and q in accordance with the Born-Oppenheimer
approximation. In region 8, the cumulative ef-
fect of X, on the integration up to large x becomes
non-negl. igible, as discussed in Sec. I. However
V tends to become negligible here, except for very
low electron energies, whereby the system (ll)
splits into separate equaiOns. . The separation
actually hinges only on the interaction V becoming
effectively central at large x. In fact, our ap-
proach should prove practical insofar as the com-
nuitator of K, and Vis small at all seven though'

the two operators do not commute and are not
separately negl. igible. When this commutator is
altogether negligible our results reduce to those
of the adiabatic theory.

The conditions under which $C, should not be
disregarded can be characterized with reference
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to Eq. (11) and in the light of the preliminary dis-
cussion of Sec. I. The operator in the brackets
of (11) has free-particle eigenfunctions j,(k&r) and

v, (k~r), where k& is defined by —,
' k

&
= E —J3j (j + 1).

Since 8 is a small number, k&,~
—A, is also small

and the differences between the values ofj,(k,r)
[or of y, (k&r) j for the different relevant values of

j will remain negl. igible up to some rather large
value of r. This value will be called ra and is in-
dicated in Fig. 1 as the boundary between region
A, where 3.*. , is disregarded, and region B.

The adiabatic theory of electron-molecule col-
l isions6 disregards the rotational Hamiltonian al. —

together in the calcul. ation of cross sections.
Thereby it assumes that the scattering matrix is
determined adequately by solving a SchrMinger
equation independent of J and p in region A only.
This approximation tends to become poor for slow
electron collisions, since the contribution of re-
gion J3 to the scattering matrix becomes very im-
portant once the electron wavelength exceeds the
size of region A. The laboratory-frame treat-
ment, on the other hand, fails to take advantage
of the approximate commutability of $C, and V;
this treatment is adequate by itself, with reason-
able truncation, only at very low energies, such
that electrons with l &0 fail to penetrate even as
close as region A. Under these circumstances
solution of (11) by Born approximation may be
simple and adequate. ~

A clarification of the connection between the
approaches has thus been achieved. It will be com-
plemented in Sec. V by a method of integration of
the systems (14) and (11)which permits one to
take advantage of the smallness of interlinkage
terms without striking them off at the outset.

IV. COUPLING WITH VIBRATIONS

Thus far we have treated the target diatomic
molecule as a rigid body, with fixed internuclear
distance B. The variations of B wi].l now be treated
in a manner altogether parall. el to that used for
the variations of the orientation B.

To this end, the Hamiltonian (9)will be comple-
mented by a vibrational term $C„with eigenfunctions
y„(B); the eigenvalues of X„equal (v+ —,')&u inthe har-
monic approximation. Moreover the potential V is
now regarded as a function of Balso, whereby it does
not commute with $C„as it does not commune with

K,. Equation (9) is thus replaced by

X=K,+R„——,
' V~ + V(r, 8,B).

and"

f(f+ 1)
z--+ z + Bj (j +1)+ (u(v+ 2) —E I E~~„(r)(J'n)

2 dr

+ Z (@g'z'X.
~

~(r &,&)~@~~' '&") +I~j'. (r)=o

(21)
Similarly, the expansion (13) and the system (14)
become

= g r 'G'~"'(r) y (R)X" "'(r" R) (22)

~ + p + (u(v+ —,) —E G,~"„(r)(
1 d f(l+1), (~„&

2 dr 2r

+a Z [Z U",,'"' j(j+1)i, ,',","'jGg,',"„'(r)

in terms of which the G are given by the inverse
transf ormation

+ Q (afv~ V(r, a, ft) ~wf'v') G,".,"„'.(r) =O. (23)
l'v'

The extension thus achieved increases the size
of the system of equations and thus tends to make
its practical. solution much more difficult. How-

ever, this difficulty might not be great because the
potential +does not seem to depend strongly on 8
for values of r which are fairly large and are in-
dicated in Fig. 1 as region Ab. " Matrix elements
of V off-diagonal in (v, v ) might accordingly be

negl. igible, in which case the equations reduce to
those of Sec. III, or should become at least suf-
ficiently small to allow the coupl. ings in p to be
unraveled by perturbation methods. The actual
situation shoul. d be explored quantitatively.

At any rate, since the interaction V increases
in strength rapidly with decreasing r, the matrix
elements off-diagonal in (v, v ) should become im-
portant at low r. Furthermore, as the interaction
V increases, the separation between the different
eigenvalues of 3C„becomes less and less relevant
and it may well be disregarded. This is done by

applying yet another transformation to a fully Born-
Oppenheimer frame in which the interaction is diag-
onal in the internuclear distance R.

The transformation and its inverse are analogous
to the pair (17) and (18), but here the elements of
the orthogonal matrices consist of the (real) vibra-
tional eigenfunctions X„. Thus we define a new set
of radial wave functions

(24)

The expansion (10) and the radial system (11) take
now the forms G', „"'(r)= fo" deaf y.„(R)a', "'(r, B) . (25)

Substitution of (25) reduces the system (23) to the
form
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q+ ~
—E H,'~") (r, R)+BE [2 U)',

&
"&j(j +1)U~&')(,")]H,'~ )(t; R)

2 dr 2r A'

p CO

+~ dR'[Z
&(.„(R)(v+ —,') y„(R')] H,",")(~, R')+Z(lAl V(~, ~', R) l'A)H, ".,") (r, R) =0.

+0 v )I

Here again the system simplifies greatly, splitting
into portions diagonal in A and R, if the rotational
parameter 8 and the vibrational parameter ~ are
both negligible.

The range of r where this simplification is ap-
propriate is indicated in Fig. I as region Aa, the
name Ab being applied to the range where 3C~ is
negligible but K„ is not. Equation (23) is the form
of the Schrodinger equation appropriate to region
Ab. The boundary between regions Aa and Ab is
called r, in Fig. I. The value of r, can be esti-
mated as was done for r& in Sec. III and in accor-
dance with the qualitative discussion in Sec. I. %e
set

—,'k,'„=Z —Bj (j+1)—(u(()+-,') (2V)

The Schrodinger equation for the radial motion
of the coliding electron has been given alternative
forms in Secs. III and IV with the intent of mini-
mizing and unraveling the influences of the elec-
tron-molecule interaction at long ranges and of the
rotational and vibrational Hamiltonians at shorter
ranges. Yet these influences cannot be disregard-
ed nor has it been shown that they can be treated
by perturbation methods. Accordingly we recast
the equations once more, into a form that is solved
by quadratures and is very suitable for a perturba-
tion treatment whenever appropriate.

Such a transformation is provided by application
of the multichannel-phase-amplitude -method. ' In
essence, one represents the solutions of a system
of radial equations, e. g. , of (21), as superposi-
tions of two independent solutions of the main di-
agonal part of each equation; the coefficients of
the superpositions would then be constant except
for the influence of the interlinkages and of other
minor terms of the system of equations. Thus we
express the dependent variable of (21) in the form

F ()&"„)(r)=f (&„")(r)u, (k&„r) —f (,&„")(r)u, (kz„r), (28)

where

u, (k,„r)= k',„"rj,(k,„r),

and consider the dependence of the wave functions
H)(~~")(r, R) on the parameter k&„r, more properly
on the differences between the values of these pa-
rameters for different v and j. This dependence
should be negligible throughout region Aa, that is,
for r ry.

V. INTEGRATION BY PHASE-AMPLITUDE METHOD

Here k&„ is given by (27), while j, and y, are the
usual spherical Bessel functions'; note that g,- k)J'2 sin(k)„r —l —,')() and u, - —k&P

~ cos(k&„r —l-,'v)
as r- ~ and that their Wronskian

dQ) — d&gI) —Q) d
= ~

The two coefficients f and f constitute new depen-
dent variables which replace F,,(„"'(r); these coef-
ficients are not independent but are given in terms
of a single new variable P by

d& ""'0 u (k &)P( n)(~) f)jv u (k~ ~) P
zq (~)

(3O)
With these substitutions, the system (21) reduces

to

P(g'.")(&)= - 2 ~ (4)) ")x.l
vl e )"Px. )

l')'v'

x[fI.p„.(x) u, .(k~.„,r) -f,'.&"'„.(r) u(. (ky u &)l

where the function in the square brackets is F&&~„")(~)

itself. This expression permits one to obtain
the values off and f at any point r & r2 by succesive
steps of numerical integration from a knowledge of
the matrix elements of V and of initial values off
and f at the boundary r= ra of region B. Thus we
have

f(J rl)(+) f(Jn)(~ )-» f" «'
u(&k~.~')(y ))(" )&.(I vip)(P)), ")

1'g'v'

x[ fIf~",)„,(r )u, ,(k&,„.x ) —fI~g)„,() )u, (k&,„r )] .
(32)

When f and f vary but little over the range of inte-
gration, their values at x in the integral of (32)
may be replaced by their values at r~. This re-
placement constitutes a Born approximation inas-
much as it gives the variation off as a linear func-
tion of integrals over the interaction V(r, 8, R);
however this approximation is more readily tested
and probably more accurate than the plane-wave
Born approximation considered in Ref. 9 and in the
other references cited therein.

The initial values fI&„"'(rq) and f I&„"'(r(.) to be en-
tered in (32)-and in the analogous formula for f-
should be provided by integration of the radial
equation for region A, more specifically of the Eq.
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(23) for region Ab. Here we set, in analogy to (28),
(30), and (31),

G,",„"'(r)= g,","„'(r)u, (k„r) —g,';"„'(r)u, (k„r), (ss)

d
— = u, (k„r) yI)'(„) (r),

(s4)

yI)(„"'(r)= —2B 5 [Z U" "'j(j +1) U" "'] G&(("„'(r)
A'

' " = u, (k„r) y I~„') (r),

—2 Z (Alv
~

V~ Al v') G,""„' (r) . (35)
l'v'

Note that in accordance with the qualitative discus-
sion in Sec. III the argument of u, and u, is now

k„r, with

—,k„=E —m(v+ —,') . (38)

Also, the term proportional to B in (35) should be
negligible and the boundary r2 between region A and
region B is defined so that

u, (k,„r,) - u, (k„r,), u, (k,„r,) -u, (k„r,) . (3V)

It follows that the wave functions are joined at the
boundary r2 by formulas analogous to (18),

f (Jq) (r ) Q g(zq)(r )
U()zn)

f(ys (ra) ~)( g)((u (ra) U)()

(38)

Also, g () )("„)(r2) and g)(),"„)(rz) are obtained by inte-
gration formulas analogous to (32) and based on(35),
starting from initial values of the same functions
at the boundary r& between regions Ab and Aa.

This procedure is to be followed again for the in-
tegration in region Aa, which relates values of g
and g at the boundary r& to initial values of analo-
gous functions h)(),"'(r, R) and h)(~")(r, R) at the core
boundary r= ro. The formulas for this purpose are
quite analogous to those given above and will not be
written out here. The wave number relevant to
region Aa is independent of j and g and is given by
~k =E.

The values of wave functions at the core bound-

ary are the essential parameters of our theory.
They will be formulated from the point of view of
FH, somewhat extended, which is also the point of
view of Zemach's formulation of the multichannel-
phase-amplitude method. This formulation in-
troduces a set eigenstates of the electron-mole-
cule interaction within the core. In each of these
eigenstates the electron's wave function emerges
from the core at r = r~ with a definite eigen-phase-
shift D. Since the core interaction can be evaluated
within the Born-Oppenheimer approximation, within
which the internuclear distance R and. the quantum
number A are fixed, each eigenstate corresponds
to a definite R and A; an additional label & is ap-
pended to distinguish different eigenstates with the

same A. The electron wave function for an eigen-
state can be expanded in spherical harmonics in
the body frame and is represented for r-r~ by

Q) 1')~(3', p') [u, (kr) cosb, )((R)

—u, (kr) sin5. ,(R)] C',".' . (38)

The expansion coefficients C', ~' constitute an or-
thogonal matrix, such that

The wave functions introduced in FH, e. g. , in

Eq. (13) of FH, had an analgous form, with the
following main differences: (a) The Coulomb wave
functions f and g were used instead of the free-
electron wave functions u and u; (b) the label o.

was omitted as a single eigenstate was relevant
for each value of A; and (c) there was a single
nonzero coefficient C', ~' equal to 1, because only
one value of l was relevant.

This payer no longer restricts l to a single value,
introducing the coefficients C', „' which represent
the admixture of different l in the same eigenstate

Yet the generalization has only a weak effect
for low-energy collisions, owing to the centrigual
barrier that keeps slow electrons from approach-
ing the core. The barrier effect limits the number
of eigenstates & with non-negligible phase shifts
and makes the matrix C, nearly diagonal; the
assumption of FH was more drastic, implying that

C, is exactly diagonal and thus breaks up into
1 & 1 diagonal blocks. Analytically the centrigual
effect can be' analyzed and evaluated with reference
to the fact that the irregular solution u, (kr) takes
large valueswhere kr is sufficiently small (e. g. ,
for kr~ 2) and l is sufficiently large (e. g. , l~2).
Large values of this function in the expansion (39)
shouM be counterbalanced by small values of its
coefficient sin6 ~ C,' '. Small values of this coef-
ficient can be achieved under either of the follow-
ing circumstances: (i) The phase shift 5 ~ is
small, implying a weak interaction between elec-
tron and molecular core; we call such a state

I o'A) a nonpenetrating orbit; (ii) alternatively the
coefficient C', ' is small for all large l in the
Penetrating orbits, whose & ~ is.not small. An
example of a penetrating orbit in a homonuclear
molecule containing light atoms would be a 0 state
with primarily s character and with a small ad-
mixture of d and hardly any of g; an example of
nonpenetrating orbit would be mostly d with a
small admixture of s. '

We return now to the characterization of initial
data for the integration of radial equations at

Note that we had been considering wave
functions for collision states with definite values
of J'and r), whereas the eigenstates ~

o'A) pertain
to the body frame only and have no such quantum
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numbers. Accordingly, our integration must start
outward from ro with initial values corresponding
to a superposition of eigenfunctions (39). Thus we
set

h, ~"'(ro, R) =Q C(, ' [cos& l&(R)]A'~~"„',

ll(l„'"& (ro, R) =Q, C I~&[sino ~(R)] A",„"„'.'

(41)

+Nip, l'JB sin& l((R)] C, . A

(42}f Ig."'(~)= + f dR p [N/, u l hB Cosf&~(R)
Of

+ M, &„, , » sin&, (R)] C',,".A".,"„'

In the limit of vanishing long-range interactions,
to which we shall restrict part of our considerations
as was done in FH, the integrals in (32) and in
analgous equations vanish. In this event the
matrices N and N in (42) vanish and the matrices
M and M reduce to frame transformation coeffi-
cients:

nu, ram™iN.' a i'usa x, (&)I~
(lJq)

+l jv, l AR + ljv, l AR

(43)

VI, SCATTERING MATRIX

Cross sections for electron-molecule colli-
sions can be obtained conveniently in terms of the
scattering matrix. This matrix resolves into a
set of invariant submatrices which are diagonal in
the quantum numbers J, M, and g. Each of these
submatrices can be extracted from the large-r
form of the wave function +J"„' which satisfies
suitable boundary conditions at r= ~. To obtain
the scattering matrix, we then write +J"„', as given
by (20), as a superposition of incoming and out-
going spherical waves using the form (28) of E(~"&

and the limiting values (42) of the coefficients f' "'

anf f(~"&. This wave function is

The coefficients A. ' AR' remain to be determined at
the end of the integration process from the condi-
tions which identify collision states of interest
among all those that have the same energy and
the same J and g.

The integration process described in this sec-
tion determines eventually the asymptotic values
at r= ~ of the coefficients f and f in (28), as linear
functions of the initial values (41). Wedonotcarry
out the numerical calculation but indicate its re-
sult in the form

f",,"„&(~)= p f, dR g [M„„,,„„cosy,(R)
Of

e (»l"' f' u'(~) —if' "'(~) .
+ ljv

r -2i
(44)

The two terms in the braces of this formula
would be complex conjugate if the coefficients
A'

AR were real. In our application these coef-
ficients are not real. However we take advantage
of the partial symmetry of (44) in + by rewriting
the coefficient of the outgoing wave in the form

( Jn) ~ -(Jn)
fix ( )+~f(&. ( ) l . V

~ dR ff( &u„(,
g) ~ Z l jv, eVR eAR2 g

(48)

Comparison with (42) shows that the matrix 8( "'
is

Z [(~lju, l'AB+ &N&lu, l'AB) nl&( )
~t

+ (Nll„l l B+ i l&f luau, l'l&B)»n8nl&(R)] C l'n ~ (48)

Substitution of (45) reduces (44) to the form

elkj tjv

l jv

+C. C. A eAR aS t «00 . 47

The spherical waves are normalized here in ac-
cordance to the prescription of the collision treat-
ment by Blatt and Weisskopf, that is, each term
represents one unit of electron flux entering or
outgoing through a large-x spherical surface. "
As in this reference, we consider a complete set
of states characterized by the so-called "outgoing-
wave boundary condition" and often indicated by a
symbol +. Each of these states has a wave func-
tion (47) that contains a single incoming wave with
quantum numbers (lo, jo, vo) and with amplitude
(-1) 'o. The coefficients A(~" & for this state will
be labeled by the index+ and by the quantum num-
bers (lo, jo, vo). They are identified as the roots
of the system of linear inhomogeneous equations

Z fo dR (R ilu, nAB) AnAB ~ lolouo
eA

= f&„ f&„ f&,(- 1) 'o (48)

as one verifies by inspection of (47). This equa-
tion can be cast in matrix form by regarding the
various sets of coefficients A', j„"'as constituting
a matrix,

[(B(~"&)nA(r"']„„,, „,= f,„,g„,8,(-1)'o. (48a)

The formal solution of this equation is represented
by

@',"„'(r,r;R,R)-g "g„(R)C(,"„'(r,R)"
l jv

el&fur f (J'u&(~) + if (Jn& (~)
2z~

~

A ':.",,„...= (- 1)'o [(R""')*l.'.. ,l...
Given the set of wave functions (47) identified

by the coefficients (49), the coefficient of each

(49)
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g ( Pl ) & f- &-(
U ( ld 6)

X (fl) g (&& & e( 6~ &(0()
l jv, eh' 2 jh, v le (51)

outgoing spherical wave represents one element
of the desired scattering matrix. ' Thus we write

(ij~I S""'Ilojo &6) =~ f d»'v'". '.»& "~'.
&Q~o o

(50)

1)&o(1 ) II(J'6)[(g(z»))4]-(I l j & ) (50a)

(The ~ quantum number need not be entered in the
matrix representation of S' "' because this mat-
trixisdiagonalin M and independent of M. ) The
structure of (50a) verifies that the reciprocal of
the scattering matrix is its Hermitian conjugate,
i.e. , that S' "' is unitary. The elements of the
matrix B "' have the character of Jostfunctions. '6

Numerical calculation of the matrix B 'J"' using
its definition (46) and the results of the integration
procedure of-Sec. V should be straightforward
though laborious in a general case. The inversion
of this matrix, required by (49), is further com-
plicated in principle by its infinite dimensionality.
In practice, only a finite portion of the matrix
should be relevant and its inversion should prove
feasible. We do not pursue this investigation in
the present paper. Recall, however, that our
treatment is designed to take advantage of the
weakness of long-range interaction. The con-
struction and inversion of B ' "' are trivial in the
limit of weak interaction; they should be feasible
near this limit. Indeed we obtain in the limit,
substituting (43) into (46), (49), and (50),

of rl is fixed at (-1)~ 'o 'o by parity conservation,
as discussed in Sec. II. The unit matrix is sub-
tracted from the S matrix in (54), as usual, to
eliminate the contribution of the unscattered wave.

The differential cross section for elastic or in-
elastic scattering in a specified direction can be
established and formulated in various manners.
It has often been found convenient, e.g. , in Ref.
6, to express this cross section in terms of the

angular momentum j, = lo - l = j —jo transferred by
the incident electron to the molecular rotation.
The range of the quantum number j„such that

~jp i
=j((j) + l)8 is often more narrowly limited

than the range of the total angular momentum quan-
tum number J. Moreover the differential cross
section can be represented as a single sum of
terms corresponding to various values of j, ,
whereas a double sum over pairs of values (J, J')
is otherwise required. Finally, j, replaces J al-
together when the interaction is restricted to the
body frame. These matters and the development
of the theory in terms of j, have been discussed in
a recent separate paper, '~ called here FD, whose
results require only straightforward generaliza-
tion for the present application.

A main feature of the method of FD consists of
replacing the scattering matrix S' "' by an equiva-
lent matrix S (j,) through the transformation for-
mula

(lj(&IS(j()lloio(&o) =~( I)'6 'o (2~+1)
Jg jo ~o

(JQt) 26&Q & 8( 6&& &(
C + g (R) U &QI(6 (52)ehB, lpgpvp e lp vp hgp

~ (V(& I

S""'
I io jo(&o) (55)

(lj~I S (J'6)
I
l j ~ ) 6 &p (Q U(-J6)

&(
/' dfl ) (ft) g(A) e2(6 ~(&(& C(&&) ~ (R) U(&ozp)

JQ v le e lp v()

(53)
Equation (53) represents the result of a full set

of frame transformations in its basic form. Its
content is equivalent to that of the adiabatic-ap-
proximation theory. In fact, (53) casts the results
of the adiabatic approximation in a form that should
be amenable to higher approximations as they may
be required.

VII. CROSS SECTIONS

The cross section o(j(&-jo(&o) for elastic or in-
elastic scattering integrated over the direction of
the scattered electron is expressed in terms of
the S matrix by the familiar type formula '

jo(&o)

~ (2&+1)
I «j~ I

S('"& —lI ioio(o) I' (54)
&Ovp l'lOJq

The sum over q is purely forrnal since the value

The angular distribution is represented by the
superposition of a set of functions that depend only

on angular momentum quantum numbers of the in-
cident and scattered electron and not on the colli-
sion dynamics,

C)(j(& lololl & 8)
(2l+1) (2l'+1) g lp lo &

=(-1) 6 (2j, +1) l l'
4m

x(l0, l'OIll'k0)P»(cos6)(ll'kOIlp0, lp0) . (56)

The values of the Gj coefficient and of the signer
coefficients in this formula are obtained from ta-
bles'8; the range of values of k is limited by the
triangular relations. Equation (56) differs from
Eq. (15) of FD by allowing two distinct values

(lo, lo) for the incidence orbital quantum number
in place of a single j„and by restricting to zero
the value of the incidence quantum number nz„.

The differential scattering cross section equals
the product of the dimenional factor &(/k~ „which
appears in (54) and of an average of the functions
0 for all relevant values of the quantum numbers,
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weighted by elements of the scattering matrix
(55). The formula, analogous to Eq. (14) of FD,
is

+(Ã novo) yo (2' + 1) 1 Q (2f + 1)1f8
lfQ) ~Q" o

Q'Q

x (2lo+1)'~o (fjvl S(j~)l fp jovp)

x (lojovol S(j,)l l'jv) O(j, , &p$o, ff';g) . (57)

Note that the unit matrix has not been subtracted
formally from the S matrix in Eq. (57); this is
unnecessary for scattering at angles 8 &0. How-
ever, this subtraction might be useful for the

elastic channel, i. e. , for (jv) = (jp vo), to sort
out which terms of (57) contribute significantly to
the multiple summation.

The transformation formula (55) maybe combined
with other features of our approach to carry out
the summation over J and p analytically and thus
to eliminate these quantum numbers altogether,
This simplification is made possible, at least in

principle, by the fact that the scattering matrix
S' "' depends on J primarily through the transfor-
mation matrix U~&

"'. The application is straight-
forward in the limiting case where 8' "' has the
simple form (53), a bilinear function of U and U.
When (53) is substituted in (5S), we can use an
identity of Racah algebra" which gives

g( 1)jp &p ~ (2J'+ 1) ~ p(lan) g'l tJ'n)

jo ~o j&

Thus we find

E E g 2

0 0 0 I(A A 0]~ 1+GEO
~ (58)

(Vv IS(jt) lfojovo)= f ( 1) (2j+ 1) (2jo+ 1) 0 0 0

x lo A
A 0 dRX„(R)Z (C, e"' ~' 'C, , ) X, (R) (59)

Note how the dependence on the rotational quantum
numbers j and jp is factored out in Eq. (59). The

g~ in this formula involves only parameters defined
in the body frame. Note also that the factor 2/
(1+ 5~p) can be removed by extending the sum over
A to negative values of this quantum number; this
extension of the sum applies throughout the theory
whenever the parity quantum number p is not in-
troduced explicitly as, e. g. , in Refs. 6, 1V, and

20.
The factorization of S(j,) into rotation-dependent

and body-frame contributions can be readily ex-
tended when long-range forces are present but
confined to region A. However the separability of
body-frame and laboratory-frame effects breaks
down when the interaction extends into region B.
In this event the matrix 8 "' is still a linear func-
tion of U ' "' but the inversion formula (49) does
not yield the matrix A' "' readily as a linear
function of V ' " . The search for taking maxi-
mum advantage of the quasiseparability of the two
frames is pressed no further in this paper.

APPENDIX: TARGET MOLECULES IN NON-E" STATES

~i& — &q& (2J+ 1)(wz&zs+ Uw-zD. ~) (A1)

its parity is I= g(- 1) . (The quantum number 7
was called j elsewhere in this paper. )

With this target wave function and the orbital
wave function F,„(3,y) of the incident electron, we
construct a laboratory-frame mave function analo-
gous to (1):

C,"„""'(r", R)=& 1'r (S, V) twx&Z', z- (8, 0)

wave function will be indicated by w& and will still
be restricted to singlet states. Reflection on the
body-frame coordinate plane (x'z'), represented
by the operator o'„, changes wX into (-1) w.~. He-
callthatw& and w ~ are different but degenerate for
A &0. For 'X= 0, we have only nondegenerate
states of definite parity, o„wp=p wp,' we shall rep-
resent this situation by the general formula o'„w~
= (- 1) w z, complemented by the convention w p

g wp The rotational wave function of the target
molecule is thus represented by

We extend here the treatment of Sec. II to a
target diatomic molecule with quantum numbers
O', A ~ 0 and q = +1. Its electronic (and vibrational)

+ Rw-xD-~,'z- (e, 4')]
(Z) (2~+ 1)

Sm 1+ Gap

x (lm, JM-m ll JJM) . (A2)
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The parity of this wave function under coordinate
inversion is I=q(-1)' . To transform to the body
frame, substitute in (A2) the transformation formu-
la of the incident-electron's wave function

Yi (6 &) = GYii(6' V') Di" (o, 6, 0)

The resulting product of D functions is then ex-
panded by the reduction formula2'

(A3)

D„'„"(0, 6, Q) D~„' ~(0, 6, Q) = Q (L X, JA
~

l JO' X+ A) D,',X„(0, 6, Q) (L
J'J' I [L m, JM —m) .

Substitution into (A2) permits us to carry out analytically the g„over a product of Wigner coefficients,
yielding the orthonormality result 6J.J . Thus we find a representation of 4 JM in terms of body-frame co-
ordinates

" (&, R) = 2 Y(g(6, y ) [sex(L X, JA ~L JJ X+ A) D~,x,g(0, 6, Q)+qw g(L X, J —A~L JJ X —A) DI, xt, „(0, 6, p)]

(2J+ 1)X
Bo'(1 + 5xo)

(A5)

The remaining task consists of casting this equa-
tion in a form analogous to (6). To this end one
may replace the index X by —~ in the second term
in the brackets of (A5) and then use the identity

(l —x, J A~LJJ -x-A)-

= (Yn~~Di. x,~+ & Yi-~ ~-x D-i-x.~)
( ERAL)) (J) (J)

(2J+ 1) 'T
(A7)

Bv(1+ 5~o5xo)

With this definition (A6) takes the form

=(-1) ' (lx, JX~LJJx+A), @,(rJxq) ~ &(»~g) U™(tgg,~n)
JM ~)t JM )i+A J (AB)

whereby (A5) becomes

@,(/ JAfl)
J'M

=Z [YrizD~'x. ~+ &(-1)' ' '
Yi ~~-xD-'~-'x, ~]

which is the analog of (6). Sorting out the coeffi-
cients of (A6) and (A7) we see that the transforma-
tion matrix is given by

U(t Jg'7")
X+XJ

x (L x, J A
~

L JJ x+ A) 6
(2J+ 1)

Bv 1+ 5)o 5go
(A6) (lx, JA~LJJx+A) 2J 1 yyo

(2 J+ 1) i 1 y q q(—1)

The normalization factor of this formula has been
adjusted because the two terms of the sum coincide
now only for X= A= 0. The expression in the
brackets has the desired structure of a rotational
X wave function, with electronic factors Y»u &

and

Yi -x ~-~ = (- 1)"&.Y)~ ~~,

with quantum number rL= p(- 1) ' and with parity
I='0(-1) . The quantum number A of the X func-
tion would be identified with ~+ A, were it not that
A should be non-negative while X+ A may become
negative for & & 0 and l & A. This circumstance
brings out the fact that the g~ in (A6) does not re-
duce to a simple g~. When l & A &0, the sum
actually contains pairs of terms with the same
value of A and different X, namely, A= X.+ A=

~

—X'

+ A I. (Recall that, e. g. , an excited molecule with
a rydberg d electron and a 0 ionic core has two
types of v states, constructed with do and d5. )
Accordingly we define X functions labeled by X and
A rather than by A and A,

(A9)

This formula is equivalent to (7) in the special
case where A= 0.

The present treatment is exact in the sense that
it considers the quantum number of g of the target
molecule explicitly. In practice for non-Z target
states, the energy difference of a pair of states
differing only in rl (i. e. , the A doubling) is usually
negligible, being proportional to B /[E(A) -E(A')],
where B is the rotational constant and A and A are
two different relevant electronic states. There-
fore, when dealing with experiments that resolve
the target rotational states though not the A dou-

bling, one must sum over the final state value of g
and average over its initial-state value.

In homonuclear molecules the two A-doubled
states have opposite nuclear permutation symmetry
(symmetric or antisymmetric). This symmetry
character is invariant in the collision as is also
the parity of l. The over-all parity of the electron-
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, molecule system I=q(-1) is invariant of course.
It follows then from (AQ) that the parity I= q( 1-)~

of the molecule alone is a collision invariant for
homonuclear molecules. This means that in elec-
tron scattering by non-Z homonuclear molecules,

the rotational transition hJ = odd integer is allotted ~

but only with a simultaneous change of the quantum
number g. The occurrence of the 40= odd-integer
transition has been emphasized by Temkin and
Faisal 20
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Angular Momentum Transfer in the Theory of Angular Distributions*
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The angular distribution of collision products is expressed as a sum of incoherent contribu-
tions corresponding to different magnitudes of the angular momentum ] &

transferred to an un-
polarized target. For targets with a characteristic internal reference frame (e.g. , molecules)
the coefficients of this sum are interpreted as generalized 2~t-pole polarizabilities of the
target in its internal reference frame, analogous to the scalar and quadrupole polarizabilities
that determine the Raman effect. The theory is developed in the context of photoionization,
but is applicable to more general collision processes as well. It is illustrated by use and ex-
tension of diagrammatic techniques.

Theoretical expressions of the angular distribu-
tion of radiations from single-collision (or decay)
processes have repeatedly been given in terms of

the angular momentum j, transferred from one re-
actant to another. ' In view of the increasing role
of angular-distribution studies in atomic and mo-


