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Term splittings, ionization potentials, and electron affinities of states in the lowest con-
figurations of atoms with Z from 5 to 10 have been computed. Correlation-energy terms are
obtained from variational solution of one- and two-particle Bethe-Goldstone equations, formu-
lated in terms of configuxationa/ virtual excitations. This procedure differs from previous
calculations (which used oxbita/ virtual excitations) in that LS eigenfunctions are obtained at
each stage of the hierarchy of computations. The present procedure makes it possible to
compute correlation energies for multideterminantal LS states. Computed results are in rea-
sonable agreement with experiment, but are less satisfactory than results obtained previously
with oybita) virtual excitations, including three-particle terms.

I. INTRODUCTION

In a previous paper' (hereafter referred to as
I) we presented the results of calculations of ion-
ization potentials, electron affinities, and term
splittings for states of the lowest electronic con-
figurations of first-row atoms, with Z from 5 to
10. These results represent energy differences
made up from two separately computed contribu-
tions: (i) Hartree-Pock and (ii) correlation
terms. The latter were computed by variational
solution of orbital-excitation Bethe-GoMstone
equations. The computational procedure has been
described in detail elsewhere. In a few cases,
three-particle correlation effects were computed,
so that quantitative estimates could be made of
the importance of these terms in the physical ex-
citation processes of interest here. The states
considered in I were limited to those for which the
state with Ml = I. and M s = S can be represented by
a single Slater determinant in the Hartree-Fock
approximation.

We pointed out in I that it would be desirable to
make parallel calculations of the energy differences
considered there, using the alternative technique
of configurational virtual excitations3 to define the
hierarchy of variational Bethe —Goldstone equations.
Because some three- and four-particle oxbjtal ex-
citations are included in the definition of one- and
two-particle configurational excitations, the pos-
sibility exists that the entire effect of virtual or-
bit31 excitations of more than two particles would
be adequately described by one- and two-particle
configurational excitations. The work reported
here is a test of this hypothesis. It also includes

some states, represented in the Hartree-Fock
approximation by more than one Slater determi-
nant, that could not be tested by the simpler or-
bital-excitation method of I.

The only previously published results compar-
able to those reported here are calculations of
Weiss' on F and Ne. The results obtained here
will be compared with those of Weiss in the dis-
cussion given below. This discussion also applies
to recent work on 0 by Marchetti et al. '

II. CALCULATIONS

The use of configurational excitation in Bethe-
Goldstone calculations has been described pre-
viously. ' Here we give some additional details
required to compute correlation energies of multi-
determinantal LS eigenstates.

The first step of each calculation is to carry
out an open-shell matrix Hartree-Fock calcula-
tion' for a single Slater determinant selected from
the configuration appropriate to the atomic state
under consideration. If there are other Slater de-
terminants with the same M~ and Ms values in
this configuration, a zeroth-order Bethe-Goldstone
calculation is required, to diagonalize the Ham-
iltonian over this set of Slater determinants. This
defines a variational Hilbert space [0], and a gross
energy increment 4Eo, considered as a correction
to the single-determinant Hartree-Fock energy.

The hierarchy of variational equations then fol-
lows in the usual way, but virtual excitations and
not energy increments are referred to [0] rather
than just to the reference Slater determinant.

The total energy is given by
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TABLE I. Energy contributions for C ( P), in a. u.
(Hartree units).

go

~2$

2 $2$

2$2P

2$2p
Total

(a)

—37. 6886

—0. 0387

—0. 0303
—0. 0204
-0.0099

—37. 7879

Calculation

—37.6310
—0. 0563
—0. 0373
-0, 0011
—0. 0307
—0. 0218
-0.0098

—37.7880

-37.6310
—0. 0916

—0.0180
—0. 0079
—0. 0147
—0. 0214
—0. 0083

-37.7858

Approximate Hartree-Foes energy of reference
determinant.

E = Ep+ &Ep+Z e( + Z e(g+ ~ ~ ~,

where Eo is the single-determinant Hartree-Fock
energy, and net energy increments are defined by

6] = AE] —GEO,

e])= AE]) —AEO —6] —6) .
(2)

Here 4E„4E,
&

denote the directly computed gross
energy increments, defined as eigenvalues of a
Hamiltonian matrix whose diagonal elements rep-
resent virtual excitation energies relative to E0.2'

These definitions can be illustrated by an ex-
ample, the 'P ground state of neutral carbon.
Table I lists individual contributions to the total
energy of this state using configurational virtual
excitations and either a single or multideterminant
representation of the reference state. All three
calculations have a common orbital basis set:
the double f basis set of Clementi' augmented by
s, P, d,f functions with powers of r up to quantum
number n= 5. This orbital basis has been used
for earlier calculations. '

Calculation (a), in Table I, is a standard calcu-
lation using the single-determinant reference state
det[(closed shells)2Pp 2PP]. This is a PP eigenstate
with I =M~ =1, S=Ms=1. Calculation (b) uses
(2ps, 2') as reference determinant, constructing
a 3P eigenstate in the form

1 0(20'i2PP) —1 0(2lpi 2P t) —o 0(2Pp 2') (3)

4EO in this case is computed as an eigenvalue of
the 3 &&3 matrix corresponding to Hilbert space
[0], spanned by the three Slater determinants in-
dicated in Eq. (3). The net energy increments are
given by the usual formulas:

&2 = AE2 —EEO

~2$,2$ = +E2$,2$
—+ED —~2$ ~

2$ 2P ~E2$,2P ~EO 2s ~2p p

~2&,2p
—&E2g, 2p

—&Eo —~g ~

Calculation (c) represents a further extension of
the formalism. To account for the near-degeneracy
effect of interaction between configurations 2s 2p2

and 2p, it is convenient to include 2p in the ref-
erence Hilbert space [0]. In fact, any configura-
tion suspected of having a substantial effect can be
included in [0]. So long as these configurations
are included in al.l of the virtually excited varia-
tional spaces, the general argument leading to
definition of net energy increments as in Eqs, (4)
still is valid. To illustrate this point, calculation
(c) includes both Iss2p4 and Iss2s3d2ps in [0]. The
former is quite important (coefficient -0.15) but
the latter is less so (coefficient -0.03).

The data in Table I show that the total energy
computed in (a) or (b) is practically identical, al-
though there are slight differences in the energy
subdivision among the various net increments.
The total energy in calculation (c) is somewhat
smaller, by about Q. QQ2 a.u. , but ~ED, which con-
tains the 2p': 2s22p2 near-degeneracy effect in this
ease, is much larger than in calculation (b). In
calculations (a) and (b) the near-degeneracy effect
represents a major contribution to the 2s2s net
increment. The configuration 1s22s3d2P2 contrib-
utes to the 2s net increment in calculations (a) and

(b) but not in (c), where its effect is included in

~EO.
In a basis of Slater determinants, the configur-

ation-interaction matrices for conf igurational ex-
citations are much larger than the corresponding
matrices for orbital excitations. Since a proce-
dure for constructing symmetry-adapted functions
prior to the matrix eigenvalue computation has
not yet been implemented in the computer programs
used here, the size of these matrices and the re-
sulting large computation times are serious limiting
factors. In the worst case considered, the calcu-
lation of AEs, s~ for 0('S) was terminated without

satisfactory convergence. Such practical con-
siderations led us to omit calculations of the Kl.
intershell correlation energies. In orbital excita-
tion calculations, ' these terms were found to be
small, and to make very small contributions to
the energy differences of interest here.

With the present computer programs, it would

be quite out of the question to compute three-par-
ticle terms, using configurational excitations.

III. RESULTS AND DISCUSSION

Table II lists the various computed contributions
to the total energy. Only I -shell correlation en-
ergies are included, so the "total" energy given
here cannot be compared directly with experiment.
As indicated in the table, results for the 2P ('S)
state of N and 0 are somewhat uncertain due to
inadequate convergence of the &E2, 2~ eigenvalue
calculation. The expected error is less than Q. 001
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TABLE II. Contributions to total energies (a. u. ), with all signs reversed.

Atom
(state)

B('P)
B-('P)
B-('D)
B-(is)

C('P)
C (iD)
c('s)
c-(4s)
C ('D)
C-(2P)
C Ir (2P)

x(4s)
W(2D)
W{2P)
N-('P)
X-('D)
z-('s)
N rx (3P)
Xrx ('D)
@x~ ('s)

0('P)
O('D)
0('s)
O-('P)
o~~ ('s)
0 rz (2D)

F(2P)
z-('s)
F rr (3P)

24. 5291
24. 5192
24. 4905
24. 4768'

87.6886
37.6313
37.6031
37, 7088
87.6425
37.6411
37.2922

54. 4009
54, 2962
54. 2956
54. 3219
54, 2669
54. 2367
53. 8880
53. 8074
58. 7678

74, 8094
74. 7292
74. 6887
74. 7895
74, 3726
74. 2333

99.4093
99.4594
98, 8316

O. 0009

O. OO63b

—O. O194b

—0. 0336

—O. 01,47b

0, 0008

—0. 0254

~2s

0.0218
O. 0258
0. 0217
0, 0003

0, 0387
0. 0355
0.0011
0.0389
0. 0350
0. 0166
0.0256

0. 0496
0, 0459
0.0220
Q. 0309
0. 0299
0, 0015
0.0438
0.0408
0.0014

0, 0378
0. 0365
0, 0020
0.0185
0.0549
0.0514

0. 0217

0, 0417

E'2p

Q. 0028
0, 0011

O. 0037
0.0010

0. 0045
0. 0046

0, 0053
0. 0042
0.0064
0. 0054
0.0006

Q. 0041
0.0009

0, 0059
0. 0062
0. 0005
0.0051

0.0056

O. 0050

O. 0057

2s, 2s

0, 0409
0.0296
0, 0317
0, 0257

0, 0303
0, 0309
0, 0104
0.0174
0, 0192
0, 0167
0.0488

0. 0149
0,. 0157
0, 0123
0.0159
0, 0166
0, 0155
0. 0382
0, 0336
0, 0079

0, 0140
o. 0144
0. 0122
0, 0139
0. 0140
0, 0145

0. 0127
0.0118
0, 0133

2s, 2p

0, 0088
0.0246
0. 026~
0.0277

0.0204
O. 0222
0, 0237
0.0372
0. 0885
0.0398
0.0087

0. 0329
O. 0346
0. 0353
0.0540
0. 0538
o. o546'
0, 0202
0.0209
0.0218

0, 0493
0, 0493
0 0511c
0.0688
0. 0312
0.0329

0, 0637
G. 0831
0. 0466

2p, 2p

0.0110
0. 0180
0.0384

0, 0099
0.0145
0. 0370
0. 0301
0.0388
0.0518

0.0289
0. 0361
0.0516
0.0767
0.0817
0.1014
0, 0097
0, 0143
0, 0386

0, 0756
0. 0804
0.1023
0, 1316
0. 0286
0.0357

0.1314
G. 1960
0. 0756

Total
24. 6006
24. 6102
24. 5905
24. 57O9

37.7879
37.7344
37.6826
87. 8324
87, 7780
37.7512
37.3753

54. 5272
54.4338
54. 8874
54. 5058
54. 4543
54, 3956
53.9949
53.9211
58.8887

74. 9920
74. 9160
74. 8314c
75. 0274
74. 5013
74. 3734

99.6438
99.- 7503
99.0145

xe('s)
Ne ~(2P}

128.5470
127. 8170 0. 0238 0. 0050

0, 0112
0. 0122

0, 0775
0. 0605

0.1964 128.8321
o. 1.317 128.0502

Approximate Hartree-Pock energy of reference
determinant.

~Configuration 1s22p" + included with &s 2s 2p" in [0].
'Incomplete convergence of diagonalization.

a. u. The reference determinant for C('8) is
2P~2po. Configuration 1s 2p"' is included in the
Hilbert space [Oj for the 'S and P terms indicated
in the table.

KI. intershel. l correlation energies were not com-
puted in detail. In Table III we give a few exam-
ples of net energy increments obtained with a re-
stricted orbital basis. Quantitatively, the KL cor-
rel.ation energy computed in this approximation is
only half that obtained previously with the full or-
bital basis set used here. ' Nevertheless, the en-
ergy differences relevant to excitation processes
are nearly the same.

In Table IV we compare total I.I. correlation en-
ergies obtained by orbital excitation and by config
urational excitation. With the exception of C n( P)
and N zt(sP) the correlation energy obtained by
configurational excitation is always smaller than
that obtained by orbital excitation. This result is
expected, since explicit three-particle terms are

TABI Z III. XI. intershell net energy increments
(a. u. ), signs reversed.

Atom
(state)

is,2s

is,2p
Total

C ('&)

0. 0022
0, 0030
0. 0052

C ('D)

0. 0030
0. 0029
0.0059

c ('s}

0.0018
0. 0025
G. 0048

c- (4s)

0. 0020
0, 0037
0, 0057

neglected in both cases. Configurational excita-
tions indexed by two particles contain certain
three-particle virtual excitations implicitly, and

the expected effect of these terms is to compensate
for an excess of correlation energy computed for
pair excitations only. '~

As shown in Table IV, results of the two methods
are significantly different. For neutral atoms, the
difference is generally small, ranging from 2 or
3/~ in Nz to 10/o in Or. For negative ions, the
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Atom
(state)

S-('P)
a-('D)
~('P)
c-('s)
C(D)
c('p)
c('D)

Cn( P)

N-('P)
N-('D)
N(4s)
N(2D)

Orb.

0. 0970
0.1118
0. 0721

0. 1344
0. 1514
0. 0999
0. 1106

0. 0826

0.2136
0.2229
0. 1292
0. 1417

Config.

0. 0910
0. 1000
0. 0715

0. 1236
0.1355
0. 0993
0. 1031

0. 0831

0. 1839
0. 1874
0, 1263
0. 1376

Atom
(state)

N n (~P)
N n ('D)
O-('J )

o('p)
o(~D)
on( s)
On ('D)

F-('s)

F('P)
Fxt (~P)
Ne('S)
Ne n (2P)

Orb.

0. 1050
0.1162
0.2899

0. 1935
0.2041
0.1289
0.1416

0.3694

0.2612
0.1892
0, 3315
0.2516

Config.

0.1069
0.1137
0.2379

0.1826
0.1868
0.1287
0.1401

0.2909

0.2345
0.1829
0.2851
0.2332

differences are greater, ranging from 10% in B-

to 25% in F . These differences parallel the ex-
pected effect of three-particle terms, which have

TABLE IV. Comparison of orbital- and configurational-
excitation formalism. Total LL correlation energies
(a.u. ), signs reversed.

been shown to be larger in negative ions than in
neutral atoms, and to increase in importance as
the 2P subshell is filled. ' Higher-order terms are
expected to be smaller, but we have no detailed
quantitative estimate. 3

Computed energy differences for the ionization
or excitation processes considered here are given
in Table V. Two sets of results are given: the
"complete" orbital basis set (i), and one with the
highest energy unoccupied s and p orbital removed
(ii). The energy difference for process A-8 is
defined as in I,

&E~a = &I —~~

Experimental results as well as results of other
calculations are included in the final column of the
table.

Comparison of results (i) and (ii) indicates that
there is no appreciable difference in the results
if a slightly truncated orbital basis set is used.

TABLE V. Computed and observed ionization energies, electron affinities, and term splittings (eV).

Process Expt. a Process (i) (ii) Expt. a

B('P) -B-('P)
B ('P) -B ('D)

B-('P) —B-('S)

-0.261
0. 536

1.069

—0.248
0. 536

1.069

-0.33
0 53
0. 52d

1,16c
1.31d

N(4S) -N-('P)
N-('P) —N-('a)

0. 582
l.401

0.591
1.404

—o. 05~b
1 11c
1.28~

1 04'

C( P)-C('D)

C('P) —C('S)
c('p) —c-{'s)
c-(4s) —c-('D)

C-(4S) —C-(2J )

C('P) —Crr('P)

N('s) —N('a)
N(4S) —N('P)
N (4S) -N rr ('P)
N rr (3P) Nrr (~D)
Nrr (3P) Nrr (~S)

1.456

2. 865
1Q 211
1.480

2. 210

11.227

2. 541
3.804

14.484
2. 008
4. 250

1.355

2. 865
—1.211

1.486

2. 209

11.227

2, 550
3, 812

14.514
1,984
4. 223

1.26'

2. 68~
—1, 24

1.36'
1.29
1 30
1.25'
1.89'
1.46
1 99

p5f

2.38''
3. 58?~

14.55~

1, 89~

4. 05~

N. ('P) -N-('s) 2. 999

O('P) —O('D)
0( P) 0( S)

2, 068
4. 370

O('P) —O-('P) -0, 963

Orr (4S) Orr (2P)

F('P) —F-('S) —2. 898

F {'P)- Frr ('P)
Frr (3P) —Frr (~D)
Frr ('P) —Frr ('S)
Ne ( S) Nerr (2P)

p (~P) —prr (4S) 13.352

Orr (4S) Orr ( D) 3.480

3.023

2. 073
4.432

—1,039

13,341

3.491

5.241

-2.922

17,115
2.682
5. 777

21.251

2.4o'
2. 60
2.3e'
2. 58f
1.95~
4. 18N

13.62~

3.33~

5.02~

-3.50"
-3.47"
17.43~

2. 59~

5.53+
21.56~
21.52
21.55'

Includes other calculations.
'J. Berger, Memoire de Licence, Univ. Libre de

Bruxelles (1970).
'I. Oksuz and O. Sinanoglu, Phys. Rev. 181, 54

(19e9).
~C. E. Moore, Atomic Energy Levels, Natl. Bur.

Std. Circ. No. 467 (U. S. GPO, Washington, D. C, ,
1949).

"B. Edldn, J. Chem. Phys. 33, 98 {1960).
dD. R. Bates and B. L. Mosiewitsch, Proc. Phys.

Soc. (London) A68, 540 (1955).
E. Clementi and A. D. McLean, Phys. Rev. 133A,

419 (1964).
"A. W. Weiss, Phys. Rev. A3, 126 (1971),
'S. F. Boys and N. C. Handy, Proc. Roy. Soc.

(London) A310, 63 (1969).
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TABLE VI. Net energy increments in F, F, Ne,
Ne xx (a. u, ), signs reversed.

Atom
2s, 2s

a This work
as, 2p

a This work
2pt2p

a This work

F
F

Ne II
Ne

0. 0106
0. 0110
0. 0106
0. 0105

0. 0127
0. 0118
0. 0122
0.0112

0. 0590
0, 0793
0, 0546
0. 0721

0.0637
0. 0831
0.0605
0, 0775

0, 1465
0.2315
0.1420
0.2161

0, 1314
0. 1960
0.1317
0. 1964

aReference 4, Table V.

The present results for electron affinities are
qualitatively similar to those given in Table IV of
I (results including three-particle terms). In par-
ticular, from the present one- and two-particle
configurational excitation calculations, N ( P) is
not bound relative to N('S). In I, using orbital ex-
citations, these states appeared in the opposite
order unless three-particle terms were included.

The results of I are in better quantitative agree-
ment with experiment than those given here. This
implies that the effect of three-particle (and higher)
terms is not fully accounted for by use of one- and
two-particle configurational excitations.

For the processes Ne-Ne' and F —F, the pres-
ent results can be compared with those of Weiss, 4

given as Ref. h in Table V. Weiss uses I,S eigen-
states throughout his calculations, but subdivides
the Hilbert space of virtual excitations according
to different electron-pair coupling schemes rather
than just according to subshell occupancy as done
here. For example, correlation energy due to
xy/P virtual excitation of a P' subshell is computed
by Weiss as three separate energy increments:
((p')'P( y)'P)'S' ((p')'D(N)'D)'S; d ((p')'S(- 7)'S)'S
In the present work these coupling schemes are
all included together, contributing to &» 2 . Since
matrix elements of the electronic Hamiltonian con-
nect states belonging to different coupling schemes,
the present results and those of Weiss would differ
even for a complete orbital basis. Repetition of
our work with the orbital basis of Weiss gives no
significantly different results. This shows that
the substantially better agreement with experiment
of the results of Weiss, compared with the present
results, must be attributed to the use by Weiss of
independent electron-pair coupling schemes to
define pair-correlation energies. Comparative
results are shown in Table VI. For the (2s, 2s)
and (2s, 2p) energy contributions, the differences
are negligible, but the (2p, 2p) energies are quite
different. The difference between (2p, 2p) results
for the closed-shell configuration of F and Ne is

apparently much larger than for the 2P' configura-
tion of F and Ne'.

The calculations reported here and in I truncate
the virtual orbital expansion at l= 3, as does the
work of Weiss. A previous calculation on the 'S
ground state of Ne, which included orbitals with
I & 6, obtained 106. 2% of the empirical correlation
energy, using orbital-excitation Bethe-Goldstone
equations. This represents a substantial increase
over the correlation energy, 96. 0% of the empirical
value, obtained by orbital-excitation calculations
with / & 3, comparable to the present work. ' The
largest change in net energy increments occurred
for (2p, 2p) energies. Since virtual orbitals with
l & 3 might be expected to have a relatively greater
effect on virtual excitations of occupied p orbitals
than on s orbitals, a significant part of this in-
crease of correlation energy for Ne('S) must be
attributed to lack of convergence of the spherical
harmonic expansion in the l & 3 calculation.

In order to test this point, &»» has been recom-
puted, using configurational excitations, with one

g orbital added to the basis set used here. For
F ('S) the revised value of ez~ 3~ in a,.u. is -0.2004,
compared with -0.1960 in Table II, and for Ne('S)
the revised value is -0.2011, compared with
—0. 1964 in Table II. The change of &» 2~ is -0.120
and —0. 128 eV, respectively. This change is ap-
proximately a quarter of the discrepancy between
present results and experiment for the process
F( P) - F ('S), noted in Table V. The full correc-
tion for angular completeness will, of course, be
greater than that obtained with a single virtual or-
bital (whose exponent was not optimized). If the
effect is relatively greater for the 2p6 closed shell
than for 2p', it would tend to bring the present re-
sults into closer agreement with experiment. A
similar effect, in the work of Weiss, could bring
the results out of agreement with experiment.

In view of this question of angular completeness,
which can only be resolved by more elaborate cal-
culations than those reported here or by Weiss,
final conclusions cannot yet be drawn about the
ultimate accuracy of configurational-excitation cal-
culations.

While a fortuitous cancellation of errors cannot
be ruled out, it should be pointed out that a, recent
calculation of the electron affinity of atomic oxy-
gen, ' following exactly the procedure used by
Weiss for fluorine, is in very good agreement with
experiment. The result shown here, in Table V,
differs from experiment by 0. 5 eV.

~C. M. Moser and R. K. Nesbet, Phys. Rev. A 4,
1336 (1971), hereafter referred to as I.

R,. K. Nesbet, Advan. Chem. Phys. 14, 1 (1969).
3R. K. Nesbet, Phys. Rev. A 2, 661 (1970); 2, 1208

(1970).

A. W. Weiss, Phys. Rev. A 3, 126 (1971).
5M. A. Marchetti, M. Krauss, and A. W. Weiss,

Phys, Rev. A 5, 2387 (1972).
R. K. Nesbet, Rev. Mod. Phys. 33, 28 (1961); 35,

552 (1963).
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'E. Clementi, J. Chem. Phys. 40, 1944 (1964).
R. K. Nesbet, Phys. Rev. 175, 2 (1968).

9B. K. Nesbet, T. L. Barr, and E. R. Davidson,
Chem. Phys. Letters 4, 203 (1969).
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N'4
~S3 &~ g& Factor Measured by an Atomic-Beam Universal-Detector Technique

Bernard Q. Zak and Howard A. Shugart
Department of Physics, I azurence Berkeley I aboratory,

University of California, Berkeley, California 94720
(Received 5 June 1972)

The atomic-beam magnetic-resonance technique has been used to measure the g-factor ratio
of the ground state of nitrogen to the ground state of potassium. The result is gJ(N', S3/2)/
gJ(K, S&/ 2) = 0.999 919 6 (20), where the quoted error represents the 90% confidence level.
Combining this result with that of other researchers, we find the absolute gJ factor for nitro-
gen to begJ(N, S3/2) =2.002 134(5). This value is in much better agreement with the result
of a recent calculation carried out according to the theory of Kambe and Van Vleck than is the
earlier measured value, which was obtained by electron paramagnetic resonance. The dis-
crepancy between experiment and theory is reduced from 13.5 ~2 to 4+2.5 ppm. The atomic
nitrogen was generated in an electrodeless discharge and detected with a new mass-spectro-
meter universal detector; this latter instrument is described in some detail.

I. INTRODUCTION

In the last few years, several calculations of
atomic gJ factors have been made using the theory
of Kambe and Van Vleck and high-accuracy Har-
tree-Fock wave functions. ' The theoretical gJ fac-
tors calculated for the P, and P2 states of atomic
oxygen, as well as for the P~&, state of fluorine,
were found to agree with experiment to within 1

ppm or better~; this result fostered the hope that
such accuracy could be obtained for all states of
first-row atoms for which Hartree-Fock wave func-
tions of comparable accuracy were available. Re-
cent theoretical results for nitrogen, however,
did not encourage this hope; for the 'S3/3 D5/p,
and D3/~ states the discrepancies with measured
gJ values were found to be 13.5+2, 30+8.5, and
15 + 25 ppm, respectively. 3 The contrast between
such exact agreement in fluorine and oxygen and
such striking discrepancies in nitrogen suggested
that a remeasurement of these latter gJ values
was in order. The results of the remeasurement
of the gJ value of the 'S,/, state are reported here.

II. THEORY OF EXPERIMENT

The ground configuration of nitrogen is 1s 2s 2P',
giving rise to three multiplets: the S3/~ ground
state, the 'D, /, 3/, states, and the P3/p $/p

which are 19230 and 28840 cm above the ground
state, respectively. The Hamiltonian describing
the hyperfine structure (hfs) and Zeeman effect of
the S,/, ground state of nitrogen is
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where a is the hfs magnetic-dipole interaction con-
stant, b the nuclear-quadrupole interaction con-
stant, Ih the nuclear angular momentum, JS the
electronic angular momentum, gl= pl/I and g'~
= —p, ~/J' the corresponding g factors (where p, and

p, z are measured in p, s and I= 1 for N' ), and H

the magnetic field. The energy levels for any val-
ue of H are obtained by diagonalizing this Hamilto-
nian on the set of hyperfine states (I, J; E, Mz)
associated with the electronic state of interest.
Because the dominant configuration contains no un-
paired s electrons, the hfs magnetic-dipole con-
stant a is quite small. Owing to the spherical sym-
metry of the half-filled P shell (S state), the ciuad-
rupole coupling constant is very nearly zero in the
ground state.

The operation of an atomic-beam apparatus has
been adequately described elsewhere. ' Here it
suffices to note that the apparatus used in this ex-
periment is of the "flop-in" variety; thus, in order
to be observable, transitions must change the sign
of the projection of the magnetic moment along the

direction of the magnetic field, and also satisfy
the usual selection rules for magnetic-dipole tran-
sitions between Zeeman-split hyperfine levels.

The two transitions between hyperfine levels of
the S3/2 ground state of N studied in this experi-
ment are designated n and P; see Fig. 1. They
connect states characterized by the low-field quan-
tum numbers (F, Mz) given by
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