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Single-quantum annihilation of positrons in an atomic field is considered. Numerical calcu-
lations of the differential and total cross sections and the various polarization correlation func-
tions are presented for the K and L shells of a range of elements from Z =47 to Z =92. The
positron wave function is described by a partial-wave expansion in angular momentum eigen-
states, and the interaction of the positron and bound electron with the radiation field is treated
in lowest-order perturbation theory. Numerical programs are constructed for the solution of
the radial part of the positron wave function and for the partial-wave phase shifts and normal-
ization factors in an arbitrary non-Coulomb central potential, and for the evaluation of the dif-
ferential and total cross sections. The effects of screening are included by using the bound-
state wave functions and central potentials predicted by the relativistic Hartree-rock-Slater
atomic model. Screening corrections to the Coulomb K-shell total cross sections are found to
be sizable for large atomic numbers and low positron energy, and the ratio of L- to K-shell
total cross sections is found to be significant for heavy atoms. The angular distributions for
this atomic potential exhibit the sharp forward peak predicted in previous work assuming a
purely Coulombic potential.

I, INTRODUCTION

The existence of single-quantum annihilations
(SQA) has been known for some time. Because of
the difficulty of discriminating SQA radiation from
background, experimental interest has been fo-
cused primarily on detection of the radiation'
and measurement of total cross sections as func-
tions of positron energy and atomic number.

In order for SQA to occur, recoil momentum
must be absorbed by the nucleus, so that the pro-
cess is most probable for states having high charge
densities near the nucleus. For this reason, and
because screening effects were not thought to be
important for the K shell, most previous theoreti-
cal calculations have been concerned only with K-
shell annihilation in a Coulomb potential. After
the early approximate calculations, ' more re-
cent work '~ has made use of relativistic Coulomb
wave functions to evaluate K-shell total cross sec-
tions. K-shell differential cross sections for
heavy atoms have been calculated recently by one
of us, and indicate a behavior in marked contra, st
to the earlier Born-approximation prediction. '

Although Bethe, using the Born approximation,
predicted that higher-shell contributions to the

SQA cross section should be about 16/p that of the
K shell, little attempt has been made to evaluate
the higher-shell contributions, except for the re-
cent calculation for the L,, shell by Sheth and

Swamy. ' This is presumably due to the com-
plexity of screening effects, which are expected
to be important for these shells. Actually, it is
found in this work that even for the E-shell, screen-
ing effects are important for low positron energy.
Screening introduces two competing influences on

SQA, one being the reduction of the effective nu-
clear charge, tending to reduce the cross section,
the other being an inhibition of the Coulomb repul-
sion of the positron, tending to increase the cross
section. In order to obtain a more reliable esti-
mate of K-shell total cross sections than are pre-
dicted by a pure Coulomb potential, and to obtain
a meaningful estimate of the relative importance
of the screened L-shell contributions, K- and L-
shell differential and total cross sections are cal-
culated for several atoms and energies. This also
serves as a check whether the sharp forward peak
in the differential cross section for heavy atoms
predicted earlier" is characteristic of only the
Coulomb potential, or of any central potential.
Screening is introduced by using the numerical
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central potentials and bound-state wave functions
predicted by the self-consistent, relativistic Har-
tree-Fock-Slater (RHFS) atomic model.

The positron's spin angular momentum is corre-
lated with the polarization of the emitted photon.
The correlation of the asymmetry of an unpolarized
photon beam with the polarization of a positron
beam in a direction perpendicular to the scattering
plane has been discussed in a previous paper. "
This correlation is extended to the L shell here.
It is found here that there exists a correlation of
positron helicity with left-right circular polariza-
tion of the emitted photon. Since for the K, L„
and L» shells the correlation is complete in the
forward direction, where the peak of the angular
distribution occurs for heavy atoms, it is sug-
gested that SQA could be used as a technique to
generate circularly polarized photon beams. The
formulas for all nonzero correlations are given,
and plots of the numerical results are reported
for the correlations mentioned above.

Since SQA is a fundamental electromagnetic
process, it is reasonable to expect that the degree
of refinement of analysis should parallel that of,
for example, the atomic photoeffect, in which
higher shell contributions, ' the effects of screen-
ing, ' ' and polarization correlations' have been
studied extensively. It is with this in mind that
the present study was undertaken.

II. GENERAL FORMALISM

A. Differential Cross Section

The differential cross section for SQA is given
by

dg Q LEE

and

A(x) = 8 8'"'

-
(O

ir't~

where o, are the 2X2 Pauli spin matrices. The
momentum four vector of the positron is denoted
by p = (p, iZ). The differential cross section in
Eq. (1) will be summed over all magnetic sub-

with

Tf( J d x v~~ (x) a A*(x)ue (x)

In the amplitude T«, v»(x), and us(x) represent
the four-component wave functions for the positron
and bound-state electron, respectively. A(x) is
the spatial part of the wave function for an emit-
ted photon having energy-momentum four vector
k, = (k, i~) (natural units are used throughout) and
unit polarization vector E:

states of an atomic subshell, but the positron
spin and photon polarization will be arbitrary.

B. Bound-State Wave Functions

The bound-state wave function ue(x) is described
by the four-component spinor

Here, n~ is the principal quantum number and Kg,

me define the angular momentum state. (The sub-
script B will denote bound-state quantum numbers).

The explicit form of 0„ in terms of the Pauli
spinors X), is

fl. (r)=+)&(1~2j'm —X) ~)X) I i "(r)

where v is related to j and l by

z= w(j+ —,') for j=l+-,',

(5)

and where C(l„ l2, l~; m&, mz ) is the Clebsch-Gor-
dan coefficient according to the phase convention
of Rose. ' The function u„„ is normalized so
that

J"r (g„„+f„„)dr= 1,
and is a solution to the Dirac equation in a central
potential V(r):

[ o.' p+ mP+ (Vr)] „u„= Eu„„„

' +'--')f [E m V(r))g„=o.dy y

C. Positron Wave Functions

The wave function v~„used to describe an inci-
dent positron of momentum p and spin projection
v in the rest frame, which asymptotically ap-
proaches a plane wave plus an outgoing spherical
wave, is

~&,(r) = 4~& (-1)""'(&.'.(p) X,) (- i)' '

, (f.(r)fl .(r)-
x 8 " (10)

(—ig„(r)Q„(r)f
and is obtained from the corresponding partial-
wave decomposition of a continuum electron with
momentum P„= (p, iE) and spin v by the familiar
charge conjugation procedure. ' If V(r) is some
arbitrary central potential, f„and g„of Eq. (10)
are then radial functions for an electron described
by p and v, and are solutions to Eq. (9) with V(r)

Equation (8) reduces to two coupled first-order dif-
ferential equations in x:

dg„1+K g„
dr

" + "+ [8+m —V(r)jf„= 0,
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replaced by —V(r). Likewise, the phase shifts
5„' are those for an electron in a potential —V(r),
and are given by

5„' = 5„+ 2(l+ 1) ((, 5„'= 0 for V(r)=0.

E+ m " cos(pr+ 5„')
2E pr

E —m '~ sin(pr+ 5'„)
2E pr

pr-~ .

(12)

D. Potentials

The normalization of the radial functions g„and f„
are such that their asymptotic forms are given by

Y.~~(r)= & C(LI~;I- ~, ~) Yi "(r)X. , (18)

where the X, are unit vectors in a spherical ba-
sis. j~(~) is the spherical Bessel function of
order Z. The Y~„'(r) are constructed as linear
combinations of Yzz.„(r) in such a way that they
are transverse for X= 0, 1. The C~M" terms are
classified as magnetic and electric multipoles,
respectively.

F. Form of Matrix Element

With the radiation field expressed in the form of
E(I. (15), the matrix element of E(l. (2) is written
as a sum of multipole contributions:

The central potentials used in the solution of
E(I. (9) are those furnished by the RHFS atomic
model, ' ' in which electron-electron interactions
are treated in lowest-order perturbation theory.
If retardation effects are neglected, the potentials
are given in the form

T ()()

J'M)t

~g((*= z(( f d & ((,()me(x) o"&a~( ) ()l( )

Def ining the radial integrals

(19)

V», ——(oZ/r)+ V (r) V'(r) . (13)

V (r)= —
l n(r') dr'+rg) c( ", ,

"" dr'n(r')

~0

(14)

n(r) =Z„(2j„+1)r(g„+f„),
where the summation in the last equation is over
all occupied subshells.

E. Radiation Field

Here V is the average of the exchange-interac-
tion term over all filled subshells according to
the technique of Slater, ' and

f....=e""f, r'«f. (r)f.,(r)j.(~),

K„„e~=e
"~

fo r dr g„(r)g„e(r)j ~(~),
(20)

+ J(J+ 1 —K —K(()I„„e~„
—(J ~ 1) (J —(( —(((()K„„

J(J+ 1+ ((+—((e)K„,„,]

where the partial-wave phase shifts 5„' hand the
functions f„, g„are those of expansion (10), and

defining the linear combinations

(21a)

(1) 1 18„'„') ~ = — [(8+ 1)(J'+ ((+ (((()I„„~""B 2(J+ 1 K —KB

The radiation field in E(I. (2) is treated in the
form of an expansion in electric and magnetic
multipoles:

1

A(r)= Z Q C',„A",„(r) (15)

the various multipole contributions of the matrix
element (19) become

T(x) 4 ( 1)s-l/2+I(1/[g(d 1)]]lisC(x)g

x 5 Xt, Q„(p)i'
with

C~„=4(n Y~„(k) ~ e,
A'J((= j ~(An') Y~zu(r),

(15)

(17a)

(x)X ((( —(((l )I„~ .„l~ »R«() Z . ) (22)

with K1 =+ K —K for X= 0, 1, and the factor I
1 1', zM

given by
1/2

l((()r) YJ, g-l, (((r)28+1
1/2

(~) Yz, z+l, (((r) (17b)

(2Z+))(2)+ () )"'
elm((hami zN 4 (2

.
1

xll(~, C(jJj, ; ,'0) C(jJj, ;mM—m ), (23)

The functions Y«n(r) are the vector spherical
harmonics as defined by Akhiezer and Berestet-
skii. In terms of angular momentum coupling
coefficients, the F«M have the form

where ll, z, —1, 0 for (l+ 4+ fl) even or odd, re-
spectively.

The matrix element T&; is most easily reduced
in a coordinate system in which k defines the polar



1696 BRODA AND JOHNSON

e xl+e(1) (-1) (24)

with le "I + le' "
l = 1, e'"' being the contravar-

iant components of & in the spherical basis defined

by X0, X„.' The amplitude Tz, for a given bound

state ~» IB is then given by

z axis and k &&p the y axis, so that the photon polar-
ization unit vector has the expansion,

(1)+
G (-1)+

s-1/2
(Tf i)se &me ( ) X-& (1)+ ~ (-1)+

. g, e —I' e

with

"BmB

(26)

~(X) 2J+1 1

[d( 1 ))(/g [2
~ )gg2 1

+ C (eTlel ' 01)Q f (g Ic(()
f(.B,mB

'+1- ' -X ~ 1/2 ~ ~ 1 ( X)X (- 1)"'e '(2j + 1)"'C (jJj e; ,'0) R„'„'~~—ll(,~ ( (2V)

Here, la=i(~), l, =l'((()=l((() —sign(~). Also,

.B,mB

I C(f-,'j;m, ——,'~1, —.')y (p)"e-'&"'
(28)

Equations (26)-(28) define the amplitudes G, an(]

I, in terms of radial integrals R„'„' ~ and spherical
harmonics.

G. Polarization Correlations

The polarization properties of the emitted pho-
ton in SQA can be described completely by the
polarization density matrix p:

(29)

where a, are the expansion coefficients for the
unit polarization vector & subject to the normal-
ization requirement Ia1 l + la2l =1. If E is ex-
panded in the spherical basis of Eq. (24), a, =e"'
and a2=e' ". The matrix p can be expressed in
terms of the familiar Stokes parameters f;:

3

p= (1+~ ~'o )

where o, are the Pauli spin matrices, and $; are
given by

$~= Tro~p .

Since it can be shown that a photon that is com-
pletely right (left) circularly polarized is de-
scribed by a polarization vector for which le"'

I

(I e' "
I

= 1), ' the quantity g, = Ie"'
I

—
I
e' "

I

completely defines the left (right) circular polar-
ization of the emitted photon. It is also possible
to show that (1 is a measure of the degree of
transverse polarization along some appropriately
chosen axis, and that g~ is a measure of the de-

gree of polarization along an axis forming a 45
angle with the axis defined by $, .

In terms of the Stokes parameters, the differ-
ential cross section for SQA can be put into the
form used by Pratt et al. ' in their study of the
atomic photoeff ect:

d0'

dQ i, y=0
(31)

G (-I(()= (-1) ' (((((/I" l)&~(ms) ~

F,( m)=(-1)" "-((( /I(( I)G,(m ),
(32)

the SQA differential cross section is given by Eq.
(31), and

0'0 = e(E co/(Tp

B-= ~ (IG.I'+ &. I'+ IG-I'+ I+-I')-, .;
mB&0

Bo~= —2lm Z (G,E~+G E*) e,„~,
mB&0

B,o-——2 Re E (G,G*+F,E*)
mB&0

with f0=go= 1, and the q~ are the components of
the positron spin in a coordinate system in which

p defines the z axis and kxp the y axis.
The quantity of interest in this paper is the dif-

ferential cross section for annihilation with all
bound electrons in a filled subshell. Making use
of the symmetry relations for the amplitudes- G, ,
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B,2=2Im Q (F.G~ —G, W)
mB &0

Bz, =2cos8 Im Z (F G~+G F.*)
mB&0

—2sin8Im Z (F.F*—G.G*),.e, (33)
B&0

Bz = 2 sin8 Im Z (F G.*+G F,")i e,.e
mB&0

+2cos&Im Q (F.F*-G,G*)„
mB&0

Bz&—- 2cos8Re Z (G F*—G, F,*)„

-»n8 ~ (IG-I'+ IF.I'- IF-I'- IG. I'). .. ,
mB &0

values of g„„and f for all occupied bound states,
the binding energies of all such states, and the
numerical values of three potential terms of Eq.
(13). In all numerical work, the potential was
parametrized in a Coulomb-like form

V(x) = —o.Z(r)/x, (38)

the function Z(r) being monotonically decreasing
with x and less rapidly varying for small x than
V(x).

B. Continuum-State Wave Functions

The integration of the continuum functions g„
and f„was begun with a 10-point Lagrange integra-
tion scheme. ' In order that the functions remain
bounded near x= 0, integration for small x was
carried out for G„, F„defined by

Bss=2sin8Re Z (G F*—G,F,*) g„(pr)=~" 'G„(pr), f„(p~)=r" 'F„(pr), (37)

+ cos» (IG-I'+ IF.I'- IF-I'- IG. I').." .
mB&0

with y= [~ —(o.'Z)]'~, with the result that Eqs. (9)
take on the form

Here, 8 is the angle formed by k and p. All other
correlation functions are zero owing to the sym-
metry relations (32). Alternatively, the differen-
tial cross section can be written as

da (do 1
dA I&dQ„,~, 2

dG„(y+~)G„(Z+I) nz(z)
dx x P

dF„(y—~)F„(z—1) nz(~)
dx x p x

(38)

(34)

with C;;=B;&/Bpo. The C;~ have the convenient
property that —1 —C,, —1. The differential cross
section for unpolarized positron and photon beams
is given by (do/dA)„„„= o'OB00.

The total cross sections for unpolarized posi-
tron beams annihilating to give rise to unpolarized
photon beams are given by the simple expression

«'(~&i. ; -'0)(IB'-",.I'lli. i.+ IB!"..I'lli ~«.)

(35)
III. NUMERICAL METHODS

The calculation of the differential and total
cross sections, as well as all polarization corre-
lation effects, is essentially complete once the
radial integrals I„„~and K„„~have been obtained.
Because the potentials are not known analytically
as a function of x, but only numerically, the cal-
culation of all quantities in this section was done
numerically. A point nucleus was assumed
throughout.

A. Bound-State Wave Functions and Potentials

A numerical RHFS program developed by Smith
and Johnson, and later by Feiock, was used.
The program produces as output the numerical

F(0) = 1, G(0) = o Z/(y+g), K&0 (»)
G'(0) = [(Z —1)~ZG(0) —(Z+1)(y+1 —g) F(O)]/(2y+1),

F'(0) = [oZ(Z+I) F(0) +(Z —l)(y+w+I) G(0)j/(2y+1) .
After the first few values of G„and F„were ob-
tained, integration of g„and f„was continued using
a ninth-order predict-correct scheme.

As a test of the accuracy of the starting scheme,
the values obtained for a Coulomb potential for Z
= 0 and Z = 80 were compared with those resulting
from a series expansion for small &, and with the
exact Coulomb wave functions. Differences in both
cases were never found to be in excess of one part
in 10, and nearly all differences were less than
one part in 10 . There is of course a further loss

with x= px, Z(x) ~ 0, and Z in electron mass units.
The potential in Eg. (38), V(y) =+ nZ(r)/x, is the
sum of the nuclear-Coulomb and direct-interaction
terms (nZ/r —V ) of Eq. (13). The exchange term
V is omitted, since the incident positron has no
exchange interaction with atomic electrons.

In order to begin the integration, the boundary
values G„, , F„„(dG/dr)„0, and (dF/d~)„, were
obtained from the standard power series expansion
in y, since for a point nucleus the potential must
be Coulomb-like at small z. Aside from normal-
izations, these values are given by

G(o) =1, F(o) = —nz/(y —~), «0
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of accuracy as the numerical wave functions are
integrated outward from the starting points.

C. Phase Shifts and Normalizations

In contrast to previous work on SQA in which a
pure Coulomb potential was assumed, "exact ana-
lytical expressions for the partial-wave phase shifts
and the normalizations for g„and f„ in Eq. (10) are
not available in this work.

Numerical calculations of these quantities in
non-Coulomb central potentials have been carried
out by Matese and Johnson' and by Schmickley and
Pratt in studies of the atomic photoeffect, and by
Lin, Sherman, and Percus in studying elastic-
electron scattering.

Phase shifts and normalizations were calculated
in this work by parametrizing the functions f„, g„
in a form similar to the asymptotic free-field
limit in Eq. (12):

g+m') &/~
g„(pr) =

2E ~
C„(r)cosp„(pr)/pr2F. )

& —m
f„(pr) = C„(r)sing„(pr)/pr,

(40)

4, (0n) = &nn 'I (& ) f„fn„I,

the values of f„and g„being determined by the
starting Lagrange integration scheme. '

The determination of the asymptotic limit of
n„(pr) was carried out by transforming Q„(pr)
according to

(42)

with p„(pr) = pr+ 6„(r). In the limit as pr —~ and
V(r)- 0, C„(r) const,-and a„(r)- 5„' ——,'(I+1/,
provided V(r)- 0 faster than 1/r. 5„' is then the
phase shift for the partial wave defined by g, and
p„'= 0 for zero scattering potential.

Substitution of Eq. (40) into Eq. (9) yields the
following differential equations for P„and C„:

dQ„ v . E m"——sin2$„+ —V(r) +—V(r) cos2$„—p = 0,
dÃ g p p

(41)
dC„" + —cos2$„+—V(r) sin2$„C„=O .m
dy r "

P

The integration of the first of Eqs. (41), involv-
ing only P„, was begun by utilizing the parametri-
zations of Eq. (40):

f(~) = S[~„~„(&)+B„y„(&)J, (44)

(p, )
j. i(pr)+&. y. i(pr)

j„(pr)+ &„y„(pr)
(45)

Once the constant A„ is determined by integrating
p„(pr) out to some ro sufficiently large that V(ro)
can be taken to be zero, the asymptotic limit of
A„(pr) is obtained from Eq. (45) and the asymptotic
limits

j,(x)- (1/x)sin(x ——,'lm), g ~ 00

y, (x)- —(1/x)cos(x ——,Iv), x- ~ .

Thus

5„' = lim b,„(pr)+—,'(I+1)v = tan A„(pr ). (4V)

The asymptotic limit of C„was obtained from Eq.
(40), the asymptotic limit of g„and f„ in Eq. (40)
being determined by matching at &p with spherical
Bessel functions and using Eq. (46). Since it can
be shown that the asymptotic behavior of a„(pr)
is given by~~ h„(pr) icos(2-pr)/pr +const, pr- ~,
the matching process for 6„(pro) and C„(pro) was
carried out for several points on a cycle of
cos(2pr), yielding an average over the cycle. Such
an averaging was also carried out by Schmickley
and Pratt for phase shifts for the atomic photo-
effect.

As a check on the accuracy of the technique,
phase shifts and normalizations were calculated
for V(r) =0. It is expected that 0„'=0 and C„=1
if E„(0)and G„(0) are normalized correctly. It
was found that l5„'} &10 for }&}~5, }5„'}&10 for
}g}&20, and that }1—C„}&10'for }&}&10 and

}1—C, }&10~ for }g } «20. Another check was
made by comparison with the phase-shift values
computed by Lin, Sherman, and Percus for elas-
tic electron scattering. Typical disagreements
were less than their estimate of error.

From these and other considerations, it is felt
that phase shifts computed by the present tech-
nique are accurate to one part in the fourth deci-
mal place and normalizations to about three parts
in 10.

j,(() and y, (f-) being the spherical Bessel functions
of the first and second kind, respectively. Then
in a region of space for which V(r) =0, the behavior
of Q„(pr) is given by

1dt
tang „=——+——

p y tdr (43)
D. Radial Integrals

so that, for large r where V(r)=0, Eq. (41) yields
the Hicatti-Bessel differential equation in ( =pr.'

d t,+[&' ~(~+1)jf = 0.

The solUtions to this equation are

Spherical Bessel functions in the integrals (20)
were calculated using upward recurrence for ~y
& 5+ —,

' and downward recurrence for &ox& E+ —,', ac-
cording to the technique of Miller. Integration
was carried out using an eleventh-order, closed-
type Newton-Cotes formula. Integrals for a
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typical atom were evaluated for step size of v/20&.
The worst relative differences resulting from dou-
bling step size were 0. 04%.

Considering the various sources of error, rela-
tive errors in the integrals (20) for step sizes used
are felt to be no worse than 0. 1/o, most of the
error being due to normalization constants.

E(mc2) {~) (a) (b)

TABLE II. Screened and unscreened L-shell total
cross sections in millibarns for Z=80. (a) Screened
values from the present calculation. (b) Values for un-
screened Coulomb potential.

IV. RESULTS

A. Total Cross Sections

l. 25 78. 7
150 960

72. 5
102.6

23. 1

29, 7
22. 5
33.2

1.65
2. 87

l. 64
3.24

E-shell total cross sections calculated by the
present method, using BHFS cen'ral potentials, are
listed in Table I, with a comparison with the cross
sections of Johnson ef; gL for a pure Coulomb
potential. The unscreened values for Z=80 were
computed using the methods of Sec. III. As a
test of the accuracy of the method, unscreened
differential and total cross sections for Z='79 and
E =1.5rnc were computed and compared with
Johnson's values, "with agreement to at least five
decimal places. Screening increases the SQA X-
shell total cross sections by several percent for
all energies and atomic numbers considered. For
a given energy, screening corrections to the cross
sections increase with increasing atomic number,
the corrections for E= 1.5mc varying from about
2% for Z=47 to about 8% for Z=90. Screening
effects are also most pronounced for low energy,
for Z=82 the corrections ranging from 3% for Z
= 1.75mc to 23% for E = 1.25mc2.

The relative importance of screening on L-shell
cross sections is indicated in Table II for Z=80.
The Coulomb cross sections listed were computed
by the methods of Sec. III. Screening increases
the L-shell cross sections for E = 1.25mca to a
smaller degree than for the K shell, and actually
decreases them for E= 1. 5mc2.

Table III lists the screened total cross sections
for the three L shells of several atoms. If cr~ is
defined as &g= &z,z+ &gzz+ o gzzz
oz/cr» is a non-negligible ratio that increases with
increasing Z, is practically energy independent
for the range considered, and varies from about
0. 13 for Z =47 to 0. 22 for Z =90. The value for
lead, Z=82, is about 0.20, somewhat higher than

the value 0. 16 predicted by Bethes using the Born
approximation.

Also compared in Table III is the quantity 0~
+o~, calculated here with screening, with the

I
corresponding unscreened value of Sheth and

Swamy. ' The screened values are nearly all
larger than the unscreened values, the difference
being largest for high Z and low positron energy.
Unfortunately, for purposes of comparison, Sheth
and Swamy give cross sections for only. the L,
shell, although, as the screened values indicate,
the L«-shell contribution is of the same order of
magnitude as the L„at least for high-Z elements.
The smallness of the L»z cross section for high
Z, as compared to the L, and L„values, can be
attributed to the relative smallness of the Lzzz
radial functions g„and f„, in the region of small"B B
r, compared to the functions for the L„shell.
For small r, g„and f„behave in a Coulomb po-

B
tential as r" ', with y = [v —(nZ) ]'~ . For Z
=82, y=0. 80 for the L, and L» shells, and y=1.91
for the L„, shell.

B. Differential Cross Sections

Differential cross sections for unpolarized posi-
tron and photon beams (do'/dQ)„, ~, are plotted in

TABLE III. L-shell total cross sections in millibarns.
(a), (b), and (c) screened valuesby present calculation
for Lz, Lzz Lzzz~ respectively. (d) ~@+(T&z by present
methoc?. (e) a@+or according to Sheth and Swamy (Ref.
10). (f) az+oz, +oz, +01, by present method. Energies

2 II III
are in units of mc .

TABLE I. Screened and unscreened K-shell total cross
sections in barns. (a) Results of present calculation.
(b) Values for pure Coulomb potential. Coulomb cross
sections for Z=47; 73, 82, and 90 are from Johnson
et al. (Ref. 9).

l. 25 47
73
82
90

(a)

5. 51
51.0
88. 3

134, 2

(b)

0.652
12.5
27. 4
51.8

(c)

0. 107
0. 999
l. 90
3.24

53, 2
420
693

1013

(e)

51.3
364
t3 72
797

54 0
434
723

1068

E =1.25mc2

0, 0450
0. 315
0, 449
0.492
0. 682

(a)

47 0.0477
73 0. 369
80 0. 546
82 0.605
90 0. 879

0. 0481
0.427
0.669
0. 755
1.182

0.0472
0.407
0. 632
0. 710
1.095

E =1.50mc'

(a)

0. 0446
0. 385
0. 611
0. 693
l. 107

0. 0442
0. 376
0, 595
0. 673
1, 069

E =1.75mc

(a)

1.50 47
73
82
90

1.75 47
73
82
90

5.43
58, 4

109.8
180~ 8

4. 95
51.9
99.6

168.3

0.601
14.9
35. 8
73.4

0, 504
13.7
33.9
71.5

0. 175
1.763
3.29
5.51

0.207
2. 17
3.99
6. 54

53. 5
485
865

1363

49. 6
437
793

1275

53. 6
470
825

1280

50. 1

434
781

1249

54. 3
502
904

1442

50. 3
453
830

1353
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FIG. 1. Diifferential cross sections for S~A
Pb (Z=82)) at incident positron energy E =1, 5nzc .

or Q on

da./d~ in mb/sr is plotted against cos8.

Fig. 1 for Z=82 and E=1.5mc . The angle be-
m iree lons istween positron and photon momentum d t

denoted by 8. The angular distributions for the
K, L andL „shells peak sharply in the forward
direction, in agreement with other recent predic-
tions for the K shell in a Coulomb potential.

Figure 2 compares the K-shell angular distribu-
ions calculated by the present methods for Z

=10, 8=1.5mc with the first Born-approximation
results and the predictions of the recent second-
order Born approximation by Moroi et al. The
maximum occurs away from the forward direction
for this low-Z atom, in sharp contrast to K-shell
annihilation in high-Z atoms a d

'
, an in agreement in

shape with the predictions of the first- and sec-
ond-order Born approximations. The results of
the present method agree fairly well with Moroi's
predictions for most angles as is t bis o e expected
(since screening effects should be small for such
low Z and the smallness of zZ should make the
Moroi expansion a reasonably good approximation).
At extreme forward and backward angles, however,
the Moroi prediction is several orders of magni-
tude smaller than the present prediction (1. 9V ppb/
sr versus 1.34 pb/sr for 8= 0).

An interesting characteristic of the screened
differential cross sections is the shift of the maxi-
mum away from the forward direction for the L„,

gies. pparently,shells for low Z for all energie A
this shift is characteristic of atoms of low Z or of
subshells havi long w electron charge densities near
the nuclear region (e.g. , the L«, subshell). The

IO

I.O-

0 5-

K SHELL

Coo
5-

SHELL

8-
J3

7-
-0.5-

-I 0-
I.O

0

-5-

-0.5 - I.O0.5 0 -0.5 - I.O I.O 0.5 0

I.O- LEISHELL

0 5-

-0.5- -5-

I.O 0.6
I

0.2 0 -0.2 -0.6
cos 8

—I.O
-I.O-

I.O
I I

-I-
0.5 0 -0.5 -I.O I.O 0.5 0 -0.5 -I.O

FIG. 2. E--shell differential cross section for Z =10,
E =1.Gmc . A corn parison of the first and second Born
approximations with the present calculation

FIG. 3. I'olarization correlations C02 and C for Z
=82 at E= l. Gmc2

or
The normalized correlation func-

tions are plotted against cos0 for the K, I. Ie y yy and
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shift can be expected to be more obvious for high-
er M-shell angular distributions.

C. Polarization Correlations

The two polarization correlation functions of
particular interest in this work, C02 and C», are
plotted in Fig. 3 for Z=82 and 8=1.5nzc .

The function Co&(e) correlates the azimuthal
asymmetry of an unpolarized emitted photon beam„
the azimuthal angle being measured from the plane
formed by the positron and photon momenta, to the
polarization of an incoming positron beam in a
direction perpendicular to this plane. The function

C03 vanishes at both forward and backward direc-
tions, as is to be expected from the structure of
the amplitudes G„F, for the K and L shells. It
is noteworthy that for the L„, shell for Z=82 the
function COB is of opposite sign to that for the K,
L, , and L«shells.

It is seen that for the K, L„and L«shells the
function +3 is always +1 in the forward direction,
—1 in the backward direction, as expected from
the form of G, , I",. Thus, photons emitted at 9
=0 by annihilation in one of those shells will have
the same helicity as that of a longitudinally polar-
ized incident positron beam (photons emitted at
8 =180 will have opposite helicity). Thus, SQA
could be of considerable experimental interest,
insofar as it could constitute a method for obtain-
ing circularly polarized photon beams from polar-
ized positron beams. Particularly useful would be
the complete correlation in the forward direction,
where the differential cross section is sharply

spiked for heavy atoms, especially for higher posi-
tron energies, M.d the fact that the cross sections
for these three shells could be expected to be the
main contribution to the over-all atomic cross sec-
tion.

The complete correlation for Q, in the forward
direction does not exist for L»&-shell annihilation,
owing to the fact that the functions 8;, [Eq.. (33)J
are actually summed over ~~ = 2 and m~ = —,'. The
function for this shell is of the form

(833)mp -„1/2+ (833)my =3/2
33

(800)~~ =1/2+ (800)mp =3/2

pxatt has demonstrated that in processes in-.
volving high-energy photons and positrons, the
probability for the outgoing photon, when emitted
in the forward direction to have helicity opposite
to that of the incoming positron is reduced by a
factor I/8 (E is the incident positron energy) com-
pared to the probability for the photon having the
same helicity as the positron, regardless of the
bound state. Thus, as E- ~, the correlation
should become complete in the forward direction.
This tendency was observed in the numerical re-
sults.
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Quadrupo&e Shielding and Antishielding Factors for Several Atomic Ground States
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The atomic shielding or antishielding factor R for the quadrupole hyperfine structure has
been obtained for seven atomic ground states ranging from F2p to Br' . The values of R
were determined by means of the perturbed wave functions v f (nl-l'), as obtained by solving
the inhomogeneous Schrodinger equation for each type of excitation of the core electrons by the
nuclear quadrupole moment Q. The resulting values of R have been listed, together with those
for four atomic states which had been previously investigated. For the atomic ground states
in this region of the Periodic Table, R is generally positive (shielding), and of the order of
+0.1, except for A13p and Ga4p, for which R is negative, because of the antishielding provided
by the 2p —p and 3p p perturbations, respectively. The resulting correction factors C
=1/(1 —R) have been applied to the quadrupole moments of ll nuclear isotopes. We have also
obtained the ionic antishielding factor y„ for the Sc ' ion, y„(Sc ') -=—ll. 2.

I. INTRODUCTION

The yuryose of the present paper is to give the
results of calculations of the quadrupole shielding
(or antishielding) factor' R for several atomic
ground states, ranging from B 2p to Br 4g'. Alto-
gether results will be presented for eleven atomic
states in this region of the Periodic Table. The
results for four of these states have been obtained
yrevjously, '3 namely, for B 2p, Al 3p, Cu 3d 4s,
and Cu 3d' 4p. For the seven additional states, the
present calculations are new; these states consist
of 0 2p, F 2p', C13p', Sc 3d, Fe'3d, Ga 4p,
and Br 4p'. The method of the calculations is en-
tirely similar to that which has been used in pre-
vious papers. ' ' In particular, we used the com-
puter programs which have been described in Ref. 2.

The final results for the values of R and of the
resulting quadrupole moment correction factor C
=1/(I —R) are given in Table VIII. In Sec. II, we
shall describe the calculations of R and of the
associated ionic antishielding factors y„. The
individual terms of 8 and y„ for each case are pre-
sented in Tables I-VII. We shall also discuss the
present results for R, and in particular, the de-
crease of R (i.e. , decrease of shielding) with in-
creasing atomic number Z for the case of the hal-
ogen-atom ground states.

In Sec. III, we apply the correction factors C to

the experimental quadrupole moments Q,„„ofeight
nuclei to obtain corrected values Q„,„. We note
that, in addition, Q, , values have been previously
obtained: (a) for three nuclei, namely, Alav, Cu83,

and Cu~s in Refs. 2 and 2, and (b) for 12 alkali
isotopes from hfs measurements in the excited
np states (see Ref. 4). In Sec. III of the present
paper, the determination of the presently obtained
Q„„values has been combined with that of Q(AI 7),
Q(Cu+), and Q(Cu~'), and the results have been
presented in Table IX, which thus gives the values
of Q„„,for 11 nuclei.

Finally, in Sec. IV we give a brief summary and
general discussion of the present results.

II. CALCULATIONS OF R

As already mentioned in the Introduction, the
calculations of A follow the same lines as in the
work of Befs. 1-5. For the unperturbed wave func-
tions of the core electrons uo, we used in all cases
the Hartree-Fock wave functions obtained by Cle-
menti. ' The effective potential Vo „~ correspond-
ing to these wave functions was obtained by the pro-
cedure previously introduced by the author, namely,

1 d uo l( l + 1)
O, HF O, HF & d 2 2

Qo

where Eo „F is the effective Hartree-Fock energy
eigenvalue and / is the azimuthal quantum number


