Applications to soft-core lattice gases. Consider a lattice system with a nn "soft-core" repulsive potential, the configurational energy for a nn pair being positive but not infinite. We choose as covering sets all nn pairs, the partition function for a pair having the form

$$p_{\alpha} = 1 + z_1 + z_2 + Cz_1z_2$$
, $0 < C < 1$

Again we look for a region M_{α} such that P_{α} cannot vanish for $z_1, z_2 \in M_{\alpha}$. One choice is the exterior of a circle:

$$p_{\alpha} = 1 + z_1 + z_2 + Cz_1z_2$$
, $0 < C < 1$.

$$M_{\alpha} = \{z: |z| \ge |C^{-1}[-1+(1-C)^{1/2}]\}$$
.

For a lattice with coordination number q each site belongs to q covering sets, so the zero-free region for P(z) is the interior of the circle

$$L = (\sim M_{\alpha})^{q} = \{ z : |z| < |C^{-1}[-1 + (1-C)^{1/2}]|^{q} \}$$

and
$$R = |C^{-1}[-1 + (1-C)^{1/2}]|^{q}.^{12}$$

The author thanks Dr. L. K. Runnels of L. S. U. for enlightening discussions on the ideas presented.

PHYSICAL REVIEW A

VOLUME 6, NUMBER 4

OCTOBER 1972

ERRATA

Electron Correlations in the Unified Model for Stark Broadening, H. Capes and D. Voslamber [Phys. Rev. A 5, 2528 (1972)]. Replace ω by $(\omega_0$ $+\omega$) in line 16, column 1, p. 2532; line 17, column 2, p. 2534; the long equation on p. 2534; and line 21, column 1, p. 2534.

Spatial Period of Band Oscillations in the Dielectric Electrohydrodynamical Instability of a Nematic Liquid Crystal, Y. Galerne, G. Durand, and M. Veyssié [Phys. Rev. A 6, 484 (1972)]. On p. 485, Eq. (3) should read

$$\omega_i \tau = (K_{33}/2\eta D) C_i \quad (i = m \text{ or } l)$$
,

and Eq. (4) should read

$$(K_{33} q^2/2\eta)\tau = 0.5 + 0.23\omega\tau$$

$$=(K_{33} q_0^2/2\eta) \tau + 0.23\omega\tau$$
.

On p. 486, line 18 should read $\eta = 0.15 \pm 0.07$ (cgs units) instead of 0.30 ± 0.15 , and line 21 should read $\eta = 0.22 \pm 0.1$ (cgs units) instead of $\eta = 0.45$ $\pm 0.25.$

On p. 486, line 22 should read: "These values of η are close to the one computed from Gähwiller's measurements $(\eta = 0.2)$; the observed *incertainty* on η is partly due to the..."

On p. 486, line 38 should read: "...using Eq. (3), we find $\eta D = 0.15 \times 10^{-7}$.

²T. D. Lee and C. N. Yang, Phys. Rev. <u>87</u>, 410

³M. Suzuki and M. E. Fisher, J. Math. Phys. <u>12</u>, 235 (1971).

⁴D. Ruelle, Phys. Rev. Letters <u>26</u>, 303 (1971).

⁵L. K. Runnels and J. B. Hubbard, J. Stat. Phys. (to be published).

⁶See Statistical Mechanics, edited by T. A. Bak (Benjamin, New York, 1967), p. 108.

⁷For details see Ref. 5.

⁸L. K. Runnels, J. Math. Phys. <u>11</u>, 842 (1970).

⁹O. J. Heilmann and E. H. Lieb, Phys. Rev. Letters $\underline{24},\ 1412$ (1970). $^{10}\mathrm{A}$ proof of this is given in Ref. 5.

¹¹The Groeneveld lower bound is $R_G = [e (2q - 1)]^{-1}$.

¹² For this case $R_G = \{e [1+q(1-C)]\}^{-1}$.