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We have solved the boundary-value problem associated with the electro-optic mode which
appears in a nematic liquid crystal subjected to a dc electric field parallel to the nematic
director. Above a critical voltage, the liquid breaks up into a series of cylindrical lenses
similar to those observed in the Williams domain mode. The dispersion relations for p-
azoxyanisole and p-methoxybenzylidene-p-n-butylaniline were calculated using the known
material constants for these two nematogens. We show that the critical voltage is caused by
the dielectric torque opposed by the bend distortion torque; the critical voltage is not sensi-
tive to the various viscosity parameters nor the conductivities. The dispersion relation at
higher voltages does involve these constants.

I. INTRODUCTION

Electro-optic effects in nematic liquid crystals
(NCL) have been an area of intense study in the
past several years due to their inherent interest
and to the possibility of practical application.
Voile early work had given clear indication of
electro-optic effects, the current activity began
with the work of Williams. ' Williams used what
has become the standard experimental geometry:

a sandwich capacitor with at least one transparent
electrode and a NLC for the thin dielectric layer.
Unless the surfaces of the capacitor are specially
treated, the nematic director will lie in the plane
of the capacitor. In this pe~pendicglar geometry
the director and electric field a,re orthogonal.
Williams found that when the NLC was subjected
to a dc electric field, it exhibited a visible line
texture which has since become known as the
Williams dome, in mode (WDM). Heilmeier, Zanoni,
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FIG. 1. Model of the director distortion pattern con-
sistent with the homeotropic boundary conditions
(V+ V~). The NLC is confined between two transparent
electrodes at g =y~d, where d is the capacitor thick-
ness. The arrows in the figure represent the orientation
of the director n at the position of the arrow. The angle
the director makes with respect to the g direction is
8- 8&e+~ The .pattern has a wavelength of &=2~/q„ in
the x direction. The x direction has been defined by
rubbing the capacitor plates. Due to the anisotropy of
the index of refraction associated with the NLC, this
pattern can be thought of as a series of cylindrical
lenses, the axes of the cylinders being parallel to the
figure, i.e. , the y direction. The center of the director
pattern represents an optical-path maximum. If light
is directed at the samp1. e from below and observed from
above, there will be a real image formed over the cen-
ter of this pattern. The edges of the pattern are an op-
tical-path minimum and virtual images will be formed
below the samples. These line images are shown in
cross section in the figure, and have been labeled as do-
main lines in analogy to the WDM. The solution of the
theoretical problem is a prediction of g as a function of
the applied voltage. The figure is drawn circular,
7t d/g = 2'7t, although in general the distortions are elll.ipti-
cal.

and Barton demonstrated the device capability of
the perpendicular geometry. At higher voltages
the line texture becomes very time dependent,
leading to strong light scattering. This turbulent
regime has become known as the dynamic-scatter-
ing mode (DSM). A third mode has been observed
using the perpendicular geometry in very thin (5-
p. m) samples. Greubel and Wolff' report that for
such thin samples the density of the line texture
increases linearly with voltage. Since the domain
line spacing is in the right region for diffraction
of visible light, this mode corresponds to a voltage
variable-diffraction grating. We have suggested
the name variable-grating mode (VGM) to describe
this phenomenon. 4 Vistin' has also reported ob-
serving similar effects in the perpendicular geom-
etry.

It is possible to prepare samples where the
nematic director lies perpendicular to the surface
of the capacitor. Greubel and Wolff' report
achieving this result by coating the surface with
lecithin. Thus the director and the electric field
are parallel in this configuration which we will
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FIG. 2. Model of the Quid streamline pattern con-
sistent with the homeotropic geometry (V& V~). We ex-
pect that there will be vortex motion similar to that ob-
served in the WDM. Adjacent vortices will have anti-
parallel vorticity. The vortex motion has the same wave-
length as the lens distortion. The centers of the vortex
motion will be directly under the real images, just the
opposite from the WDM where the virtual images are un-
der the centers of the vortex motion. It is shown in the
paper that the critical voltage is strictly an electrostatic
phenomenon. Thus it may be difficult to observe fluid
motion, i.e. , entropy production, close to threshold.

refer to as the parallel geometry. Schiekel and
Fahrenschon report obtaining this homeotropic
geometry by special electrode-cleaning methods.
The response of a homeotropic sample to an elec-
tric field is an experimental feature which seems
to depend on sample conductivity and driving fre-
quency. Greubel and Wolff report that a dc elec-
tric field produces a stable Williams domain tex-
ture at a critical voltage. Schiekel and Fahren-
schon report that ac electric fields produce a
constant deformation texture followed by the DSM
at higher voltages, depending on frequency and
conductivity. They have referred to the constant
texture as the DAP mode. Others have ob-
served a. constant deformation texture followed by
a stable domain texture, again depending on fre-
quency and conductivity. We suggest that the do-
main texture associated with the homeotropic
geometry be named the homeotropic domain mode
(HDM) in analogy with the WDM terminology.

II. THEORETICAL MODEL

We intend to discuss the HDM in a manner
analogous to our treatment of the WDM/VGM. Q

We assume that the reader is familiar with Ref. 9
or is somewhat conversant with electrohydrody-
namics. We approximate the three-dimensional
problem by assuming a two-dimensional model for
the spatial distribution of the director (Fig. l) and
the fluid flow lines (Fig. 2). The capacitor is
shown in cross section, the z direction being that
of the applied electric field and the initial direction
of the undisturbed NLC. The appearance of uni-
form domain lines indicates that the sample dis-
torts into the spatial distributions shown in Figs.
1 and 2. The x direction is defined by the director
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as it tips from the g direction, ' this ean be pro-
moted by rubbing the surfaces of the electrodes. '
The domain lines are assumed to run for long
distances in the y or third perpendicular direction.
The tipping angle is measured by 8 as shown in
Fig. 1.

The forces and torques involved in the theoretical
problem have been discussed by Helfrich. ' The
fluid motion is a direct result of the anisotropic
conductivity tensor associated with the NLC. o,
and cr„will be the Ohmic conductivities perpendic-
ular and parallel to the director, respectively. A
director pattern such as indicated in Fig. 1 will
produce a net space charge which in turn can pro-
duce a local stress. The liquid crystal resists the
electromechanical stress with a viscous shear
stress associated with the shear-strain pattern
indicated in Fig. 2. The viscosities q& and q2de-
scribe the anisotropic shear stress associated with
strain rates when the flow is parallel and perpen-
dicular to the director, respectively. There are
several torques acting to turn the director. The shear
flow produces a shear torque unique to liquid-
crystal systems. The shear-torque "viscosities"
n2 and n3 describe the constitutive relationship
between the torque and strain rates. @2+ n3 relates
torque and the fluid motion; n3 —a2 relates torque
and director rotation relative to fluid vorticity.
There are elastic torques associated with splay and
bend distortions of the director, described by the
elastic coefficients k» and k», respectively. Final-
ly, there is the electric torque associated with the
anisotropic conductivity and dielectric constant
tensors. e, and e„are the dielectric constants
perpendicular and parallel to the director, re-
spectively. This eleetrohydrodynamic formulation
of the electro-optic effects in NLC was first
pioneered by Helfrich. ' He identified the relevant
physical parameters, and this paper should be
regarded as an extension of his work to the solu-
tion of the boundary-value problem.

III. EQUATIONS OF MOTION IN INFINITE MEDIUM

The force, torque, and mass continuity equation
have been discussed extensively in Ref. 9. The

electric ponderomotive forces are represented by
the Maxwell stress tensor, and the fluid equations
follow the Leslie approach. " The electric fields
are described by Maxwell's equations. The com-
plete set of fluid-field equations involve several
nonlinear terms. We have linearized the problem
by the standard mathematical technique of con-
sidering small amplitude oscillations about the un-
perturbed state. Since the infinite medium prob-
lem is translationally invariant, the normal modes
of the linear problem can be expected to be de-
scribed by plane-wave functions: e" ', where
q= (q„, 0, q,). The wave vector j is assumed not
to have a component in the y direction since we
will not discuss spatial variation in this direction.
The Ma~ell stress tensor is derived using a di-
rector of the form n= (-8~ e"', 0, 1) and an elec-
tric field of the form

E= (0, 0, 1)E +(1, 0, S)E,e"',
where S=q, /q„. Note that VxE =0 and!nl= 1 to
first order in 81. The fluid-stress tensor is de-
rived using a pressure of the form p =po+ pie" '
and a velocity of the form 0= (-S, 0, 1)vie"'. We
assume steady-state conditions. Together with
the linearity assumption, this means that all con-
vective time derivatives are set equal to zero.
The mass continuity equation reduces to V' ~ v =Q,
which can be seen to be true for the assumed
velocity distribution; we are treating an incom-
pressible fluid. We also assume that no tempera-
ture gradients are present, electrostriction effects
are absent, and the gravitational potential is zero.
The Leslie viscosity coefficient al is assumed to
be zero. The remaining constitutive parameters
discussed in Sec. II have been measured experi-
mentally and are given in Table I for P-azoxyanis-
ole (PAA) and p'-methoxy-benzylidene-p-n-bu-
tylaniline (MBBA).

The infinite-medium problem reduces to a series
of four line r homogeneous equations involving
the amplitudes v&, El, 6&, and pl. These equations
can be solved only if the associated determinant is
zero:

p (gs~ ()(~e~~4 ni ~
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TABLE I. Experimental values of the material con-
stants used for the calculating.

k33

E~

Qf

Q2

Q3

Cr,/fr,

MBSA (25 C}

6.10 10" N

7.25 x 10 12 N

4. 72'
s.25'

23. 8 x 10 3 kg m 1

103.5 x 10"3 kg m I

—77.5x10 3 kgm ~

-1.2x10 3 kgm 1

1.5

lesec I

sec I
Iesec I

sec 1

PAA

7 X1p-12 Nb

17 X10-&2 Nb

5. 83
1.5x 10 3 kg m I sec 1

86x 10 kg m sec
-6.4x 10 kg m sec
—0.6x 10 kg m sec"

1.sg (estimate}

120 'C
120 'C
120'C
120'C
125 'C
125'C
125'C
125 'C

aReference 12.
Reference 13. ,

'Reference 14.
~Reference 15.

Reference 16.
Reference 17.

IReference 18.

IV. BOUNDARY-VALUE PROBLEM

We have used a rationalized system of mks units,
and so the permittivity of free space, &0, enters
this infinite -medium dispersion relation. Equation
(1) is an eighth-order algebraic equation in S with
a parameter Eo/q„. In general there are eight
solutions to such an equation; two solutions S = si
are readily apparent. Thus we expect to have
eight possible plane-wave states for each Eo/q„.
Helfrich's solution corresponds exactly to the limit
of Eq. (1) as S goes to zero. (It should be re-
membered that Helfrich's treatment interchanged
the standard definitions of q, and qz. )

fluid flow parallel to the plates must be zero at the
plates to avoid infinite viscous loss, and thus
v„(z =+ z d) = 0. Since the capacitor plates are good
conductors relative to the liquid crystal, the elec-
tric field can have no x component at the plates:
E„(z= +~d) = 0. Finally, we assume that the sur-
face treatment has been such to constrain the
molecules to lie perpendicular to the surface. For
the HDM, n„(z=szd) =0. In a previous paper, ~

we have treated the complementary boundary con-
dition, i.e. , the director constrained to lie in the
plane of the capacitor faces.

The problem we are considering is bounded only
in the z direction. From symmetry considera-
tions, we expect the normal modes of the bounded
problem to still be plane waves with respect to
their x dependence, i.e. , of the form f (z)e"»'.
The functions f„, representing the z dependence
of v„, v„n„, and E„, must have the symmetry of
the boundary conditions. We form linear combina-
tions of the eight infinite-medium solutions to
achieve the constraints put on the problem by the
eight boundary conditions in the z direction.

We note that the boundary conditions are sym-
metric about z = 0 and that the values of S come
in a pairs [Eq. (1) is a quadratic equation in S j.
The boundary-value problem can thus be separated
into two complementary problems (each involving
only four boundary conditions) with sine and cosine
functions of z. For instance, the two components
of velocity at the boundary can be described by

The infinite-medium dispersion relation has
shown that there is a continuum of wave vectors
q„which solve the equations of motion. For a
given q„and Ep, there are eight possible values of
q, . The imposition of boundary conditions on a
harmonic problem possessing a continuous spec-
trum usually produces a discrete pattern of normal
modes. We now introduce boundary conditions
and show that for a given voltage V0 and a sample
thickness d, the spectrum of q„ is discrete.

There are four physical requirements for the
distortion amplitudes at each electrode, i.e. ,
eight boundary conditions. The fluid must remain
inside the capacitor, and thus, v, (z = a z d) = 0. The

4
te„x ~ &v

& cosS y
)=1

0
iq„x~ g

OX 8 ~ V1 sin
y=a

where q=-2q„d and v& are amplitudes to be deter-
mined by the boundary conditions. The other
three physical variables can be similarly con-
structed from sine and cosine functions, the coef-
ficients always involving the four unknown ampli-
tudes v, . The boundary-value problem reduces
to two sets of linear homogeneous equations in-
volving the amplitudes v&. Naturally, such a set
of equations can only be solved if the determinant
is equal to zero. We reproduce one of the two
boundary-value determinants (BVD) below:

cosS1@,
Si slnS1

M, cosS1@
Mi@1 cosS1@

cosS2+
S2sinS2q

M 2 cosS2cp

M2N2 cosS2y

cosSS@
s3sinS, q

M3 cosS3@
M, N, cosS3@

cosS4@
S4 s111S4+

M4cosS4 y
M 4%4 cosS4y

(2)

where
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FIG. 3. Computer calculation of the normal-mode
structure of MBBA at 25 C. The curves in the figure
are the only points in the vd/$ Vp plane for which Eqs.
(1) and (2) or its dual equation are simultaneously satis-
fied. The phase factor &d/& is discrete at any given ap-
plied voltage Vo There is a critical voltage of 3.98 V
for HDM. It is shown in the paper that this critical
voltage can be well approximated by the formula V~
=3.21 [k33/eo(c& —r~~)] except near e~ =e„. The distor-
tion begins at infinite wavelength and the pattern be-
comes circular at about 7 V. At still higher voltages,
the pattern becomes elongated in the z direction. It can
be seen that another mode becomes possible at 8 V.
This mode results from the simultaneous solution of Eq.
(1) and the dual of Eq. (2). Physically it represents two

layers of vortex/lens distortions. It is argued in the
text that turbulence may be expected at 8 V due to the
interference of the single- and double-layered solutions.
The dispersion curves of three-, four-, and five-layer
patterns are also shown. The experimental values of the
physical constants used in the calculation are given in
Table I. While the critical voltage is an electrostatic
phenomenon, the detailed shape of the dispersion curves
above threshold has been shown to depend upon g,

~
/0~,

k jf/ksq ~ and n&/n2 ~ It should be emphasized that there
are no undetermined constants in this theory to be ad-
justed to fit experiments. Nonlinear and time-depen-
dent effects might cause quantitative differences be-
tween experiments and this linear steady-state theory.

will not solve the problem. A systematic search
of the Vo, y plane is performed numerically. The
values of Vo and y for which either BVD is zero
are given in Fig. 3 for MBBA and in Fig. 4 for
PAA. For a more complete discussion of the
general method, we refer the reader to Ref. 9.

V. NUMERICAL SOLUTIONS

The "disyersion relations " describing the
normal modes of the MBBA and PAA systems are
shown in Figs. 3 and 4, respectively. The mate-
rial constants used in the calculations are given in
Table I. Several qualitative features are common
to both figures. There are a series of dispersion
curves, each beginning at a critical voltage. Below
4 V, no distortions in the homeotropic texture
will occur. At 4 V, a distortion with zero-phase
factor becomes possible. The zero-phase factor
corresponds to an infinite wavelength, i.e. , a
uniform spatial texture. We interpret this thresh-
old behavior as being responsible for the observa-
tion of Schiekel and Fahrenschorn. As the voltage
across the sample is increased, the wavelength of
the pattern decreases so that a line texture should
become observable. The vortex structure will be
circular at roughly 7 V. Greubel and Wolff' have
reported such a line texture when an electric field
is applied to the homeotropic geometry. As the
voltage is further increased, the cell structure
will again be elliptical with the semiminor axis in
the x direction. Since the wavelength depends on
voltage, the HDM possesses the same tunable-
grating possibility as has been observed in the
VGM.

lo

g 4—

The complementary BVD is obtained by interchang-
ing since and cosines in Eq. (2). The boundary-
value problem is solved for those values of Vo, d,
and q, for which both Eels. (1) and (2) (or the com-
plementary BVD) are solved.

The actual solution of the problem must be done
numerically. We will give only a brief discussion
of the method. Copies of the program can be ob-
tained byreciuest. We note thatEg. (1) involves afunc-
tion of the ratio Eo/q„= Vo/2y. We chose a value
for Vo and y. The four values of S are determined
and the BVD is evaluated. In general, the BVD
will not be zero, i.e. , a general Vo, y combination

0
0 24 36 48

Vo(vo I ts)
60 72 84

FIG. 4. Computer calculation of the normal-mode
structure of PAA near 125'C (see Table I for the phys-
ical constants). The general nature of the solutions is
similar to the features discussed in Fig. 3. The modes
for one, two, three, five, seven, and nine layers of
vortex/lens patterns are shown. The four, six, and eight
modes have been omitted for clarity. It can be seen
that the one and two modes become multivalued functions
of Vo. The significance of this fact is not known.
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Some care must be taken when comparing these
calculations with experiment. First of all, we
have assumed that the director is rigidly oriented
perpendicular to the surfaces at the surfaces, even
in the presence of the electric field. The physical
reality may be somewhat different. Most experi-
ments are performed with ac voltages in order to
avoid chemical polarization effects at the elec-
trodes. " The calculations are done assuming a
dc voltage, although the results should be applica-
ble to low-frequency measurements. The electri-

. cal stresses are quadratic in the field strength '"
and a net rms stress is produced. The .effect of
frequency changes on the detailed shape of the dis-
persion relations remains to be determined. Final-
ly, the calculations were performed using a lin-
earized theory. Above threshold, nonlinear terms
will determine the amplitude of the distortion.
The linearized dispersion relations in Figs. 3 and
4 are expected to change somewhat as nonlinear
effects are included. Experiments have shown the
linear approximation to be fairly good in the
WDM. It remains to be seen how well the ap-
proach will work in the HDM.

Figure 3 shows that another MBBA dispersion
relation beings at 8 V. Computer investigation of
the velocity profiles reveals that this branch cor-
responds to two layers of vortex motion. Each
higher solution, at roughly an integer multiple of
the single-layer threshold voltage, describes a
pattern containing one additional vortex/lens lay-
er. Figure 3 shows dispersion curves for five
vortex layers.

The phase factor wd/X is the ordinate for both
Figs. 3 and 4. As the sample thickness changes,
the wavelength associated with the pattern at a
given voltage will follow linearly. This behavior
is well established for the WDM and should be
easily verified for this mode. It should also be
noted that in Fig. 2 the top domain lines are over
the centers of the vortex motion. Exactly the
opposite is observed for the WDM. This predic-
tion should also be easily verified. The reason
for the difference between the two geometries re-
garding the domian positions is the interchange of
the indices of refraction in the formula describing
the optical-path length. '

Figure 3 shows that at 9 V both single and double
layers of vortices simultaneously satisfy the
boundary-value problem for MBBA. Our analysis
has been a steady-state linear treatment and so
we cannot predict the relative stability of the two
possible solutions. It is well known in the field of
stability analysis that turbulence may be expected
when a stationary solution has superposed on it a
small perturbation. On such experience we can
base a conjecture that the superposition of the two
layer solution on the one layer solution will lead to

turbulence. There is experimentally observed
turbulence. '

The PAA dispersion curves show considerably
more variety in their patterns than the MBBA
modes. It can be seen in Fig. 4 that the single-
layer solution becomes multivalued at approximate-
ly 18 V. The double-layer solution exhibits a
similar behavior. Figure 4 presents the odd-layer
solutions one-nine; the even layer solutions four-
eight have been suppressed for clarity. As was
stated above, we have not treated the stability
problem and so are not able to discuss rigorously
the influence of the multivalued dispersion rela-
tions for PAA.

It is possible to compute the spatial variation of
the v, E, and 8 fields associated with the normal
modes in Figs. 3 and 4. These computer calcula-
tions confirm the one-, two-, etc. layer nature of
the mode system. The theoretical distributions
are very much like those shown in Fig. 4 of Ref. 9.
We will not, therefore, present such a figure here.

VI. PARAMETER VARIATION

Computer calculations of electrohydrodynamic
effects are not limited to the parameters associated
with any particular physical system. We have
performed -some preliminary evaluation of the
homeotropic mode structure when the various con-
stitutive parameters are systematically varied.
The first feature of the mode system we investi-
gated was the threshold voltage of 3.98 V for
MBBA. To within an accuracy of 0. 1 V, the
threshold voltage is independent of the following
parameters when they are changed by 100% or
more: q&/q~, o.,/g2 Q3/7)2 (TJ /o„, and k, q/@33.
This result implies that the threshold condition
does not involve conduction-induced torque or
fluid motion. The critical voltage can be repre-
sented by the formula

)1/2

(E o(6 x
—6,i)]

The formula does not hold at the isotropic dielec-
tric -constant limit where the computer calculation
reveals a finite threshold voltage of 23 V. For
&, /&„& 1.01, however, the formula does give 1%
accuracy. Calculations show V, becomes arbi-
trarily large for slightly positive dielectric aniso-
tropies (g~/e„&1).

The physical interpretation of the voltage depen-
dence has been known for at least 40 years. ' The
mechanism is a pure dielectric torque due to the
dielectric anisotropy being opposed by an elastic
torque associated with a bend distortion as in Fig.
1. Similar formulas have appeared recently for
the distortion of cholesterics by electric. and mag-
netic fields. '~ The subtle part of the present
problem is to predict again the characteristic
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length in the x direction. The simplicity of the
physical situation makes it possible to argue why
one might expect a periodic distortion. The di-
rector associated with a NLC does not have a posi-
tive or negative sense. Thus the torques at
threshold would equally prefer a positive or nega-
tive 8 in Fig. 1. Nature appears to compensate
for the degeneracy by alternating the sign of 8,
i.e. , by producing a pattern with an x dependence.

The simple form of Eq. (3) can be deduced from
Eq. (1) once the boundary-value problem has been
solved. The numerical analysis reveals that one
of the four values of S~ is a large positive number
(S - 60). Equation (1) can be reduced to a "vol-
tage"-type condition if one assumes that S~ is a
large number:

Eo 2 k33
3. /2—= S -- —,S»1.

qg &o(&i &ii)

This should be eomparedwith Helfrich's "voltage"-
type condition under his assumption that S = 0 was
a good physical approximation to Eq. (1):

ku &o&i + &o(&i &o)
9'x 0],

The two formulas are grossly different in their
physical interpretation. This shows the necessity
for a rigorous solution of the boundary-value
problem if meaningful comparison is to be made
between experiment and theor;y.

Equation (3) is a relationship between an experi-
mentally measurable number, V„and two con-
stitutive constants, k33 and &, -&,. As such, it
offers a measure of the ratio k,o/(e, —e„). This
means that eleetrohydrodynamic phenomena in
NLC are sufficiently well understood to permit
measurements of the associated material con-
stants. There is a wealth of other information in
the dispersion curves, and it might be possible to
measure other material parameters by simply
measuring the line spacing as a function of voltage.
We have found that a variation of o;, /o„k»/k33,
and uo/qo produces a change in the detailed shape
of the dispersion relation above threshold. This
means that some conduction-induced shear is be-
ginning to produce flow. Within a few volts above
threshold, uo/qo and q&/qo have very little influ-
ence on the shape of the dispersion relation. Nat-

urally, a more extensive study of the experimental
and theoretical sensitivities would be necessary to
test the feasibility of such a measurement tech-. .

nique.

VII. REMARKS ON TIME-DEPENDENT PROBLEM

We have discussed the electrohydrodynamic
problem under the assumptions of linea~ity and
steady state. As a result, we cannot make pre-
dictions about the stability of the patterns obtained.
To do this we must treat the time-dependent lin-
earized problem, assuming a time dependence of
the form e '"'. The condition that the boundary-
value determinants vanish then becomes a relation
between ~ and q„, which is to be solved for com-
plex z as a function of real q„. Those values of
q„ for which ~(q„) has a positive imaginary part
correspond to exponentially growing patterns
whose ultimate amplitude will be determined by
nonlinear effects. This means that there is a
possibility for bands of q„VO for which solutions
exist, rather than the line solutions as in Figs. 3
and 4. What we have done in this present paper
is to find the values of q„ for which &o(q„) = 0. Since
the patterns observed experimentally are stationary
and have small amplitudes, "one would expect
they would correspond to the linearized steady-
state solutions we have found. The time-dependent
problem will be the subject of a later paper.

VIII. CONCLUSIONS

We have solved the boundary-value problem as-
sociated with a two-dimensional distortion of a
homeotropic NLC subjected to a dc electric field.
We find that there are HDM solutions correspond-
ing to the WDM/VGM in the director field-perpen-
dicular geometry. The distortions begin at a
critical voltage which is primarily caused by an
electrostatic interaction. Above threshold con-
ductivity effects become noticeable. The distor-
tion pattern begins at infinite wavelength and de-
creases in wavelength as the voltage is increased.
We have shown how experimental measurements
can be used to measure koo/(&, —c„) and indicated
that other parameters may also be obtainable.
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