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The densities at which monolayers of He and Hes on graphite are completed are calculated.
as are their compressibilities. In addition, the binding energy of the first few atoms on the
second layer is obtained.

I. INTRODUCTION

As a result of an intriguing series of experi-
ments performed on monolayer films of helium,
several calculations of the expected properties of
such films have been carried out. Almost without
exception, these calculations are applicable to the
system either in the limit of vanishing densitye ~

(i. e. , calculation of the single-particle bands) or
at densities at which fluid behavior is expected. In
this paper we examine the system at higher den-
sities at which the monolayer is nearing completion
and the second layer begins to form. We calcu-
late the density of a completed monolayer and its
compressibility, estimate its Debye temperature,
and calculate the binding energy of the first few
atoms on the second layer. The particular system
treated is that of helium adsorbed on graphite.

The density at which a monolayer is completed is
the result of competition among several factors,
but the basic physics seems clear. When, at the
absolute zero of temperature, an atom is added to
an existing monolayer, energy is gained owing to
the attractive interactions between the added atom
and the substrate as well as between the atoms in
the monolayer. Were the atom to be added further
from the substrate in an attempt to form a second
layer, less energy would be gained from the two
interactions. The loss would arise from the weak-
er substrate interaction at the larger distance. As
the density of the monolayer increases, less energy
is gained by adding the particle to it, owing to the
enhancement of zero-point energy. Finally, at the
completion density the energy gained by adding an
atom to the monolayer is no longer greater than

that obtained by adding it above the monolayer, and
the second layer begins to form.

From the above description it is clear that what
is needed to calculate the completion density is the
ground-state energy of the monolayer as a function
of density and the minimum energy of a single atom
in the nascent second layer as a function of the den-
sity of the monolayer beneath it. These problems
are addressed in Secs. II and III, respectively.

II. GROUND-STATE ENERGY OF MONOLAYER

The densities of completed monolayers of He4 and
He adsorbed on graphite, calculated from experi-
mental data, are 0. 115 and 0. 107 A, respective-
ly. The corresponding average particle separa-
tions are comparable to those found in bulk solid
helium. It might be expected that the atoms are
well localized in a close-packed triangular array
which, at these densities, is out of registry with
the periodic array of substrate adsorption sites. '
While the method of correlated basis functions' is
well suited for inclusion of the resulting correla-
tion, we chose a simpler approach to the calcula-
tion of the ground-state energy of the system.

We assume that the atoms are, in fact, well lo-
calized laterally in a triangular close-packed ar-
ray and are characterized by a probability distribu-
tion in the z direction, perpendicular to the sub-
strate. This distribution is approximated by that
appropriate to the lowest-energy single-particle
state. The potential energy of this configuration
arises from the helium-helium and helium-sub-
strate interactions, The former contribution is
obtained by introducing an effective potential which
is a function only of the lateral distance p between
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FIG. 1. Chemical potential of monolayer He shown as
a function of density for three values of the hard-core
parameter. The dashed line is the energy of a particle
in the nascent second layer. Marker on abscissa indi-
cates experimental completion density.

atoms:

V„,(p)= f" dz f" dz' V(p, z -z')P(z)P(z'),
where V(p, z -z') is the bare helium-helium poten-
tial, and

P(z)= f dx dy ~g(x, y, z)

where g(x, y, z) is the single-particle wave function
of lowest energy obtained by Hagen, Novaco, and
Milford and the integration is over the normaliza-
tion area.

With the assumption of lateral localization, the
potential energy arising from helium-helium inter-
actions can now be calculated by performing a pla-
nar lattice sum of V,«, which yields a quantity de-
noted V,„. The bare helium-helium potential is
taken to be the Lennard-Jones 6-12 potential

with de Boer-Michels parameters:

e/kz = 10. 22 'K, o' = 2. 56 A.

The kinetic energy of the configuration is divided
into that arising from lateral correlations of the
atoms and a contribution from motion perpendicular
to the substrate. The former contribution is ap-
proximated by using London's method' as adapted
by Campbell and Schick' to a two-dimensional sys-
tem. The kinetic energy is equated to that arising
from the zero-point energy of a system of hard
disks with the same number density as the helium

atoms under consideration. The hard-disk diam-
eter a is chosen to represent the effect of the
strong short-range repulsion present in V,«. The
particular choice of a will be discussed in Sec. III.
The expression which results for this contribution
to the kinetic energy per particle is given by

T/N= —2vS $/(ma (c —$" ) [1n)/c —b(c —g"z]),
where $ (= na ) is equal to the areal density n in
units of a, and b and e are constants equal to
0. 483 and 1.OV, respectively.

The remaining contribution of the energy per par-
ticle of the monolayer comes from the potential
energy of the helium-substrate interaction and the
kinetic energy owing to motion in the z direction.
An estimate of the sum of these two energies which
is consistent with our approximation is simply the
single-particle ground- state energy obtained by
Hagen, Novaco, and Milford, which we denote by
e„. These values are -188 and -181.4 K for
He and He, respectively.

In summary, the energy per particle eo of the
ground state of an adsorbed monolayer of helium
in the high-density, limit is approximated by

ep(n)= V,„gN + T/N+e, y.

Note that the first two terms on the right are den-
sity dependent.

The final aspect of the approximation is that the
periodicity of the substrate is ignored. The valid-
ity of this approximation is enhanced at high den-
sities by the fact that the helium atoms cannot be
in registry with the substrate. As a consequence,
the correlation between atoms will force a nearly
uniform sampling of points in the unit cell.

To calculate the density of a completed monolay-
er, we need only the derivative of the ground-state
energy with respect to particle number, i. e. , the
chemical potential, which may be written

p(n)=eo(n)+n
de 0(n)

This quantity is shown as a function of density for
He in Fig. 1 and He in Fig. 2 for three different
values of the hard-disk parameter a.

The relation between the ground-state energy
and density can also be used to obtain the compres-
sibility. We return to this quantity in Sec. III.

III. MONOLAYER COMPLETION

The density of first monolayer completion, n&, is
that density at which the chemical potential, cal-
culated above, is equal to the energy ez(n) of a sin-
gle particle on the second layer:

An approximation to ez(n) is obtained by solvingthe
single-particle Schrbdinger equation with the poten-
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FIG. 2. Chemical potential of monolayer He3 shown as
a function of density for three values of the hard-core
parameter. The dashed line is the energy of a particle
in the nascent second layer. Marker on abscissa indicates
experimental completion density.

tial provided by the monolayer of density n and the
substrate. Exchange interactions are therefore
ignored, a procedure which is justified a posteriori
by the small overlap of the wave functions of par-
ticles in the first and second layers. In attempting
to calculate the potential seen by an atom on the
second layer, one must consider how the configura-
tion of the atoms in the monolayer appears to the
atom on the second layer, i. e. , what are the rela-
tive vibrational frequencies in the two parts of the
system. If the monolayer appears ta be stationary,
then the potential arising from it will depend on
both the lateral and z coordinates of the second-
layer atom and will be given by

W(p, z)=Q f dz' V(p —p, z —z')P(z'),

where j runs over the triangular lattice of the first
layer. The uniform substrate potential is then
added to this to obtain the total potential seen by
an atom in the second layer.

The opposite extreme occurs if the characteris-
tic frequencies of the atoms in the monolayer are
much greater than that of the second-layer atom.
In this case, the first layer of helium atoms may
be replaced by a layer which is uniform laterally
and which has density n. The potential arisingfrom
such a layer is independent of p and is given by

W'(z)=n f dp' f dz' V(p —p', z z')P(z') . —

As above, this potential is added to that arising
from the substrate to obtain the total potential. The
result is shown in Fig. 3 for a density of 0. 12 A
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FIG. 3. Potential caused by graphite substrate and
layer of helium atoms at a density of 0.12 L t.

In order to determine the sensitivity of the mono-
layer completion density to the choice between the
two potentials above, the calculation of ea(n) was
carried out for several densities using each poten-
tial. The use of W(p, z) necessitates methods pre-
viously used to find the eigenstates and eigenvalues
of a helium atom adsorbed on a rare-gas-plated
substrate. For the ground-state energy, this in-
volves expanding the true ground state in plane
waves in the lateral coordinates and Morse func-
tions in z. A 1% accuracy was obtained by using
seven plane waves and five Morse functions. The
calculation employing the potential W'(z) is much
simpler as it only involves solving a one-dimen-
sional Schrodinger equation. The values of e, (n)
obtained via this latter method are shown by the
dashed line in Figs. 1 and 2 for He and He, re-
spectively. The values of e, (n) which result from
the former method differ from those shown by an
amount between 1/q and 10% for densities in the
range from 0. 10 to 0. 12 A . An examination of
Fig. 1 or Fig. 2 shows that such a difference makes
only a very small (less than 2%) change in the den-
sity of monolayer completion, owing to the large
derivative of the chemical potential with respect to
density. In fact, this large derivative makes the
monolayer completion density practically insen-
sitive to a quantum-mechanical calculation of et(n).
The completion density is bounded from above by
that density at which the chemical potential be-
comes positive and from below by that density at
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which the chemical potential is equal to the classi-
cal value of ea(n), the minimum of the potential en-
ergy which varies with density. This simple argu-
ment provides the following bounds for He com-
pletion density n, for a choice of hard-core diam-
eter equal to 2. 35 A: 0. 1125 A &nq & 0. 1185 A

From Figs. 1 and 2 it can be seen that a choice
of hard-core diameter of 2. 35 A gives monolayer
completion densities which are quite close to the
experimentally determined values of 0. 115 A for
He and 0. 107 A for I.'e . In fact, a choice of a
= 2. 36 A for the former and a = 2. 37 A for the lat-
ter gives agreement with experiment. The close
agreement between these two values of a is gratify-
ing. Moreover, they are somewhat less than the
value of o (2. 56 A) at which distances the Lennard-
Jones potential is zero. Thus they are consistent
with the interpretation of their representing hard-
core diameters.

From the calculated ground-state energy of the
monolayer as a function of density, we can im-
mediately obtain the compressibility K:

dA p de p (tt ) p d 8 p (tt )

where $ is the spreading pressure. Taking a
= 2. 35 A we obtain for K at the completion density
the value of 0. 53x10 cm /erg for He and 0. 73
x10 cms/erg for He . Lastly, the predicted
binding energy of the first few atoms on the sec-
ond layer is 30 K for He and 25'K for He .

Neither the compressibility nor the binding ener-
gies have been measured experimentally, al-

though the Debye temperature has. This latter
quantity cannot be obtained directly from our cal-
culation as it depends on the speed of transverse
waves in addition to the compressibility. How-
ever, by the following argument we may obtain an
estimate of the order of magnitude of the Debye
temperature to be expected from the above com-
pressibility. ' We estimate the velocity of longi-
tudinal waves from the density and compressibility
according to" C'I, = 5/(Qnb„»A', „»), which is ap-
propriate for the bulk solid. For the ratio of
transverse to longitudinal sound velocities aver-
aged over angles, we take the similar quantity
from the bulk. This latter can be obtained from
values of the bulk Debye temperature and longitudi-
nal speed of sound measured at the same density
and yields a ratio' of 0. 52. With these two esti-
mates one can immediately obtain a value of 67 K
for the Debye temperature of the monolayer at
completion, which is to be compared to the experi-
mental value of 58 K. A similar calculation pre-
dicts a Debye temperature of 72 'K for completed
He monolayers.

In summary, we have calculated the completion
densities for monolayers of He and He as well as
their compressibilities and the binding energy of
the initial atoms on the second layer. We have ai-
so shown that the completion density is almost
entirely determined by the chemical potential of the
first layer. Improvements upon these results
may therefore be expected from those calcula-
tions which include more carefully the correla-
tions among atoms in the first layer. '
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In this work the electron energy distribution functions and the anisotropic drift term of the
velocity distribution functions in non-self-sustaining (Townsend) discharges in argon were
determined by direct measurement for a range of E/N (electric field strength per gas-atom
concentration) from 70 to 407 townsends (Td) (1 Td =10 V cm ). Some structure in the
form of the distribution functions is observed, but the prediction of Heylen and Lewis for ar-
gon is not fully supported. The experimental method employed is to energy analyze electrons
effusing from apertures in the anode of a discharge cell with a spherical retarding electric
field. The experimental energy distributions were used along with cross-section data from
the literature to compute the electron mobilities, diffusion constants, mean energies, and
Townsend's first-ionization coefficients. Combination of the data with results from kinetic
theory permitted evaluation of the anisotropic part of the velocity-distribution function.

INTRODUCTION

Gaseous discharges of the non-self-sustaining,
or Townsend, type have a long history of service
for investigation of the fundamental processes
which occur when electrons pass through a gas of
low concentration N. The electrons are driven by
a uniform electric field E, and, over a wide range
of the parameters, the behavior of the discharge
is found to be governed by the quotient E/N. A

complete description of Townsend discharges is
afforded by a knowledge of the electron velocity
distribution, which is also a function of E/N, and
the cross sections for the various collisional pro-
cesses available to the constituents of the dis-
charge. In most cases, the electron-energy-dis-
tribution function serves as well as the velocity
distribution for computation of the transport pa-
rameters.

Direct measurement of the important cross sec-
tions has been made for many gases, and trans-
port parameters have be8n the object of most in-
vestigations which employed Townsend discharges.
However, there has been but one prior report' of
a direct measurement of the distribution functions.
In this paper we present the results of further ef-
forts, these to determine energy-distribution func-
tions for Townsend discharges in argon.

EQUIPMENT AND DETAILS

The experimental method used in the present
work is a modification of the retarding-field method
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FIG. 1. Simplified schematic of the discharge cell and
the energy analyzer.

employed by Roberts and Burch. ' The procedure
will be discussed with reference to Fig. 1. Elec-
trons effusing from apertures in the anode of the
discharge cell are energy analyzed with a retard-
ing electric field maintained between the anode and
the collector. The anode of the discharge is a
gold foil, 4. 9 p, m thick. It is perforated at its
center with about 200 apertures of 13 p, m diam and
spaced 160 p, m center to center in a circular area
2. 5 mm in diam. A pattern of apertures is used
rather than the large single aperture indicated in
Fig. 1 so that adequate electron current to the
collector can be realized along with satisfaction
of the criterion for effusive flow. A guard ring,


