
APPLICATION OF THE EQUATION-OF-MOTION METHOD. . . II 1613

4T. J. Greytak and J. Yan, Phys. Rev. Letters ~22

987 (1969); T. J. Greytak, R. Woerner, J. Yan, and
R. Benjamin, ibid. 25, 1547 (1970).

5J. Ruvalds and A. Zawadowski, Phys. Rev. Letters
25, 333 (1970); J. Ruvalds, A. Zawadowski, and J.
Solana, Phys. Rev. A 5, 399 (1972); see also L. P.
Pitaevskii, Zh. Eksperim. i Teor. Fiz. Pis'ma v
Redaktsiyu 12, 118 (1970) [Sov. Phys. JETP Letters 12,
82 (1970)]; F. Iwamoto, Progr. Theoret. Phys. (Kyoto)
44, 1135 (19VO).

L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 36, 1168
(1959) [Sov. Phys. JETP 9, 830 (1959)].

A. A. Abrikosov, L. P. Gor'kov, and I. Ye.
Dzyaloshinskii, Quantum Field Theoretical Methods in
Statistical Physics, translated by D. ter Haar (Pergamon,
Oxford, 1965), Sec. 26.

A. D. B. Woods, Phys. Rev, Letters 14, 355 (1965),
B. M. Abraham, Y. Eckstein, J. B. Ketterson, M.

Kuchnir, and J. Vignos, Phys. Rev. 181, 347 (1969),
and references cited therein; P. R. Roach, J. B. Ket-
terson, B. M. Abraham, and M. Kuchnir (unpublished).

L. Reato and G. V. Chester, Phys. Rev. 155, 88
(&96v).

'1W. L. McMillan, Phys. Rev. 138, A442 (1965).
C. P. Enz, in The Many-cbody Problem (Plenum,

New York, 1969), p. 1.
'3H. Gould and V. K. Wong, Phys. Rev. Letters 27,

301 (1971).
'4M. Droz (unpublished); see also W. Gotze and H.

Wagner, Physica ~31 475 (1.965).
C. E. Carroll, Phys. Rev. A ~2 497 (1970).

Ma, H. Gould and V. K. Wong, Phys. Rev. A 3,
1453 (19V1).

"N. M. Hugenholtz and D. Pines, Phys. Rev. 116,
489 (1959).

J. Gavoret and P. Nozieres, Ann. Phys. (N. Y. )
28, 349 (1964); see also P. C. Hohenberg and P. C.
Martin, ibid. 34, 291 (1965).

K. Huang and A. Klein, Ann. Phys. (N. Y. ) 30,
2O3 (1964).

2 L. Kondor and P. Szdpfalusy, Acta Phys. Hung, 24,
81 (1968).

2 C. P. Enz, J. Low Temp. Phys. ~3 1 (1970).
O. K. Harling, Phys. Rev. Letters 24, 1046 (1970).

23W. C. Kerr, K. N. Pathak, and K. S. Singwi, Phys.
Rev. A 2, 2416 (1970).

24R. D. Puff and J. S. Tenn, Phys. Rev. A~1 125
(19vo).

V. K, Wong (private communication).
R. D. Etters, Nuovo Cimento 44B, 68 (1966); Phys.

Rev. Letters ~16 119 (1966).
P. C. Hohenberg and P. C. Martin, Phys. Rev. Let-

ters 12 69 (1964).
2 A. D. B. Woods and R. A. Cowley, Phys. Rev. Let-

ters ~24 646 (1970).
N. E. Phillips, C. G. Waterfield, and J. K. Hoffer,

Phys. Rev. Letters ~25 1260 (1970).
3 A. D. B. Woods, in Quantum Fields, edited by D. F.

Brewer (North-Holland, Amsterdam, 1966), p. 242;
A. D. B. Woods and R. A. Cowley, in Proceedings of
the Symposium on Neutron Inelastic Scattering, Copen-
hagen, 1968 (IAEA, Vienna, 1968).

3'Pitaevskii also discussed the instability occurring
when the slope d, /dq reaches the sound velocity which
according to Ref. 2 happens at q&

——2.27 L . It is inter-
esting to note that the observed flattening around q2 (see
Fig. 7 of Ref. 2) can also be explained by the method
used here for the end pointq, . See C. P. Enz (unpub-
lished).

PHYSICAL REVIEW A VOLUME 6, NUMBER 4 OC TOBER 1972

Low-Temperature Thermodynamics of the Ib, I
& I Heisenberg-Ising Ring

James D. Johnson and Barry M. McCoy
Institute for Theoretica/ Physics, State University of Nese York, Stony Brook, Nero York 11790

(Received 20 March 1972)

We use the equations proposed by Gaudin for the free energy of the Heisenberg-Ising ring
for I 4) ~ 1 to obtain the first temperature-dependent term in a systematic low-temperature
expansion of the free energy.

I. INTRODUCTION

We consider the Hamiltonian

N

H = 5Q [S„"S„,t"+ S„"S„,t + b (S„S„„t—4)]
n=1

-HsZ S„', (l. l)

where S;"= —,'0&" and the o, are Pauli spin matrices
for site i. Ho is the external magnetic fieM, N is
the number of lattice sites and is even, 4= cosh@
& 1, and 6 equals + 1 or —1 for the antiferromag-

netic or ferromagnetic regions, respectively. We
impose periodic boundary conditions.

Gaudin' has recently obtained a solution for the
free energy per site, F(T, o), in terms of the solu-
tions of an infinite set of coupled nonlinear integral
equations. (o is the magnetization per spin. ) In
this paper we perform a systematic expansion of
F(T, o) in both T and T' for T small and large,
respectively. Our reasons for such computations
are threefold. First, Gaudin in deriving his for-
malism made two principal assumptions. One con-
cerned the general character of the zeros of a set
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FIG. 1. Regions of various low-temperature character-
istics. The lines b and c are determined in Sec. IV by
setting the gaps between the ground states and first ex-
cited states of regions B and C, respectively, equal to
zero. Lines a and b include their 6=1 end points while
lines c and d do not. Regions A, B, C, and B do not include
the lines a, b, c, and d nor point P. The low temperature
behavior of the specific heat Cz is shown.

of transcendental equations; in particular, the al-
lowed values of the imaginary part of the zeros
were needed. The second was an assumption on the
movement of these zeros as ~ was varied. These
are standard assumptions repeatedly made for the
one-dimensional ~-function quantum gases and the
one-dimensional nearest-neighbor spin systems.
The agreement of the high-T expansion (made in
Sec. II) of Gaudin's formalism with standard high-
temperature expansions gives a check on the va-
lidity of these assumptions. A weaker verification
consists of looking at the low-temperature expan-
sion and examining its agreement with results ob-
tained by arguments of the spin-wave variety.

Secondly, by reversing the direction of the logic,
the systematic low-temperature expansion is use-
ful to justify naive constructions (where such argu-
ments can be made) of the first-order terms from
a knowledge of the low-lying excitations of the
system. Moreover, our expansions in principle
can be extended to higher-order terms (although
it is expected that such expansions will usually be
asymptotic rather than convergent).

Our third reason for studying Gaudin's integral
equations is that there are several cases, in par-
ticular the isotropic antiferromagnet and isotropic
ferromagnet at Hp = 0, where it is not apparent that
the "spin-wave" arguments give even the leading
term as T-O.

&he Hamiltonian given by Eq. (1.1) is not without
physical importance in itself. One-dimensional
spin systems whose interactions are principally
nearest neighbor do exist in nature; for example,
MClz 2NCSH, (M;Co, Cu) are probably described
by such a Hamil. tonian. 2

and obtain
n=1 n=1

F„=crBp 2Bp —T e BpI 2 (B yJ')/T + ~ ~ ~

El B 1 B T (J' Bp)/T+ ~ ~ ~
p 2 p

E I &B z J z T 1/2(Bp-J') /T +

Region D is not present in the Ising limit. Note
that the exponentials in E„and EB are dependent
on the full gap between the ground state and first
excited states, while E~ is a function of one-half
the gap.

In general, we find that in regions A, B, and C
there is an energy gap AA B c between the ground
state of the system and the first excited states.
In regions A and B the temperature-dependent term
of the free energy Fr(T, o) is given for T -0 by
FT =KT3/2 e-AA B/T, where K ls constant in T. In
region C, FT=KT 2e c . All constants for the
preceding are evaluated in closed form in Sec. IV.
In region D there is no gap, and ET =KT2 with the
constants obtained from the solutions of two integral
equations. Near lines b and c we approximate and
solve these equations for the constants.

When the lines a, b, c, and d are approached from
the interiors of the various regions, the above ET
become invalid. However, from a theorem of
Araki4 one knows that for TWO the free energy is
analytic in T. Therefore, one is led to consider
interpolating among the various regions by expand-

Finally, while previous numerical work is suf-
ficiently accurate to give a good description of the
thermodynamics at higher temperatures, the ex-
isting extrapolations toward zero temperature
suffer from the standard questions of the validity
of such extrapolations. ' Therefore, the analytic
expressions for T-O, available only through our
expansions, are interesting in that they provide a
firmer result for the low-temperature thermody-
namics.

Our low-temperature results are best presented
by referring to Fig. 1. The division of the low-
temperature characteristics into several regions
is indicated by the change in the ground state as a
function of Hp and 4. Region C has a doubly degen-
erate ground state with the z component of total
spin S' equal to zero, region B has a totally aligned
ground state, and region D has a ground state whose
S'varies from the S'=0 for Cto the S'= —,'N of B.
The ferromagnetic region A has a unique totally
aligned ground state while line a has a doubly degen-
erate ground state.

We can obtain some idea of the expected low-
temperature behavior of F(T, o) from the Ising
model. Take

N N

H = &JQ (8„'8,' ——,') —BOQ S„'
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ing the scale of the Ho axis in the vicinity of a line.
Then for O(T) near lines k or c, Er is equal to the
functions of regions B or C, respectively, eval-
uated on the boundaries and multiplied by —Fo
(- e "e —,') for k and by -Fo(- e ~c+r, —',) for c.
Ae o is an O(T) number and

E,(., —,') =-. '~' f d'ln(1 —~.- ).
For O(T) near line d, Fr is equal to Er from region
C evaluated on d and multiplied by 2 cosh(~HO/T),
where Ho= O(T). [This behavior is also exhibited
by the Ising model where

E = oB ——,'8- T cosh( —,'B /T) e~~ ~r+ ~ ~ ~ j

In A, B, and D and on line 5 one can let 4=1,
but in C and on lines c and d, b, -1 is not allowed.
Therefore, the O(T) neighborhood of point P is
treated separately to obtain E~ =ET, where the
constant is given by the solution of an infinite set
of nonlinear integral equations.

Another summary in terms of the susceptibility
p is given by Fig. 2. The deviation of X from its
T = 0 value in regions A, B, and C has an exponen-
tial character, whereas in region D it has a Ta
behavior. The O(T) neighborhoods of lines b and
c interpolate among the various regions.

A comparison can be made with the numerical
work of Bonner and Fisher. 3 They anticipated the
possibility of the half-gap in C but were unaware
that the area covered by C and D is two regions.

Finally in the course of our calculation we ob-
tained as excitations from the ferromagnetic ground
state the zero-temper ature multimagnon bound-
state dispersion curves and as excitations from
the antiferromagnetic ground state a set of spin-
wave excitations. The magnon curves agree with
the expression Torrance and Tinkham
found for 4 large.

The organization of the paper is outlined by the

II. FORMULATION

The energy levels of the Hamiltonian expressed
by Eq. (1.1) are given by the coupled equationss''

E= &g (cosk, -&) -H, S' (2. 1)

and
N

Hk =2vX~+Q g ~, n=1, 2. ..M.
8=1~PAe

(2.2)

It is easier to manipulate the above equations if one
parametrizes~o the k and ( z by

cot(-,'k„) = coth( —,'C')tan(-,' P ), 4 = cosh4, (2.8)

cot( —,'y ~) = cothC' tan[ —,
'

(P —P~)]

with

(2.4)

0&k &2v, -v&gz&w, and -v&P &v.
The integer M is related to the z component of

the total spin by S'= —,'N —M, and the k give the
total momentum of the system via

Hr =Q,., k„=2vm/N, m an integer.

following: Section II consists of those results of
Gaudin which we use. In the last part of the sec-
tion we solve for the first three terms of the free
energy in the high-temperature expansion. In
Sec. III we obtain the multimagnon bound-state
dispersion curves for regions A and B and a set
of spin-wave excitations for region C by solving
for the energies of a class of eigenstates of H. In
Sec. IV the derivation of the low-temperature
thermodynamics is given. The presentation is
organized around the divisions given in Fig. 1. In
Sec. V the results of Sec. IV are discussed in
terms of spin-wave arguments using the dispersion
curves of Sec. III.
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FIG. 2. (a) Susceptibility vs external magnetic field for p =1, b, &1; (b) susceptibility vs external magnetic fieM for
P =1, 4=1; (c) susceptibility vs external magnetic field for p = —1. Ilo must not be equal to zero. For all three graphs
the dashed line is the T= 0 curve, while the continuous line is the curve for T small but not equal to zero.
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For N large Gaudin showed that for any particular
solution of Eq. (2. 2) the (() are grouped in strings
characterized by an order p and common real value

P; that is,

obtained by expanding the exponential in Tre
One lets q„=e'"r and expands rf„=rl„"'+r&„' '/T+n„'/
T + ~ ~ ~ . To first order one drops the second term
in (2. 7b) and observes that the r&„'~' are independent
of P. The integrals in Eqs. (2. 7) can be performed
to obtain

to order e".
One continues from this point to derive the equa-

tions for the thermodynamics. One finds

F(T, &r) = 6E,(4)/N+ (rH,

and

In&l
' = —,

' ln(l+q ')

Inq„' = —,
' ln[(1+r&„,I)(1+r&„&)], n 2

(2. 10a)

(2. 10b)

where

—T(2m) ~ f dn(P) ln(1+ e'&»)d&t), (2. 6)
with

eo
X

GH
(2. sb)

E„(Q)/T=dn(&t)) + In[(l+ e'"+' )(1+e'"-' )] n& 2
(2. 7a)

e, (Q)/T =dn(P) *ln(1+ e'~ rr) —6T ' sinhC dn((t)),
(2. Vb)

and the boundary condition on the pseudoenergies is
lim„„„e„((())/n=Ho. dn(&t)) is given by dn(&f)) = (K/&r)

dn(KQ/rr, k), with K /K= 4/rr. K(K ) is the complete
elliptic integral of the first kind with modulus
k(k ) and dn(Q, k) is one of the Jacobian elliptic
functions as given by Bateman. " The * notation
indicates for any function f((&)),

f (4)+ @= (2rr)
' f 'f-(A —0')Z(4')d0'.

Eo(&) is the energy of the antiferromagnetic
ground state. '~ When b - I (@-0), the above ex-
pressions tend to the proper limit if P is rescaled
by x= &t)/@. To obtain o, y, and C„, the magnetiza-
tion per spin, the susceptibility, and the specific
heat at constant magnetic field, respectively, one
uses the thermodynamic relations

o = (F/N ~H, ) ~, , (2. 6a)
0

and

rl,
' '/gI" = dn(()I))*g,' '/(1+rtz") —5 sinh(C )dn(&t) )

(2. 12a)

q&»/7/&» dn(y)~[&l&»/(1~/&&&)+/&»/(I+rl&&&)]

with

lim q„"'/(nrem„(") =0 .
n

(2. 12b)

One solves Eqs. (2. 12) by taking the finite Fourier
transform of these equations, solving the resulting
difference equations, and transforming back. The
conventions we take for the Fourier transform are
such that

Note that we are not necessarily assuming that Ho/T
is small but are including the case where H0 is also
large, both here and in Eq. (2. 9). The solution to
Eqs. (2. 10) is

rt(~'=sinh [-,'(n+1)HO/T]sinh ~(—,'Ho/T) —1 (2. 11)

for all n. The second-order equations are obtained
by expanding the various logarithms to obtain linear
integral equations. They ar e

and

C„= 3 (F/N —(rHO)
~
„ (2. 8c)

dn(l)=(2)r) f dn(Q)e" dp=(2coshlC) ~.

The solution to Eqs. (2. 12) is

In the derivation of Eqs. (2. 6) and (2. 7) several
assumptions were made whose validity has not been
rigorously investigated, and to strengthen one' s
confidence in them, it is desirable to check thehigh-
temperature expansion obtained from the above
equations against the standard high-temperature ex-
pansion,

F (T, o) = —T in[2 cosh( —,
' Ho/T)] + &rHO

&l„' = 6sinh(4} sinh[ —,'(n+ 1)HO/T]

)& [sinh( —,'Ho/T) sinh(HO/T)]

x ( sinh( —,'nHO/T) sinh[(n + 2) C ][cosh(n + 2)C —cosy]
—sinh[-,'(n+ 2)H0/T] sinh(nC )(coshnC —cos&t)) ')

(2. 13)

~(3) ] (~((&))2/[2(1 (1))]

—[-.' 6~+(16T) '1[ o h(-.'Ho/T)] '

—b [—,'+tanh (—,'H()/T)

——', tanh (—,'Ho/T)](16T) '+ ~ ~ ~, (2 9) +h. (/(I+r&.",')1, n'1 (2. 14)

the third-order equations, obtained similarly to the
second-order ones, are

$„/r&„"'+A.„=dn((t))*[t„.,/(1+&i„",,) )
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with

The homogeneous solutions to the resulting dif-
ference equations in Fourier space are

$„'= sinh[-,'(n+1)Hp/T]e " (sinh(-,'nHp/T)e' '

—sinh[-,'(n+ 2)HJT]e"'~'] . (2. 15)

Using variation of parameters and imposing bound-
ary conditions, the solution to Eqs. (2. 14) is

(2. 16b)

One substitutes the preceding expressions for
7)i into Eq. (2. 6), expands the logarithm, and per-
forms the various integrals to obtain

F(T, o) = —T ln[2cosh( —,'Hp/T)]+vHp

—[-,'5a+ (16T) '][cosh(-,'H /T)]

—b, [-,'+tanh (—,'Ho/T)

——', tanh (2Hp/T)] (16T) '+ ~ ~ ~ . (2. 17)

This is the same as Eq. (2.9).

III. MULTIMAGNON BOUND STATES AND EVEN
SPIN-WAVE EXCITATIONS

Regions A and B of the system have a ferromag-
netic set of states in that the ground state has all
spins aligned in the direction of the magnetic field
and the excitations are grouped according to their
spin deviation from the totally aligned state. For
such a spectrum it is felt that the zero-temperature
dispersion curves of the elementary excitations are
equal to the energies of the magnon bound states.
These states are characterized by taking P of Eq.
(2. 5) equal to M, the number of overturned spins
from the ground state; i.e. , all the zeros P are
in a single string with common real value fixed by
the total momentum of the state.

First it is convenient to rewrite Eq. (2. 3) as

e"~=(1-e'-"~)(e'-e-"~) ' (3.1)

To obtain the relation between the total momentum

n-1

+ 5„( Z g &'„„-e '"~' Z g„j„.,),
m=0 m=O

(2. 16a)
where

g„(l)= 2 cosh(lC )(il„'i,'p+ 1)A„,i

Kr of the bound state and the real value P& of the
, one forms

P-1
eizg a g g (1 8 ptgo-ie g)( o go- jyii)-t

ggmP+$

(3.2)
and, in performing the product, gets

iK$ (1 iio il s)( No ilii) i (3.3)

q, (S', 4&„yp) =
Jp

'dn, (y)dy

+ jp dn(y)dP ——,'w+ —,'w (S. 5a)

Ep(S', P~, Pp) = sinh(4 ) [dn(Pi) +dn(Pp)] —S'H
p

(3. 5b)
for + m. If one lets

To extract the energies of the bound states, one
expresses the cosk in Eq. (2. 1) by its exponential
form, substitutes Eq. (3.1) for the e"~~, sums the
resulting expression over the string, and, using
Eq. (3.3), writes the resulting expression in terms
of E~. The result is

E„—E~„=H pM —5(coshM4 —cos' &,)

xsinh(4)(sinh111C) ' (3 4)

where E „=—,'HpN and—Kris restricted to the first
Brillouin zone, 0 Ez, =2wn/N-2w. For M~ 3 and
b, large, Eq. (3.4) can be expanded to give E„

E,„=Hp-M —5cosh4+5e +O(e P ). This is the
same expression obtained by Torrance and Tinkham.
Also, we can recover Bethe's results for ~= 1.

In region C we are interested in excitations from
the S' = 0 antiferromagnetic ground state. To under-
stand a little of the character of the low-lying ex-
citations, the antiferromagnetic Ising model serves
as a guide. One notes that the first excitations of
the Ising model are two-particle (boundary) states
and all higher ones are even excitations. Gen-
eralizing this away from the Ising limit, we seek
the low-lying two spin-wave excitations. Equation
(2. 2), written as a function of the P, , gives the
coupling among the Q . The energy as a function
of the P is expressed by Eq. (2. 1), where the
momenia as a function of the P are taken from Eq.
(2. 3). The excitation energies of the system are
found by the procedure of Ya:ng and Yang, ~3 where
the effect of exciting P 's from their ground-state
distribution (~pN real P 's) is calculated.

The S'= 1 low-lying excitations are derived by
eliminating one $ from position Pi and changing
another from Qp to + w. The + w apparently labels
a doubly degenerate S'= 1 dispersion curve. The
difference between the ground-state and excited-
state momentum qp(S', P„gp ) and the difference
between the ground-state and excited-state energy
Ep(S', P „Pp ) are
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q~, a= f ' dn(Q)dQ

the energy difference is

Za(S', q'„q', ) = sinh(e)SCv '[(1-k'cos'q', )"'

+(I k'-cos'qa)"'] S'-Ha, (3. t))

with 0~ v q', , 2
'tt'. Note that the q' have only one-

half the normal range of 2m and assume —,'N values.
This corresponds to the labeling by boundary po-
sitions in the Ising limit. Because of the symmetry
between 8'=+1 and 8'= —1, the above expressions
apply equally well to 8'=- 1.

For the first excited states of S'= 0 one considers
the excitations that take two &j), p, and (t)2, into a
complex conjugate pair; i. e. , P = 2 in Eq. (2. 5).
The q2 and E2 that result are independent of the real
value of the pair, &f)„. Also, again built into the cal-
culation are the above + regions of the momentum.
From an inspection of the Ising limit one suspects
that P„ takes on only two values and provides, in
conjunction with the + label, a labeling of four de-
generate dispersion curves. The energy and mo-
mentum differences between the first excited and
ground states are

Ea(S', q~, qa) = sinh(4)) Kv [(1—k cos qa)'

variable. We perform this operation often enough
to make it worthwhile to label it as procedure A in
the remainder of the paper. The solution is

~„"'=H,n+sinh(C )j„„(y), n'1
where

(4. 2a)

~2"'=dn((&I))*(e"'+~("+T e '& )
(1)

(4. 3b)

e &2) d (P)ge (2) (4. 3c)

with lim„„e„'/n = 0. (In this and later sets of
equations we refer to the e q term and similar6ti)/ z

terms as the driving term. ) In applying procedure
A one has

e„' '=Tk„(&t))*e '& for n~1 (4.4a)

and with

j„((t) = »nh[(n —1)C ][cosh[(n —1)4]—cos&t }' .
(4. 2b)

The &„' and the solution for the c„"'are sub-
stituted into Eqs. (2. 7). Since the e„' ' are observed
to be exponentially small in T and the e„"' for n 2
do not contribute to the &„' ', the exponentials and
logarithms can be expanded to derive

(4. 3a)

and

+(l, —k cos qa) ]-S'H&) (3.7a)
k, (y) =j,(y) (4. 4b)

8 k k + & 1qa(S, qi qa) =q(+qa ——,&(+-,7(, (3.7b)

A. Region A; 5 =-1 (Ferromagnetic), H0~~ p) 0,
p Independent of T

One expands &, as e„=&„'+&„''+ ~ ~ ~ . From Eqs.
(2. 7) it is observed that e„&0for all n and &t).

Therefore, in Eqs. (2. 7) for small temperature the
exponentials are large and the 1's inside the log-
arithms can be dropped to obtain

e„"'=dn(P)*(c„",,'+a„",'), n ~ 2 (4. la)

with 0 + p j 2 & The four dispersion curves are
distinguished from one another by the + and the two
values of &t)„. One can obtain a set of higher excita-
tions by linearly combining the above momenta and
energies. One must remember when adding the two
particle states together that the q's satisfy an ex-
clusion principle that is the same as the boundaries
in the Ising limit.

IV. LOVf-TEMPERATURE THERMODYNAMICS

k.(y) =j..,(e)+j.(y) . (4. 4c)

The next term e„ is exponentially smaller in T than
the above expression for &„' '; i.e. , a„' is of order
&-(const )/ 7' (2)

&n ~

The integral in Eq. (4. 4a) may be estimated by
steepest descent. This simplifies E z to

E'2'(&t))- (2&() ' 2(a+1)ja(&t) —m)(sinhC) e" "&)

&& [T3/2+ 0(T5/2)] (4 5)

One substitutes E, into the free energy and per-
forms expansions of the logarithm and exponential.
After several cancellations the resulting, rather
complicated, form reduces to

F(T, c) = crH 'H —(2m) —e'~ "—
&)

)( [T3/2+ 0(T5/2)] (4 6 )

The magnetization, susceptibility, and specific heat
are, respectively,

g
& (2(()-1/ae(i-HQ &)/ T[T3/2+ 0(T3/2)] (4 6b)

2,"'= dn(y)*~2"'+ sinh(C )dn(y), (4. Ib)

with lim„„e„"/n =Ha. One extracts the solution by
Fourier transforming, solving the resulting alge-
braic equations, and transforming back to the &t)

g= (2v) ' ae ' "(r~' [T +O(T' 2)] (4. 6c)

C =(2&() "'(H +~- I)'e"-"o-'"'
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x [T-3/2 O(T-1/2)] (4. Gd)

By rescaling P the 6,- 1 limit can be performed on
all the expressions in this subsection. Without a
study of the higher-order terms it is not obvious
why one cannot take Hp- 0. However, for ~ 1,
take Hp 0; then T-0 to obtain v= —,'. Since the
correct answer is 0=0, one concludes that Hp p
& 0 is necessary.

B. Region B; 5 = 1 (Antiferromagnetic), e& ~~p) 0,
p Independent of T

So that we may use some of our results to ob-
tain the free energy near line b, we will derive
«„' ' and «„' ' valid for «,' '~ —YT, 7 an arbitrary pos-
itive number independent of T. [In the remainder
of the paper p and 7 will always be as described in
this subsection; i. e. , both are arbitrary positive
numbers independent of T. Also, in Secs. IVB,
IV C, IV G-IV J "near" to a line means that H p is
such that the point (&&,Ho) is an O(T) distance from
the line along a constant 64 curve. Throughout the
paper "O(T) near" refers to this definition of
"near. "] Let e„=«„"'+g„' '+ ~ ~ ~ . The g„' are found

by an identical procedure to that for region A. The
are

«„'1'=Hon —sinh(C ) j„„(Q), n& 1 . (4. 7)

x [T'"+o(T'")l (4 0)

where G= &+1-Hp and the restriction «& '-p
translates to Hp —& —1 ~ p. The free energy, mag-
netization, susceptibility, and specific heat are,
respectively,

&(T, o)= oH2- gH, -(2w) '"e'"
x[T I +O(T'I )], (4. 10a)

The «„' ' are also obtained as in regions except,
since «&

' can be of order T, logarithms containing
6&1)/ ze 's cannot be expanded. This changes Eq.

(4. 4a) to

e„' '=Th„(y)*In(1+e '1 I
) (4. S)

«„' ' is exponentially smaller than «„ if «~" ~ p and
is of order T if «11'& —TT and «11'=O(T) in some
region.

By taking «&
'

p one is allowed to expand the
logarithm and obtain an expression for «„' ' in terms
of «1 ' identical to Eq. (4.4a). Therefore, in region
I3,

= (21/) 2(& —1)j3(g) e +(sinhC )

e'„"= dn(P) + (&'„.",+ «'„",), n & 3

«2" =dn(p)*«"'
(4. 11a)

(4. 11b)

(4. 11c)c1"=dn(p)+«'2" —sinh(C )dn(@),

with lim„„a„'/n=H2. By applying procedure A
the solution is

«'„"=H,(n-l), n&2 (4. 12a)

«',"= gH, —sinh(C )dn(y) . (4. 12b)

To extract the first temperature-dependent term
of the free energy, the «„' ' are not needed. How-
ever, for completeness they are included. One
proceeds to solve for the «„' ' in the manner out-
lined in Sec. IV A with the difference that either
«y or Ep contributes to the «'„' depending on
whether l «q" I or «3" is the smaller. Since the
minimum value of I «', 'I is at /= 1/, if I«1 '(1/)I

&Hp, one obtains equations for the «'„' identical to
Eqs. (4. 3), except in Eq. (4. 3b) the «', ' term is
eliminated, and «j" is changed to —«q". In using
procedure A the «'„@ are

6") r«'„"= j„T(y)*l(n+I' e1/ ), n&2 (4. 13a)

&1)/ ~«12'= Th(@)"1n(1+e'1 I
)

where

(4. 13b)

h(P)= Z [2cosh(m4)] exp(-imp —~m ~e) .
mn-~

(4. 13c)
If Ho& ~eI '(1/) I, the equations whose solution is

Eqs. (4. 13) are modified to have driving terms
dependent on «z '. The «„' are

«(3) 2T e-Hp/ T (4. 14a)

The &- 1 limit is allowed on all quantities if Q is
res caled.

C. Region C; 5 = 1 (Antiferromagnetic), e~&
) ~~- p& &0,

Hp ~~p2)0, h4 1

As in Sec. IV 8, we first assume «&"-~T in ob-
taining «'„" and «'„', where «„=«„"'+«'„'+ ~ ~ ~ . By
examining Eqs. (2. 7) it is seen that «„&0 for n& 2.
Therefore, in Eqs. (2. 7) the 1's inside those
logarithms whose arguments do not contain «& can
be dropped. Since «g —7T, the logarithm contain-
ing «& can be eliminated. The resulting equations
are

and

1 (2 )-1/2 c/T[T1/2~ O(T3/2)]

g —(22)-1/2 c /T [T-1/2+ O(T1/2)]

(2 ) 1/2 G2 ec IT[T-3/2+ O(T-1/2 )]

(4. 1Ob)

(4. 10c)

(4. 1Od)

«&3) Te-Hp/ F
«n n=1, 2 (4. 14b)

The «„' ' are exponentially smaller than the «„' '

given in either Eqs. (4. 13) or (4. 14) if &11'& —p1.
If «1

' ~ TT and e,' ' =O(T) is some region, the «„' '

can only be restricted to O(T2).
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-o/ r [T&/o+ O(To/ o) ]
z ~1/2 8/T[-T 1 /2+O(Tl/2)]

(4. 15b)

(4. 15c)

C Hopi/Re-8/ [T- I+O(T- /o)] (4. 15d)

A = k '/[2 sinh(4 )IAo] (4. 15e)

8 = sinh(4)&k'/v ——,'Ho (4. 15f)

Note that B is equal to one-half the gap between the
ground state and first excited states. Also,' —p, translates to ,'Ho sinh(—c)K—k '/v ~ —p,.

9. Reyon D; e& Both Negative and Positive, not 0(T)
near Lines b or c

Expand E„=a„"'+a„'+ and define & + 0 by
«,"'{u)= 0. (e,"' has only two zeros u and —u. )
The &„ for n ~ 2 are again positive which allows
the 1's in the logarithms of Eqs. (2. 7) to be dis-
regarded. The integral of ln(1+e'~ r) can be split8 (1)g Z

into two parts with the [- u, u] range exponentially
small in T since z &~' is negative there, and the re-
maining range can be treated the same as the other

This gives coupled equations of the form

e„"'=dn(P)*(e "'+a",'), n 3 (4. 16a)

Now one takes a &

' —p&, i.e. , region C. Since
e'g is then exponentially small in T, &,

' ' can be6(f)/ Z

substituted in Eq. (2. 6) for the free energy, and
the logarithm can be expanded. Af ter doing the
asymptotic analysis of the resulting integral one
derives

F(T, o) = ZJH+oHo A"-'e "'
&& [T'"+O(T"')], (4. 15a) Note that ~ as a function of Ho and & is obtained,

after solving either Eq. (4. 1Vb) or (4. 18) for
n = 1, by setting eI"(u) = 0.

6&" in the neighborhood of + and —a provides
the driving term to the &„' ' equations. This im-
plies that the parameter that enters into the
asymptotic expansion is the slope of 6g Rt &,
and that the coefficient of the driving term is given
by fo" ln(1+e )dx. Therefore, let c~~" =t(P —u)
in the neighborhood of u and set z'„@=T'of+(12t).
The coupled equations for the f„are

f.=d (e)*(&., .j.,),

f,=dn(p) of& +dn(Q)+o f~

n) 3 (4. 19a)

A=«(0) ~fo.

+dn(p+ u)+dn(p —u), (4. 18b)

(4. 18c)

By applying procedure A it follows that

f.=j.(y+ u) +j.(e —u) +j.(4) *os

n & 2

fg=h(P+ u)+h(Q —u)+h(p)+o fg .

(4. 20a)

(4. 20b)

For u small, a set of relations similar to Eq.
(4. 18) is desired. They are

j'„=a„(y+u)+a„(y -u) -a„(y)*;j'„

equations is more suitable. By adding and sub-
tracting h(p)*& z& to Eq. (4. 1Vb) and j„(p)*» &,
to Eq. (4. 1Va), and by applying procedure A to
Eqs. (4. 1V), one obtains

t'„"= Hon - sinh(e) j„„(g) h-„(P) +, a',",
(4. 18)

~ "'=dn(P)*e "'+dn(P)*'~ '"

~,"'=dn(y)*e,"'- sinh(C) dn{y)

with lim„e„ /n = Ho and ~o denoting

(4. 16b}

(4. 16c)

(4. 21)

The next-order term e„'" in &„ is. of order T '
~

The free energy can be treated with the same
methods used to obtain Eqs. (4. 1Vb), (4. 18),
(4. 20b), and (4. 21). One obtains two equivalent
expressions for E and C„. They are

j(y)*".g-=(») '(f, + f ')f(4 4')g(e')~-' .
For later convenience take *& to mean

f(/f)* I= (2 ) 'f: f(4 4'-)g(4 ')+'—

By procedure A the solution to Eqs. (4. 16) is

e„"=Ho(n —1)+j„($)~oat', n~2 (4. 17a)

with & z" given by the integral equation

e,"'= ,'H, sinh(-e)d—n(@) +a(y)+™~,"' . (4. 17b)

h and j„are given by Eqs. (4. 13c) and (4. 2b). For
cases in which & is small another form of the

F(T, g) = Eo/N + oHo —dn(0) +o EI
'

—T (24t) 'dn(0)*o f, —T dno( )u7/(6t) +O(To),

(4. 22a)
with

CH = T(12t) 'dn(0) oo f, + Tdn(u) v(3&) '+O(To)
(4. 22b)

F(» &)= OHo-oHo+ jo(0)* ~i" +T'(24t) 'jo(0)+; fg

—T'oj, (u)(6t) '+O(T'), (4. 23a)
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with

C„=Tgj (u)(St) ' - T(121) 'j (0) +"; f + O(T ) .
(4. 2Sb)

o cannot be obtained in a compact form.
The limit 4- 0 is allowed on all expressions in

this subsection if it is remembered to scale all
variables . Because we need the equations later,
we include here one of the two equivalent sets of
equations for 4 = 0. Ne denote all scaled vari-
ables and functions by a prime with the exception
of && and e&

' where primes would cause some con-
fusion. If one defines ch(x) = w2 'sech(&wx),
we have

"O(1) near. "] I et us first look near line b, and
let

G= (sinh4) ja(0) -Ho= b, + 1 —Ho . (4. aS)

fi = 2 is(4) + O(G '") . (4. 26b)

Since n is small, Egs. (4. 18) and (4. 21) can be
solved by iterating the equations and expanding
the resulting solutions around u = 0. This gives

e]"= Ho —(sinhe )j,(y)

+(2G)'"js(4)[s~ja(0}] +o(G }
and

e, =e',"+T'mf, ' (x)(12t') '+O(T'),
~',"(x)= t'(x n'), —x near

(4. 24a)

(4.24b)

Therefore, we have

o. = (2G)'"/ jl(0) + o(G) (4. 26c)

h'(x) = J dy e
' " '"' (2coshy) ', (4. 24c)

f = n[ j,(0)]'+o(G "') . (4. 26d)

~,"'= —.'H, —ch(x) + (2~}-'

x(f + f ) I'(x-x') e~~" (x')dx', (4. 24d)

f,'=h'(x+ a.')+a'(x —a')+ (2m)
'

x(f '
+ f")g'(x -x')j",(x')dx', (4. 24e)

F(T, g) = ED/N+gHO

-(2m) '(f + f ) ch(x) e["(x)dx

—T '(24t') ' ( f '
+ f") ch(x) f,'(x) dx

—Tmp(Q') 'ch(o!)+O(T3), (4. 24f)

=T(12t') '( f + f ) ch(x)f,'(x)dx

~ T~(St')-' ch(a)+ O(T') . (4. 24g)

E. Existence of e~&
~ and f& in Region D

By writing Eqs. (4. 17b) and (4. 20b) in operator
notation and examining the eigenvalue spectrum of
the operator corresponding to h(Q), one can show

by arguments identical to those of Yang and Yang'
that unique solutions exist for the two equations .
F. Approximate Solutions 0(1) near Boundaries of Region D.

For Ho such that one is near either line b or c
and in D, approximate expressions can be found
for eq ' and fq. [It must be understood that in this
subsection when we speak of "near" a boundary, it
is not meant that the boundary is approached as
T- 0, but rather that one is first expanding in T,
then in the distance from the boundary along a
constant 54 line. At times we refer to this as

+O(T'G-'")+O(T'), (4. 2Vc)

C„=T~[S(2G)"']-'+O(T'G')+ O (T'}. (4. 27d)

There is no problem in allowing 4- 1; for 6- 1,
6 -2-B

In the neighborhood of line c, n is near g.
Therefore, let p=w-n and y= —B. For n near z,
Eqs. (4. 17b) and (4. 20b) are the appropriate equa-

tionss

to iterate . After expanding the resulting
solutions one obtains

E]"= ,'Ho —sinh(4)d—n(g)+O(y'' ),
fr=2&(4 +~)+ o(y'"),

(4. 28a)

(4. 28b)

and

p=(2y[sinh(4)k 0 ] ] ~ (w/K) +O(y), (4. 28c)

t= (sinh4}Ks&'k'pz +O(y'~') .
The free energy is

(4. 28d)

F(T, a)=E/N+vH 4(Sw ) y A +O(y )

—T A ~ n'(6y +) +O(T 'y )+O(T3), (4. 29a}

with

o'= (y A/x)'"+ O(y) —T 'A'" x'~'(24y'+)-'

Upon insertion into the free -energy expression,

S(T, c) = ~H, ——,'H, —(2G)'"(S~)-'+ O(G')

—T m[6(2G) I
] +O(T G )+O(T ) . (4. 2Va)

The G dependence of the O(T3) term is not known.
It follows that

o = ,' (2G—)'"—~ '+O(G)-+ T '~ [6(2G)'"]-'

+O(T'G '")+O(T'), (4. 2Vb)

q= ~ '(2G)-'('+O(G')+T' (8G'"2'")-'
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+O(T y )+O(T ), (4. 29b)

y=-'A' (wy)
' '+O(y )+T'A' w' '(32 ' ') '

+O(T y )+O(T ), (4 29c)

CH= T(A/y) ~
w 3 +O(Ty )+O(T ) . (4. 29d)

A is given by Eq. (4. 15e), and the y dependence of
the last temperature order in Eqs. (4. 29) is not
known.

Since A-0 as ~- 1, the work for near line c is
not valid at 4 = 1. For ~ = 1 and H0 near zero, a
separate treatment, similar to the Vifiener-Hopf
calculation that Yang and Yang' performed, must
be done.

We define

S(u)= cj '(u+u ) e' ~ and T(u)=f~(u+n )

and use the evenness of e&
' and f & to derive from

Eqs. (4. 24):

S(u) = ,'Ho e' ~'—-ch(u+o. ') e'

+ (2w)
' f h'(u -u') S (u')du'

+ (2w)
~ f h'(u+u'+2o. ')S(u')du' (4. 30a)

T(u) = h'(u)+ h'(u+ 2o. ') + (2w)
' f h'(u -u') T (u')du'

+(2w) ' f h'(u+u'+2o. ')T(u')du' . (4. 30b)

For H~ near zero n is large, and since it can be
shown by an integration by parts that h (u)-u o for
large u, an expansion of both S and T can be made.
Let S =So+S~+ ~ ~ ~ and T= To+ Ts+' ' ~ . To have
the proper 00 dependence in each of the first two
orders, 4 must be given by

o. '= -2w-'in(H, q)+ 2r ( [w(»H, )']-'+ O[(»H, ) '],
(4. 31)

where q and g are constants independent of H, .
The resulting equations are

So= (2r)) '- we '"i'+(2w) ' f h'(u -u')So(u')du',
0

(4. 32a)
S,= )[2(lnHo)'] '+ (2w)

' f h'(u -u')Sg(u')du'

+ (2w) f"h'(u+ u'+ 2o. ')So(u')du', (4. 32b)
0

To= h'(u)+ (2w)
' f h'(u -u')To(u')du',

0

with

—T'[6(lnH )'] '+O[T (lnH ) ]+O(T ),
(4. 34a)

o=How +0[Ho(lnHo) ] —T [3Ho(lnHo) ]

+ 0{T [Ho(lnHo) ] j+O(T ), (4. 34b)

y=w +O[(lnHo) ]+T [3Ho(lnHo)o) ~

and

+0{T [Ho(lnHo) ] )+O(T ), (4. 34c)

C„= ,' T + T [3(inH, )']-—'+O[T (inH, )-']+O(T') .
(4. 34d)

The H~ dependence of the last temperature order
is not known.

G. O(T) near Line b; 5 = 1 (Antiferromagnetic), e~j~~ ~~-rT
and e~'~ =0(T) at /=0

calculate, from Eq. (4. 24f), the free energy is

F(T, o') =Eo/N+ @Ho

—(Hog)' f e '"~'So(u) du+ O[Ho(lnHo) '
]

—T'w{12[S'o(0)+ S,'(0)]] ' f e "~'(To+ T,) du

—T w {6[s(0)+S (0)]j +O[T (lnH ) ]+0(T ).
(4. 33)

The primes on S0 and S& indicate differentiation with
with respect to M.

Equations (4. 32) are solved by a standard Wien-
er-Hopf technique. As in many cases it is not
difficult to write the resulting solutions as func-
tions in the Fourier-transformed space, but it is
very difficult to obtain closed forms in g space.
The trick is to observe that one can work com-
pletely in the Fourier space; for example, the con-
dition So(0) = 0 is equivalent to requiring lim„„y
So(y) = 0 and So(0) is obtained from

S,'(0) = —(2w)'" lim y'So(y),
y+ CO

where the "caret" indicates the Fourier-trans-
formed function. These relations are derived by
expressing S0 in terms of S0 and doing two inte-
grations by parts. Likewise, once S0, T~, and Tj
are known, the integrals in Eq. (4. 33) can be con-
verted into integrals over Fourier space and eval-
uated. This procedure yields

F(T, cr) = Eo/N+ oHo -Ho(2w ) +0[Ho(lnHo) ] ——,
' T

Ti=h'( 2u+')+o(2w) ' f h'(u-u')Ti(u')du'+(2w) '

x f h (u+u'+2o. ')To(u')du' . (4. 32d)
0

The constants q and p are found by solving for S0
and S, and requiring that S,(0)=S,(0)=0. S, and T,
are of order (lnHo)~. To the order we wish to

Equations (4. 7) and (4. 8) are correct for &~
'

~ —rT. To satisfy eI" ~ —7'T and have &,' =O(T)
at some points, it is possible to have e',"'= O(T)
only in the neighborhood of /=0. Therefore, the
equation for line h is e,"'(0)=0 or Ho=&+ 1.

To find the free energy, a suitably modified form
of Eq. (4. 9) is needed. The asymptotic analysis of
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Eq. (4. 6) for z,'"(0)= O(T) is performed by Taylor
expanding z[ & around g =0. The integral that is

-gaevaluated is of the integrand ln(1+ C e "
), not e " .

This gives us an &z ' of the form

e&"'= —(2v) '/'(b —1) j, (P) (sinh4) '

x Eo(-e, z) [T +O(T )], (4. 35)

where Eo(z, s) =P qz"/n', and G= &+ 1 —Ho is an

O(T) quantity that is either positive or negative.
Also,

OO -x2
Fo(z, z) = —v / J dzln(l —ze ") .

(Note that Eo arises in the study of the free quan-
tum gases. )

The analysis of the free energy has to be modi-
fied in the same manner as the preceding. One
finds

E(T o) 0'Ho WHO + (2v) Fo( e ~ ~)

x [T'/'+ O(T')], (4. 36a)

o= z+T / (2z) / Fo (-e /, z)+O(T), (4. 36b)

y= —(2zT) / Fo(-eo/r, —~)+O(1 ), (4. 36c)
and

C =( ~2)-"'[ 'T"' F-(--e"' -')

+ T "'GE, (-e"' -')-

-T-"'O'F (- "' --')]+O(T) . (4. 36d)

F is equal to the limiting form from region 8
multiplied by —Eo(—es/r, —,'). The b -1 limit is
again allowed if p is rescaled. By taking G/T
large and negative, Fo can be approximated to re-
cover Eq. (4. 10a) and for G/T large and positive
to recover the T-independent terms of Eq. (4. 2Va).

H. Q'T) near Line c; 5 = 1 (Antiferromainetic), e1 ~& rT,
e(11)=O(T) at 4=r, ~~1

The analysis of line c parallels that described in
Sec. IVG. Equations (4. 12) and (4. 13) are correct
for e] '- ~T. This implies that e~"'=O(T) in the
neighborhood of P = + z, and allows one to describe
line e by

Ho= 2sinh(4)dn(v) or Ho= 2 sinh(4)Kk v

After substituting &&
' into the free energy the log-

arithm cannot be expanded, but the method de-
scribed in Sec. IVG must be applied. This results

F(T, o) =ED/N+ WHO+A / Eo(-e /, —', )

x [T O(T )] (4. SVa)

C„= A-"'[;T-"'E(-e-"' -')

x (e Ho(n 2)/T+-e&z-1)] n) 3 (4. SSa)

g„=dn(g)*ln(e "0"/r+e~~ &), n= 1, 2 (4. 36b)

with lim„„g„/n=0. These equations are found by
dropping the exponentially small &, term in the n
= 2 equation. We observe that the g„are constants
and, ther fore, the E„are

sinh(WHO/T)
sinh(-,'Ho/T)

(4. 39a)

E& ———(sinh4 )dn (P) + T in[2 cosh( —,'Ho/T)] + ~ ~ ~

(4. 39b)
The next term in the &„ expansion is exponentially
small in T. Upon substituting &z into the free en-
ergy the results are

F(T, o) = Eo/N+ oIfo A/ (1+e "o/ -) e

x [T / +O(T' ')], (4. 40a)

@=A sinh( —,'Ho/T) e [T +O(T )],
(4. 40b)

y=-,'A' 'cosh(-,'Ho/T) e [T ' '+O(T'/')],
(4. 40c)

and

C„=(B )'A'/'2 cosh(-,'H, /T) e

+ BT-1/2F (
-B/2' i)

+B'T""Fo(-e"', -z)]+o(T) (4. 3Vd)

B, given by Eq. (4. 15f), is O(T) and is either posi-
tive or negative. Equation (4. 15a) is recovered
from E(T, o) by taking B large and positive, and
the temperature-independent terms of Eq. (4. 29a)
result from B large and negative.

I. 6(T) near Line d; 5 =1 (Antiferromagnetic), Ho =O(T),
641

It is observed from Eqs. (4. 12) and (4. 14) that
for Ho= 0(T) the e„' ', n) 2, are O(T) and the e„"'
are linear in T. Therefore, &,' ' now contributes

„6(1)]Zto the free energy, and since g 'n ~~ is not small,
the previous solution for the z„' ' in region C is not
valid at line d. To obtain the correct &„' ' solution,
let &„' '=Ho(n —1), n) 2, and e] '= —,'Ho —sinh(4)
xdn(p). If z„' '= Tg„, the g„are given by

g„=dn(p) e ln[(e "0"/r+e~~+&)

a= —2 (TA)' 'E ( e, —,')+O(T),- (4. SVb) x [T~/ + O(T i/z)], (4. 40d)

x = -4 '(A/T)"'Fo(- e "', --.')+O(T'),
(4. SVc)

where B = sinh(4) Kk /w. For Ho/T large E(T, o)
in region C is recovered.
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J. O(T) near Point P; 5 = 1 (Antiferromagnetic),

0 =O(T)

e,/T = ch(x) ~"ln(1+ e'2 ) —ch(x)/T,

with lim„„e,/n = Ho and

F(T, o) = Ep/N+ o'Ho —T(2n)

(4. 4 1'b)

One sets

x f ch(x) ln(1+ e'1 )dx . (4 41c)

and
~„=Ho(n -1)+Tg„(x)+ ~ ~ ~ for n~ 2

e q
= ~o —ch(x) + Tg~(x) + ~ ~ ~

.

the next term will be of order T . The g„satisfy

g„=ch(x) *"ln[(e !)"~ r + e2~+~) (e "p'" )~ r + e'~-~)],

n~ 3 (4.42a)

ch(x) + !n[( -2HQ/r + e22) (I + etHQI2+2pT-ch(x ))I r)]
(4. 42b)

and

gq = ch(x) *"ln(e "o~ r + e'2), (4. 42c)

with lim„„g„/n = G. The driving term in Eq.
(4. 42b) is exponentially small for lnT & x& —lnT,
while the sech(2))x) in the free-energy integral elim
inates the contribution of x & 1nT and x & —1nT.
Therefore, the principal contribution to the free
energy comes from the ranges x=y +2m lnT,
where y = O(1) in T. Since all functions are even in

x, we need only multiply by two in the appropriate
places and look at the range x=y+2g 'lnT. After
defining e„(y)=g„(y+2H ~inT) the relevant equa-
tions are

e„=ch(y) +"ln[(e "o" + e'~+&) (e "p'" ' +e'&-~)],

n~ 3 (4. 43a)

e2= ch(y) s"In((e "o +e'2)

In the expressions for the free energy in region
C and near lines q and d, the coefficient A goes to
zero as point P is approached. This indicates that
the limit is not valid. Furthermore, for the free
energy in region D there are coefficients that go to
infinity near P. Therefore, a separate treatment
of point P is necessary. As previously mentioned,

g is scaled to x= P/4, when 4 -0. If one remem-
bers that ch(x) = —2'v sech(2') and defines a *"op-
eration such that

f (x) *"
g -=(2x) f f (x —x') g (x') dx

the coupled equations for the &„are

&„/T=ch(x)*"ln[(l+e'~+~~ ) (I+e'~-~~ )],
n~2 (4. 41a)

e& ——ch(y) + ln(e "o~ r+ e'2),

with lim„. „e„/n=0. The free energy is

F(T, c) =Eo/N+ oHQ —T C(HQ/T)+ O(T ),

(4. 43c)

with
o= TC'(H, /T)+O(T'),

))' = C (H /T) + O(T),
and

C„=2TC(HQ /T) —2HQ C'(Ko/T)

(4. 44a)

(4. 44b)

(4.44c)

The low-temperature results for regions A, B,
and C and O(T) near lines b, c, and d can be ob-
tained by using the dispersion curves for the first
excited states and spin-wave arguments. (As we
have said before, this technique is not extendable
to higher orders in T.) Region D might also be
explained by such reasoning, but we do not have the
dispersion curves as a function of momentum in D.
In an O(T) neighborhood of point P it seems that
one cannot use spin-wave theory to derive the re-
sults since the function C(HQ/T) comes from the
solution of an infinite set of nonlinear integral
equations.

We divide the discussion similar to the order of
the low-temperature thermodynamics presentation.
The ground-state energy is set equal to zero, since
only the temperature dependent terms of F(T, a)
are of interest.

A. Regions A and B and O(T) near Line b

It is easier to do the Ising model first, where
the Hamiltonian is that one given in the Introduc-
tion. Consider the set of states which has no bound
states; i. e., no two overturned spins from the
aligned ground state are on adjacent sites. Form
the partition function by taking only these states.
There will be N excitations with energy Bo —5J,
—,'N(N —1) states with energy 2(BQ —M), NI /[I!
x(N-I)!] states with f(BQ —5I), etc. The partition
function is

N

Q =Q N! [I!(N I)!] ep)&Q~ Ho) —(1 ep(Q~-Hp-))H
lK

(3. 1)

+Ho T C'(Ho/T)+O(T ), (4 44d)

where

C(x)= f dye'"~ In[1+exp( —,'x+e& —He'" )] .
(4. 44e)

We have been unable to solve Eqs. (4. 43) and eval-
uate C(x) in a closed form. For Ho/T large and
positive, F(T, o') in region D is recovered.

V. DISCUSSION

x [1+exp(-,'H, /T+ eq —ve'" )]j, (4. 43b) F (T B)= P ep' o'+ (5. 2)

and (Note that the proper variable is the magnetic
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field, not magnetization, in this calculation. ) The
above argument is modified away from the Ising
limit. From E(l. (3.4) the energies of the first ex-
cited states are E(q) =H, —5(h —cosq). There are
N such states with q= 2vn/N, 0 & q & 2». The ex-
citations included in the partition function are the
N states with energies E(q), the ,'N(N——1) states
with energies E(q, )+E(qp), the N! /[l! (N —l)!]
states with energies E(q&) +E(qp)+ ~ ~ ~ +E(q&), «-'.
Then, we have

N

q=Z ZZ".Z exp(- pk E(q,)),
0 ~1&4»& ~ ~ ~

&q& ~2 oaf

where the q's are summed over 2'/N, and

lnq =E, ln(1+ e P "') .
For N-~, we have

Fr(T, Hp) = —T(2&() f dqln(1+e P "') .
Therefore, in A and B,

(s. 3)

(5.4)

(s. s)

B. Region C and O(T) near Lines e or d

The first excited states of the antiferromagnetic
Ising model consist of turning over all spins in a
connected region. Such states are specified by
giving the positions of the two boundaries of the
region. For B0& p &0 there are —,'N positions for
the first boundary and —,'N- 1 positions for the
second. Since the boundaries are indistinguishable
and the ground state is doubly degenerate, this
implies —,'2(-,'N) (,'N 1) state-s w-ith energy. J- Bp.
The reason there are not N positions is that the
lowest excited states for B0~ p & 0 consist of only
S'=1 and not S'= —1, 0. The other states which
we include in q' are, in general, n connected non-
overlapping regions with energy n(Z- Bp) and
multiplicity 2(-,'N)!/[(2n)! (-,'N- 2n)!]. q' can be
written as

N/2

q'=+ [1+(-1)"](2N)! [n!(-.'N-n)!] 'e'"('p '& '
(s. s)

Therefore, we have

q/ (1 + e8(&&p-J&/2))))/2+ (1 e8(pp-z& /2)N/p (5 9)

In the thermodynamic limit the second term can be
dropped to give

F1(T B ) (( T) e(B z /2pT +&

(T H ) T3/ 2(2 )-1/ 2 (& ((& 1 //Q& + -(5 5)

At O(T) near line l&, where E(q) ~ —7.T and E(q)
= O(T) for a range of q,

F„(T,H, ) = T"'(2v)-'/'Fp(- e'/', -',)+.. . .
(5. 7)

The two formulas agree with the previously ob-
tained results.

= g (1+e P i/p ")+g(1 —e Pe(/P" ) (5. 14)

For Bp= O(T) (near line d) the first excited states
consist of four types for each of the two ground
states; states with S'=1 and energy J—B0, states
with S'= —1 and energy J+B0, states with S'=0,
energy J, and with the first spin up in the region
of overturned spins, and states with S'= 0, energy
J, and with the first spin down. There are —,'(-,'N)
&&(-,'N- 1) states of each type. The partition func-
tion is formed by using these four classes as ele-
mentary excitations. Since only one boundary can
occupy a given site, a generalized exclusion prin-
ciple is in effect; i.e. , if a particle (boundary)
occupies a given state for one of the classes of
states, not only other particles of the same class,
but particles of the other classes cannot occupy the
state. This results in a partition function

N/4

q = E 2(2N)! [(2n)! (2N-2n)!] ~

n=0

x(e-(J'+~p&/r +2e +e ' p' )" (5. 11)

The first factor puts in the degeneracy for the
ways of distributing z nonoverlapping connected
regions on the lattice with a doubly degenerate
ground state. The last factor results from fixing
the distribution of connected regions on the lattice
and calculating the partition function for distribut-
ing the states over the four classes. After noting
that the last factor is a perfect square and applying
the same procedure used to obtain E(l. (5.9), one
derives

q'= [1+e ""2cosh(-,'Bp/T)]""

+ [1 —e 2 cosh(~zBp/T)]" . (5. 12)

For N- ~ this results in

Fr/(T, Bp) = —Tcosh(-,'B,/T) e-~/ pr + ~ ~ ~ . (5. 13)

The preceding illustrates the origin of both the
half-gap and the extra factor of 2 cosh(-,'Bp/T) near
line d. The half-gap comes from the restriction
that only an even number of particles (boundaries)
can be excited out of the ground state. The factor
of 2 cosh(-,'Bp/T) comes from an increase in the
degeneracies for B0 small.

Away from the Ising limit one parallels the dis-
cussion in Sec. VA with the dispersion curves of
the first excited states given by E(ls. (3.6) and
(3.7a). In region C and O(T) near line c only the
S' =1 dispersion curve contributes to the low-tem-
perature thermodynamics. Therefore, from the
restriction to only even fermion excitations,

N/2

Q=m+ E ()+( 1) & Z ' 'Z exp ))ARUM(q ))L=1 0&q &(f ~ ~ o &q1 4 l ~=1

Note the half-gap.

(s. 10)

where , E(q/)p= (sinhC)I& (1 —k cos q) Hp.
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F (T H ) Ts/2Al/2 -8/T +, (5.16)

and for 0(T) near line c,

S', (T, H, )= T'"&"&,(-8 "' -')+ (5 17)

These are our previous answers with the half-gap.
For O(T) near line d all three E,(S'= + 1, 0; q„

qz) must be used with four classes of excitations
for each ground state and a modified exclusion
principle.

Then
N/2 &/2

Q 2+ Q [1+( 1)l]Q Q. . .Q Q (e-SEg(li&gs&g~g)

Ogq1(q2 ~ ~ ~ (q +~f1 j - 1

+2 e BE3(0;&f,-&» ~) +e 8E2 ~'~l +f+~ )

N/2

= 2++ [1+(- 1)'] 2'cosh'(-,'Ho/T)

In the thermodynamic limit

Z, (T, H,)=- T(2v)-' f'dqln(1+a-'~~»») . (5 ~ 15)

Expanding for region C gives

I'r(T, Ho) = —T A 2 cosh( 2'Ho/ T) e
(5. 19)

which exhibits the extra factor of 2 cosh( ,'Ho-/T) and
the half-gap.

In conclusion we reiterate that, while physically
illuminating, the simple arguments are not gen-
eralizable to higher orders in T as are the expan-
sions in Sec. IV.

Finally, we can make a statement about the re-
gion l54 I & 1. One knows from Araki's theorem
that the free energy is analytic in 5h and Ho for
T&0. Furthermore, from the work of Yang and
Yang" one knows that the ground state is analytic
across 5~ = + 1 for o & 0 and a fixed. Therefore, it
is reasonable to expect that Egs. (4. 6) and (4. 10)
can be continued into the region I OA I & 1 and give
the correct low-temperature thermodynamics for
H, —6a —1~ p&0 and l64i& 1. [Note that Eqs.
(4. 6) and (4. 10) are analytic continuations of each
other. ] Also, for O(T) and O(1) near the line Ho
= 5h+ 1 with 66+ 1 & p, the analytic continuation of
Eqs. (4. 36) and (4. 2V), respectively, should give
the correct low-temperature thermodynamics.
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