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Angular Distributions of Photoelectrons from H2: Effects of Rotational Autoionization ~
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Fano's theory of photoabsorption by H2 near the ionization threshold is extended to yield
photoelectron angular distributions above as well as between the ionization thresholds for al-
ternative rotational states of the H2' ion. In accordance with recent measurements, the angu-
lar distribution of direct photoionization is quite different depending on whether or not the
ionization is accompanied by a rotational transition. In the autoionization range between rota-
tional thresholds the angular distribution oscillates along each Rydberg line of the rotational
autoionization spectrum, resulting in Beutler-Fano resonance profiles which depend strongly
on angle of observation. The results are compared with available experimental data. Angu-
lar distributions provide very sensitive tests of the theory. The calculation may serve as a
basis for extensions to electronic and vibrational autoionization processes.

I. INTRODUCTION

Increasing emphasis is being placed on energy
analysis of molecular photoelectrons ejected into
small solid angles. ' The corresponding differential
cross sections contain information which should
make them sensitive probes of molecular dynam-
ics. For example, Niehaus and Ruf"" have re-
cently shown that molecular photoelectron angular
distributions are strongly dependent on the rota-
tional state of the residual ion. Carlson" '' has ob-
served energy dependences in the angular distribu-
tions of molecular photoelectrons due to the in-
fluence of autoionization on the photoelectric emis-
sion process. The theory needed to understand
these effects is only just beginning to emerge.

Here are reported and discussed the theoretical
cross sections for the process

H2( Z~, v' = 0, N) + y (F., j„=1)

-H2'( Z~, v'=0, N')+e (/=I),

differential in the direction and energy of the photo-
electron, averaged over the initial orientation of
the H&, and integrated over the final orientation of
the H&'. The angular distributions are predicted to
be quite different for transitions with N' =N and
N '

& N in accordance with the measurements of
Niehaus and Ruf. '"' In addition, it is foundthat the
angular distribution varies sharply across rotation-
al autoionization profiles. In other words, photo-
electron spectra of the autoionization peaks are
expected to depend strongly on the angle of ob-
servation.

A preliminary report of the calculation has been
given elsewhere. The calculation extends Fano's
work (here referred to as FH) on photoabsorption
in Ha. The differential cross section is formulated
in terms of the angular-momentum transfer theory
of angular correlations, developed in the preceding

paper' (here referred to as FD). In the remainder
of this introductory section the analysis of reaction
(1) will be outlined in the context of FH and FD. In
Secs. II and IO the detailed calculation is given,
and in Sec. IV the explicity results are given. The
calculation depends on four interaction parameters:
the real dipole matrix elements d, and d, for photo-
absorption to A=O and A=1, and the quantum de-
fects Itl, , and p, , of the Rydberg series npo and npw.

In Sec. V it is indicated how these parameters may
be determined by fitting the results to experiment.

In the calculation great effort is devoted to the
detailed investigation of the various aspects of the
theory. This enables us, within the relatively
simple framework of the rotational problem, to
focus on those basic concepts and methods that will
be essential for the extension of the theory to the
complex phenomena of electronic and vibrational
autoionization, which are emerging as dominant
features of low-energy atomic and molecular phys-
ics.

Before we proceed, one aspect of reaction (1)
deserves special emphasis, namely, the photo-
electron orbital angular momentum. Owing to ef-
fects of centrifugal barriers, as discussed in FH,
the electron is ejected predominantly as a P wave
(I =1), with some small f-wave (I=3) component.
As we shall outline in Sec. IV, the angular distri-
butions for reaction (1) with NxN' are particularly
sensitive even to small admixtures of f waves, and
in fact the data of Niehaus and Ruf"" indicate that
these angular distributions do deviate from the pure
P-wave values. However, in order to emphasize
the main features of the photoionization process,
we consider here, as in FH, the single value l =1
only; the extension to include f waves is straight-
forward, but will be postponed to a subsequent re-
port.

Similarly, we keep g" =g'=0, but the theory may
be extended to include vibrational interactions as
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J= N+ j„=N'+ l,
or also in terms of the angular momentum trans-
ferred to molecular rotation

j)=N' —N= j„-l .
From (2) or (3), together with the fact that N and
N' must be of the same parity for a homonuclear
diatomic molecule in a Z state, the selection rule
on N' is N' = N and N' = N + 2. The corresponding
values of Pare J=(N, N+1) and &=N+1. From (3),
however, the magnitude of the angular momentum
transfer is always less than or equal to 2, and pro-
cesses with N'=N+2 are consistent with the single
value jg = 2.

For a given initial rotational state there are then
three rotational thresholds for reaction (1) given by

(4)Ig. =Ig N(N+1) 8-„+N'(N'+1)8„, ,

where Io= 124418.4 cm ' and the rotational con-
stants 8 depend slightly on N and N'. To these
thresholds there correspond three groups of photo-
electrons with energy

6N ~ (a. u. ) =
g k~r ———1/2vg s
1 2 2

where the energy parameters 0„.and v„. are de-
fined in terms of I„., the wave number E of the in-
cident light, and the Rydberg constant R, through
the relation

well. Only the dipole interaction with the incident
light is treated (j„=1), with wave number E and lin-
ear polarization along the laboratory z axis. As
shown in Sec. Dt, the results for unpolarized light
are given by a mell-known transformation of the
results for linearly polarized light. Because of the
weakness of the spin-rotation interaction in H2',
it is found sufficient to keep the electron spins cou-
pled into a singlet.

Accordingly, the balance of angular momentum
is represented in terms of the total angular mo-
mentum

for photon energies between I„2and I„electrons
in the closed channel N'=N, with J=N-1, auto-
ionize into the open channel N' = N —2; and (b) for
photon energies between I„and I„,2 electrons in the
closed channel N'=N+2, with J=N+1, autoionize
into the open channel N' = N. Below I„2 all chan-
nels are closed and the spectral region is discrete.
Above, I~& lies the open continuum; all channels are
open and only direct photoionization is possible.
These four spectral regions are illustrated in Fig.
1 for N = 2. The vertical arrows denote autoioniza-
tion.

The amplitude for photoionization into the chan-
nel N' will be expressed in terms of the dimension-
less S-matrix element {N'I I S(J) INj„). This ma-
trix element is obtained in Sec. II by extending the
calculation of FH, from N= 0 to arbitrary N. The
integrated cross section for reaction (1), propor-
tional to a sum of incoherent contributions of the
amplitudes {N'l l S(J) I ¹j„),is given by

o" "'= (I/4v) [E'(2N+1)] '~. (a+1)
I
{N'll S(z)

I Nj. ) I

'.
(I)

The amplitudes {N'I I S(J) I ¹j„)superpose coher-
ently in the differential cross section, to give an
expression complicated by interference terms.
However, it is shown in FD that the differential
cross section resolves into a sum of incoherent
contributions corresponding to the alternative val-
ues of j, which contribute to the process. Each
contribution is proportional to the squared modulus
of a new amplitude, defined in terms of
{N'I I Sl (J) I Nj„) through the relation [Eq. (9) of FD,
i.e. , (FD9)]

{N'I
I SIj~) INj, )=~ (-1)"' ' (u+ I)

x N N'
' N'LSJ Nj„. 8

E —Ig. +RAN. .2 (6)

In the example of reaction (1) with N= 2, consider
the photoelectron in the N' = 4 channel (and hence
with J=3), but with &4&0, i. e., such that the elec-
tron is bound. The electron can exchange energy
with the ion core and transfer to the N' = 2 channel
(albeit at constant 8= 3). If the electron's energy
is above I2, the electron is no longer bound and
can escape to infinity. This process is rotationally
induced autoionization. The crucial point is that
the total angular momentum is conserved in rota-
tional autoionization. [For example, an electron
originally in the N' = 4 channel (J = 3) can never
transfer into the N' = 0 channel, for which Z= 1.]

In general for a given N there are two spectral
regions for which autoionization is possible: (a)

C

O
~~
U
N

O
~ ew

J=2

/
Io= I 244 l8.4 I2= 124592.5

I////////I = discrete

autoionization

I4= I 24998.8

photon energy (ciTi )

FIG. 1. Schematic representation of the spectral regions
for reaction (1), vrith %=2.
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Explicit expressions will be obtained for these am-
plitudes in Sec. III, for each spectral region and
channel N'.

The differential cross section is given by, from
(FD14),

N~g'

[E (2N+1)] '

2

x Z I(N', 1= 1Is(j,)IN, j„=l)I'e(j„8),
. &t=o

(9)
where the angular dependence is given by the fac-
tors [cf, (FD16)]

8 (0; 8) = (1/12m) [1+2 P~ (cos8)] = (1/4 v) cos~8,

8(1;8) = (3/12m) [1 P3 (cos —8)] = (3/8v) (1 —cos~8),

0(2; 8) = (5/12w) [1+-,' P, (cos 8)]= (3/8v) (1+ —,'cos~8);

(10)
8 is the angle between the axes of linear polariza-
tion and tbe direction of the photoelectron.

The angular distribution law for reaction (1) is
seen from (9) to have the general form 1+ PPz(cos8).
It is to be emphasized that this law is a general
result for dipole ionization, based on Yang's the-
orems, subject only to the restrictions that the
target is initially unpolarized and that no polariza-
tion analysis is performed on the residual ion. In
particular it makes no difference whether the target
is an atom or a molecule.

The asymmetry P is in general a weighted aver-
age of the P values given in (10), viz. , P=2, —1,
—,
' for j,=0, 1, 2. However, when N'=N+2, we have

P = -,', since only j,= 2 can occur. Alternatively,
processes with N'=N, we shall see, are dominated
by the j,= 0 contribution, for which P= 2. Thus,
large differences between asymmetry parameters
for process N4Ã and N= N' are seen to arise owing
to alternative dominant values of j,.

In Sec. IV A explicit expressions are given for the
open continuum differential cross sections. The
cross section for reaction (1) summed over all
channels N' is also given; it is equivalent to the
results obtained by a fixed-nuclei approximation, '
and specifically to tbe result of Tully, Berry, and
Dalton. "'

%Ye compare our predicted open-continu-
um asymmetry parameters with measured values
and with other calculations. The agreement is good.

In Sec. IV B the integrated cross section is given
for rotational autoionization between I„~and I~,
into the channel N'=N 2(P" ="~=—', ). Als-o given
is the expression for the energy-averaged inte-
grated cross section, which pertains to measure-
ments that do not resolve the resonance profile.

In Sec. IV C is given the differential cross section
for rotational autoionization between E„and I„,3,
into the channel N' =

¹ Both the integrated cross

section and the asymmetry parameter undergo
sharp variations with energy, and thus the Beutler-
Fano profile of the integrated cross section is pre-
dicted to show a strong angular dependence. Fi-
nally, expressions are obtained for the energy-
averaged integrated cross section and asymmetry
parameter.

II. MATRIX ELEMENTS. (N'l(S(J) Qj„)

The matrix elements (N'l I S(d) I Nj„) represent
rotationally invariant amplitudes for ionization to
proceed with total angular momentum J. Accord-
ingly, we will obtain these matrix elements by ex-
panding the pbotoionization dipole matrix element
of reaction (1~ into rotationally invariant amplitudes,
with alternative values of J. FH provides the basis
for the expansion procedure.

A. Expansion of Dipole Matrix Element

The dipole matrix element for reaction (1) may
be written as (E, N'm„. , lm I s I Nm„). We expand
this amplitude into amplitudes for ionization to final
states of alternative values of J to give

(E, N'm„. , lmI z INm„)

&~
I
~~.) «»~~.

I
~ IN~. ) .

(11)
the first factor on the right-hand side is a signer
coefficient. The amplitude (E, N'Um„I z INm„) can
be decomposed into products of two sepai. ate factors
pertaining, respectively, to the photon absorption
proper and to the subsequent final-state interac-
tions of the electron-ion core system.

A feature of this separation is that tbe integration
to obtain the dipole matrix element extends only
over the region of space occupied by the ground-
state electron density. In this region of space, well
within the region A of FH, the electronic motion is
strongly coupled to the internuclear axis and thus
the dipole moment is diagonal in the molecular-
frame quantum number A =

I S 2'
I h ' [2' is the unit

vector along the internuclear axis, the z axis of the
body-frame (primed) coordinate system]; Hund's

coupling case b applies. The corresponding dipole
matrix elements are written as (Agm„!g I Nm„), and
only two values of A occur: 0(c) and 1(w). (In FH
this matrix element was called simply D~ since one
dealt only with J = 1 and N = m„= 0. ) In the language
of molecular spectroscopy, the matrix elements
(AJ'm„la I Nm„) pertain to a transition between states
1se and npA both of vrhich belong to Hund's case b.

%hereas the dipole matrix elements
(AJm~ I ~ I Nm&) pertain to the body frame of refer-
ence, the complete matrix elements
(E, N'lcm„ I z I Nm„) are defined in the laboratory
frame. Thus they depend on the connection be-
tween the two frames, namely, on the l uncoupling
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process that accompanies the separation of the
electron from the ion, as well as on the final-state
interaction. This dependence is represented, here
as in FH, by a set of coefficients A~~. ; these are
the coefficients of the expansion of the state

I E, N'IJm„) into body-frame states I AZm„) [see
(FH20)]. Thus we write

(E N'I~~N Iz I
N~. ) =~.(A "")'.(A&~~l z

I
N~N)

(i2)
In the following we discuss the (AJm„lz l Nm„) and
the coefficients A' ' separately. Note, however,
that the coefficients A (~' vary rapidly as functions of
the energy E in the autoionization region, whereas
the matrix elements (AJm„l z!Nm„) vary slowly;
in fact this slow variation will be disregarded al-
together in this paper throughout its spectral range
of interest, i. e., within several thousand cm of
the N' = 0 ionization threshold.

B. Body-Frame Amplitudes (AJm& (zPfm&):
Photoabsorption

In the analysis of the (AZm„l z I Nm„) we want to
separate out all geometrical dependence from the
purely dynamical factors which pertain to the body
frame. To this end the matrix element will be re-
duced to separate integrals over the molecular
orientation R and over the electronic coordinates
r', and r3 in the body frame.

The electric dipole operator is written in the
laboratory frame as

z-=z1+z2=(2 m)' '[r1 Y, (r(),)+r 12",()(r2)], (13)

where the notation r= (8, P) i—s used. Transforma-
tion to the molecular frame gives

z=(+w)'~' Z
I

Z r, Y',„(f',) ID t'(1R(), (14
1=1 (11~ 2 )

where D(R) is the usual symmetric top eigenfunc-
tion. '3

The initial-state wave function has the form

2N+t "'
(r', r~R)Nm„)=( (), ~(r', rz)D((„'(2)

(16)
and parity (—1)". The subscript Z denotes the elec-
tronic portion of (15) as an eigenfunction of A with

eigenvalue 0. For electric dipole interactions, the
initial and final states are of opposite parity. The
final-state wave function of parity (-1)"'is

ij8
(A~~NI r1r2R) =, ', " [cf,J( (rl r2) D2. ~ (R)

6m 1+ 52()

+ (- I)'~N q,', (r,' r,') D",)'„(R)] . (i6)

%e see that the final-state wave function vanishes
for A = 0 with J= N, i. e., Z -Z transitions are for-
bidden when J= N. This is a direct consequence

Using E(ls. (14)—(16) we may carry out the integra-
tion over molecular orientation R. The result is

(AZ~„
I
z

I
Nm„) = d l7~'(Jun„l N111„10)

where

d, =(()-v)"'ffdr,'dr,'

& Pg ~(rl r2) [ ~ 1"( &12(1";)]y1 ~ c(rl r'2)
j"-1,2

(i9)

is the (real) dipole matrix element for excitation
into the npA Rydberg levels of H&, and

V~('„&=(- i)' "-"(2-6~)"2(I -A, ZAINO) (20)
I

is an element of a transformation matrix equivalent
to that introduced in FH for t uncoupling, and given
by (FH7). In (20) the tilde denotes transposition.
A factor (-1)", included in (20), was omitted in
FH where N= 0. While not explicitly indicated,
actual evaluation of (17), and hence (19), must in-
clude integration over the internuclear distance for
the v"- v' vibrational transition of interest, which
is the 0-0 transition here. (The reader is referred
to Ref. 6 for details of the generalization of these
results to arbitrary v" and v'. )

The d~ given by (19) contain the fundamental dy-
namical information about the photon-absorption
process. In this paper we treat the d~ as parame-
ters on which the final results depend, as was done
in FH for the D~. The d& have been determined by
Herzberg and Jungen by fitting the results of FH to
the high-resolution photoabsorption spectrum of
H~.

' "' Alternatively they might be calculated from
first principles, ' ' but this will not be considered
here.

C. Coefficients A &~J&~,. Final-State Interaction

The A~' are determined by fitting boundary con-
ditions applied to the final-state wave function at

In particular, the radial part of the wave
function is normalized per unit energy range with

of parity conservation. The continuum final-state
electronic wave functions (t)& )((r', r2) are taken to be
normalized per unit energy range.

The electronic portions of the wave functions (15)
and (16) are represented in the molecular frame
as p(r', r2). The properties of these functions rele-
vant here are the following: (a) They are eigen-
function of A; and (b) their expansion for large val-
ues of r, (or r2) coincides with the electronic part
of (FH13). Hence the g(r,'r2) are eigenfunctions of
the photoelectron's orbital momentum / only for
large r, or large xz.

The dipole matrix element can be written as

(Az, l. IN „)= JyJ dRd. ; d.;
x(Az~N

I
r1 r,'R) z(r~ r', R IN~~) . (17)
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the incoming-wave boundary conditions appropriate
to detection of outgoing electrons in a specified
channel. Application of the incoming-wave boundary
conditions requires the coefficient of the outgoing
wave 8' +~"'"N) to vanish for N4 N' and the phase

y„.„.to vanish, and will be denoted by a minus
(-) sign next to the 4 A'~ '. Two cases arise de-
pending on the spectral region: Either all channels
are open, for a given J, or one of tmo channels is
closed (see Fig. 1).

If all channels for a given J are open, the A&„'
can be taken from (FH23), i. e., "

g(oJ ) gfppg p(J)Ag' Ag '

In (21), », &, is the quantum defect of the npA Rydberg
levels of H2, and the superscript g denotes that this
result applies to photoionizati. on in the open continu-
um. The quantum defects p. ~ are taken to be con-
stant over the spectral range of interest to us„and
they have been determined, as were the d~, by fit-
ting the results of FH to experiment. "' Accord-
ingly, the A" ' do not depend on the photon ener-
gy E in this case.

In the autoionization regions„only one of two
channels is open, if J=N+1 or J=N —1, namely
the channel with X'= J -1. For this case, the
boundary condition on the closed (unobserved) chan-
nel is that its wave-function component goes to zero
exponentially as z- ~. Owing to this condition, the
coefficient A( ' for N' = J—1 is not energy inde-
pendent, but oscillates as a function of the spectral
distance v J,&

from the IJ,j threshoM of the closed
channel. Following FH„we express the A( ' by
means of a subsidiary parameter, namely, the
phase shift b, ~,(v~„) for elastic scattering of a. free
electron with /= 1 by a molecular ion with N' = J—1
in a state of total angular momentum J. This phase
shift is defined modulo + and is a periodic function
of v~„, with period 1. The equation (FH32) which
defines ao(vz) is easily generalized, "for arbitrary
values of J, to

sin(»». , —a~, ) 8+ 1 sin»(». ,+ v~„,)
sin(»&L, —L~, ) J sin7&(», ,+ v~„)

The solution of (22) may be represented graphically
'by plotting &(v~,&)/» (modulo 1) as a function of
v~„(modulo 1). The resulting curve is known as a
Lu-Fano plot, and is illustrated for J=1 in Fig.
2(a) of FH.

The coefficients A(J ' for the autoionization re-
gion will be indicated by a superscript a, A"
and are given as functions of b, (v~„) by

, &a Z-& g ii»~~P, N'= J'-1 R ~ ( (J
Up g. J„g sxnp5

(23a)
where 5 = p., —p, This result differs by the factor
e ' "~+" from the corresponding result (FH40), be-

1/2
x —'-'-("') (23b)

d3'V J+g

an expression analogous to (FH41). The contribu-
tion of the closed channel (N'= J+1) to the coeffi-
cient (23b) represents the effect of autoionization
and is proportional to

(
dk{vg+&) el+ 1 sin[6(vJ+g) —&&g~]

dlT vg„& eT sln7T(vg+&+ &&. q)

This formula follows from (22) and generalizes
(FH39). The lifetime of the photoelectron in an
autoionizing level is indeed proportional to the
square of (24), '8

gf( i I,
dL+(vx "a)]

d (h(u)

1 R'~' d [&(v~,)]
2c (I~ ~3

—E) dvg. ~p

(24)

D. Mairj[x Element (W ',1=1~S(J)Pf,j„=l)

We now proceed to obtain the desired expression
for the rotationally invariant scattering matrix ele-
ment (N', I = 1 I S(J) IN, j„=1). Combining Eqs. (11)
and (18) we have

(Z N'm', ImlzlNm. ) =~.(N'm. ImIZm. )

x [g, (g '- '), ,d, v,"„)(zm„l Nm„ lo) .
(26)

Comparing this result; with the scattering-matrix
expansion given by (FD5), namely, in our notation,

(N mv' i lml ~l Nm», 10)=Zz(N'm„. , fml ~m&)

'x (N'I
I
~(z)

I
») (zm„ INm„, Io), (2'I)

weseethatthematrixelement(N', I=1~ 8(Z)[N, j„=1)
is proportional to the expression in brackets in
(26). The proportionality factor is found by expres-
sing the photoionization cross section o in terms
of the alternative matrix elements {26)and (2'I), '

o= (2~)'e'ZI (N'm„. , Iml z INm, ) I

'

= (3/4~) z 'l (N'm Iml ~ INm„, lo) I', (26)

where both matrix elements are normalized per
unit energy range. The result is

cause here we normalize the final-state wave func-
tion to incoming-wave rather than standing-wave
bounda. ry conditions. " It is convenient to consider
an alternative expression for the A" J ' in terms
of the A" ' for the open continuum, namely,

n (&2 J ") a (O J -)~~,~'=J-l —~~,~'= J-t

+ &&,sr'=z+& exp [.—& [&vs+&+ ~(vying)] )
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(N', 1= lls, (J)IN, j„=1)= ~ Z, (W"'-}')„.,d, v('„},
(29)

where c( =+3m(2tt)te~E3. In (29) we have added a
spectral-regionindex i as a subscript to S(J'); i = o
for the open continuum and i = a for autoionization.

Summarizing, in this section we have used Fano's
theory of photoabsorption in H& to obtain the ex-
pression (29) for (N', l= 1iS(J)IN, j„=l). We will
now use this result, together with the expansion (8)
and explicit expressions (21) and (23) for the final-
state interaction coefficients A' ', to construct the
matrix elements (N', l = 11S(j,) IN, j„=1) for each
spectral region.

III. EXPLICIT EXPRESSIONS FOR MATRIX ELEMENTS
(N', 1=1~S(j )gV, j, =1)

A. Photoionization into Open Continuum

The matrix elements of S(j,) are given in the open
continuum by Eq. (8),

{N'I S,(jt) I
N) =Q, (-1)"-' '(2J+1)

X ' N'SoJ N . 30

(Since no confusion can arise here, and below, we
suppress the indices l and j„of the matrix elements
of S.) Using the expression (29), together with Eq.
(21), for (N'IS, (J)IN), as well as Eq. (20), we ob-
tain

{N S.(&t) I N) = n ~ (-1P ' ' (2J+ 1)

N N J
x(1-Aj JAIN'0)(Noll-A, JA) . (31)

The sum over J may be carried out analytica]ly, to

and the final result is
2N+1 '~'

{N'IS.(jt) IN)= n, (jtO, NO, N'0) c(j,),jt (32)
I

where we have introduced the amplitudes c(jt) given
by

c(j,) =Z}2(-1) (2 —6}}(})d}2e" ~(1 —A, lA
I j0) .

(33)

Owing to the Wigner coefficient in (32), j, is re-
stricted to even values and the corresponding c (j,)
are"

c(0) = (2)'~' (d, e""0+2d, e""),
(2) (2)l/8( d tt}2 d ttlj

)

The amplitudes c(j,) contain all of the dynamical
information about the reaction (1). They may be
viewed as scalar and quadrupole reaction ampli-
tudes, for j,=0 and j,=2, respectively. In fact, the
quadrupole amplitude c(2) is seen to vanish in the
united-atom limit of isotropic electron-core inter-
action, for which p, ,= p., and d, = d, . It so happens
that Ha (and apparently other molecules) approaches
the united-atom limit, in the sense that't("'

I c(2) I

«
I c(0) I; this has important consequences for the

photoionization spectrum (see Sec. IV A). Since
(N' I S,(j,) I N) is proportional to a single c(j,), the
amplitudes c(j,) add incoherently in direct photo-
ionization into the open continuum. We shall see,
however, that in the case of rotational autoioniza-
tion the c(j,) add coherently, owing to the interac-
tion between open and closed channels, which re-
sults in the autoionization. That is, we shall find
matrix elements (N'IS, (j,) IN) which are linear
combinations of c(0) and c(2) (see Sec. IIID).

Equation (32) gives the desired explicit expres-
sion for the matrix elements {N' I S,(jt) I 2V}. In the
subsequent development it will be useful to have the
corresponding relation for (N'

I S,(J) I N). This is
easily obtained by inverting the expansion (30) to
give (N'IS, (J)IN) in terms of (N'IS, (j,) IN). The re-
sult is

(SS]S.(O)]1C}=E( 1) '(2j, +1) I"-'-,
OI

(2C]S(ji)lsc}

= c(-,)'Cc
]
1!„„.c(0)+(-1) ' '[1 ( 22)2]c'c)( C2)200]CC0) I t, I c(2))

B. Autoionization between I& 2 andI& . N" =N-2

In the spectral region between I~ 2 and I„, only
the single channel N'=N —2 is open, with J=N-1
and j,= 2. The matrix element of S(j,) is

(N -2I s.(it = »IN)

We will give two different expressions for
(N —2 I S,(j,= 2) I N), obtained from the alternative
forms (23) of the coefficients A"" ' '. Their sep-
arate usefulness will become apparent in Sec. IV.

Using (23b) in the expression (29) for
(N —2 I S,(N —1) IN) we obtain

=(2N —1) (N —2I S,(N —1)IN}. (35)
N N —2 N —1 {N-2IS.(N-1) IN}={N-2IS.(N- 1)IN)
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{ffP -b, d +N-
+ c'{s"s-'N-» " '

{Nl s.(N-I) IN) . (36)de�&N

Combining (34) and (36), we obtain from (35) the re-
sult

Id~(N-2I s,(j = 2) IN) = — 3[N(N-I)]"'c(2)+ e" »-»I " ' [(2)'/ (2N —1) c(o) —(N+1) c(2)]

(3V)

Alternatively, using (23a), we obtain from (35)

/2N I 1/2 ci&2{ ([ / N 1/2
I N I 1/2

(N-2IS.(j =2)IN)=~I 5»n(~~. -~. a)d.l, +»n(v~. -~. a)d, l5 sing5 ' " '
I N —1

SNc))
{Cc c (c+ .2 t cC —1)—1 o.

5 sinp5 2i (38)

where (Nl s.(N+I) IN) = {Nls,(N+I) IN)

and

s defog
N +d e~g~, N 1

4,(N —2) = args

(39)

(4O)

( d~„+e'"""+2 &'
I

" (N+2ls, (N+1)IN) .
Ed»N+2

(42)

Combining this result with the expression (32) for
(N' I S,(j,) IN), we obtain from (41)

represents the value of 4N 2 for which the photo-
emission goes to zero. The result (38),displays a
well-known property of resonance amplitudes: Its
modulus describes a full circle in the complex
plane every z units in the phase shift AN 2.

C. Autoionization betweenI& and I& ~. N'=N

In the spectral region between I„and IN, 2, photo-
ionization leaving the ion with N' = N is accompanied
by rotational autoionization from the closed N' = N+ 2
channel (J= N+ 1). The corresponding matrix ele-
ment of S(j,) is given by

(Nl s.(j,) IN)=(NI s,(j,) IN} + c*"" ~ '&)

x d~N
5 2N+3 1/2 1 1 2t

(43)x (N+ 2
I
s.(j,= 2)

I N)

(N s.(N+1)IN)

e ~+N
= c( . [—d, sin(mIi, , —n,„)+d,sin(v(i, , - n,„)]Sin+g

If instead we use (23a), the matrix element
{N I S,(N+ 1) IN} is given by, analogous to (38),

(Nl s.(j,) IN)

=(SN —1)
I

' " I: (N[S.(N —1)[N)
where

jF (f,+I, ) i2[~N-~g(N) 3

sin p5 2i

(44a)

-(SN, )) I' ") ( [SN. [)[{N)[N

+(2N+2) ' I(N[S,(N~I) N) . (41)

As for (N —21S,(j,= 2) IN), we will give alternative
expressions for (41), differing in the form of
(N I S,(N+ 1) IN).

The matrix element (Nl S,(N+ 1) IN) resolves into
a sum of open-continuum matrix elements, when
(23b) is used for A""' ', i. e.,

&,(N) = i((u. + u, ) —»gc(2) (44b)

is the value of 4„at which (44a) vanishes and the
photoemission between I„and I„,2 has a minimum.
Equation (44b) is equivalent to (FH44'). A useful
alternative relation for r2, (N) is

d, sin[(4, (N) —i) p, ,)
d, sin[a, (N) —i/{[{,]

' (44c)

equivalent to (FH44). Using (43), together with the
expression (32), we obtain from (41) the explicit re-
sults

1/2 &g (y, +g ) $2fbN-& (N ))
(N[S (0)[N)= ™2(2 2N. 1 N[4(2) 1 c(0)+ (2) —2{2N+2) c{2)"
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(N(3(l) (N}=—
( ) I

(2) C c(0) —
(2 ) c(2) +3c(2)" . ( ) I,

2N 3
(N(E, (2)(N}= (- l) —

(
&

I
(2)"'c(3)+(2 ) c(2) +3c(2)" . ( 2. ) I. (43)

D. Parameters c(j,)

In Sec. II of FD it was shown that for systems
with a body frame of reference (such as diatomic
molecules) (N'IS(j, ) IN) may be expressed as the
product of two factors: a geometrical factor de-
pending on the rotational quantum numbers N and N,
and an intrinsic body-frame parameter M( j,) which
is independent of rotation of the body frame. This
is the essential content of the expression (32) of
(N IS,(j,) IN), and comparing (32) with (FD23) we
obtain

M(j, ) = [~i(2j, + I)"']c(j,) .

The point that we wish to emphasize is that this
factorization and the analysis of FD, Sec. II, ap-
plies only in the open continuum.

If autoionization can occur, the interaction be-
tween the different channels N', responsible for the
autoionization, dynamically connects molecular
rotation and electron-molecule interactions in the
body frame and, accordingly, the factorization is
"spoiled. " In fact the (N'IS, (j,) IN) are linear com-
bination of the parameters M(j,) [i.e., the c(j,)].

IV. RESULTS

The differential cross section for reaction (1),
given by (9), has the general form

A. Direct Photoionization into Open Continuum

Substituting the results (32) for (N IS,(j,)IN) into
(9) we obtain

"'„„ =.(E) z (, .
'

)

N N-2P. 5

(49a)

o", "= —,'q(i, ) I:I c(0) I'+f(N)
I
c(2) I']

2I c(0) I +-,' f (N) Ic(2) I

I c(0) I '+f (N) I c(2) I

&(j,O, NOIN'0) Ic(j,)I O(j&,'8), (48)

where rl(E) = 3c( /4 F3 = (2}})'e~E. For the dipole
moments d~ normalized per unit energy range in
atomic units, we replace q(E) by q(IO) = 4. 6 Mb over
the spectral range of interest for which we assume
both the dipole moments d~ and quantum defects
p, ~ are constant in energy.

Using the expressions (10)for the functions 8(j, ; 8)
we obtain the following results:

3( 2( P N(N —1)" ' 2(2N-1)(2N+1)

de N' ~N N'
t [1+p( P2(cos8)] 2 (46)

N(N+ 1)
(2N —1) (2N+ 3)

(49b)
where i (=—o, a) indicates the spectral region. The
angle 8 in (46) is measured from the axis of linear
Polarization of the incident light. For unpolarized
light, (46) is replaced by

[1+(- —,
' P", "

) P (cos8')], (4V)

where 8' is measured from the axis of incidence of
the light. 22

(N+ 1) (N+" ' =&(") 2(2N, 1)(2N. 3) I'")I
E& IN, 2

g N~ N+2
5

(49c)
The differential cross section (48) depends on N

and N' only through the squared Wigner coefficient,
which gives unity when summed over N'. Accord-
ingly summation easily gives

(},= Z o", " =-'q(io) (d'. +2d', ), + a". "' P". "' 2(2d', +Vd,'+6d, d, cosv6) E ~ IN+2 (49d)
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TABLE I. Comparison of calculated and measured open-continuum asymmetry parameters (see text for discussion).

A symmetry
parameter

p0 0

p1» f

p2» 2

Theory

This work

1.87 + 0.05

1.91+0.05

1.71 + 0.05

Shaw
and Berry
(Ref. 23)

I.65

Niehaus
and Ruf

[Ref. 1(a)]

l. 95 + 0.03~ ~

0.85 + 0.14

1.93+ 0.03

Experiment
Carlson

and Jonas
[Ref. 1(c)]

I.75

McGowan, Vroom,
and Comeaux
y.ef. 1(d) ~

independently of the initial rotational level N as
well.

The result (49d) pertains to measurements which
do not resolve (or that sum over) the final rotational
state, in accordance with the general result (FD26).
It is the result one obtains in a fixed-nuclei approx-
imation, ' and it is indeed equivalent to that ob-
tained in the fixed nuclei calculation of Tully, Berry,
and Dalton "' [see especially Eqs. (Bl)-(BS)of Ref.
2(c)].

Using the experimental values 5=0.285 and p= 1
+0. 3, obtained by Herzberg and Jungen, ' '" we
compare in Table I our predicted open-continuum
asymmetry parameters with values obtained by
other workers. Some caution is called for, how-
ever, since our values of 6 and p are "threshold"
values, and may differ slightly from their values
several electron volts above threshold where the
measurements were made.

Beginning with P„we see that the agreement is
quite good, with the exception of the somewhat-high
value of Niehaus and Ruf. The value P, =1.65 was
obtained recently by Shaw and Berry using an ex-
pression equivalent to (49d), together with theo-
retically determined values of p and 5.

Niehaus and Ruf have made the only measure-
ments of asymmetry parameters for particular ro-
tational transitions. Even though they have only
partially resolved alternative transitions, as
shall now be indicated, analysis of the predicted
values in terms of their results has provided very

. valuable insights into the validity of the theory.
The theoretical importance of such measurements
is to be stressed.

The principal feature of both the predicted and
the observed rotationally resolved asymmetry pa-
rameters is the large difference between the values
for P", "and P", ""~. This is due to the fact that
N-N ionization proceeds primarily with j,=0, for
which P=2 [see Eq. (10)], whereas N-N+2 ioniza-
tion proceeds entirely with j,= 2, for which P= —', ,
assuming that the photoelectron is ejected solely as
a p wave (l = 1) (see below). Theory and experiment

are in very good agreement on the values of P",

(The experiment did not resolve the 0-0 and 1- 1
transitions. ) More significant, however, is the very
poor agreement for the N-N+2 transition. As we
shall show in detail elsewhere, this difference can
result from coupling of photoelectron p waves (l = 1)
to f waves (l = 2) by the long-range quadrupole field
of the molecular ion. Sichel '"' has already empha-
sized the possible importance of higher partial
waves in molecular photoelectron angular distribu-
tions.

Here we will only sketch the preliminary analysis
of the effects of f waves. The contribution of f
waves to the integrated cross section is negligible,
since f waves would lead to nN= 4 transitions, which
are not observed. However, if the contribution of
f waves to the integrated cross section is of the
order e (e « I), the contribution to the asymmetry
parameter, through the p-f interference term, will
be of the order e (no interference term could occur
in the integrated cross section). Accordingly the
effect of f waves on the asymmetry parameters may
not be neglected solely on the basis of this absence
of AN= 4 transitions.

In fact, the effect on P", " (and P,) is expected to
be negligible, of the order of a few percent; but the
effect on P, "~ is probably substantial, perhaps
amounting to as much as a factor of 2. This is be-
cause the p finterference term o-ccurs only for
j, = 2, where it is multiplied by the large statistical
weight (2j, +l)(2l'+I)'~ (2l+1)' =5(21)' 2. The
p-f term may then be comparable to the pure p-wave
term in its contribution to N-N+2 transitions.
However, it remains negligible in N N transitions
which include an additional p-wave term from j,= 0;
this term is an order of magnitude larger than the
p-wave term from j,=2, because it follows from
p-1 that I col » Ic&l, as noted in Sec. IIIA. The
dominance of j,=0, for which P=2, explains why

P, " and 18, are so close to 2. It also accounts for
the observation of Niehaus and Ruf [Ref. 1(a), Fig.
3, upper curve] that the combined angular distribu-
tion for the 3-3 and 2-0 transitions is essentially
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the same as for the pure N-N transition.
Thus, the effect of the p fin-terference term

probably will account for the bulk of the deviation
of the measured value of P", N'I from the "pure"
p wave of -', . On the other hand, we do not expect
it to account for the difference between the predicted
and measured values of P,. Detailed verification
of these points must await further experimental re-

suits. At any rate, the analysis clearly shows that
the angular distribution can be a much more sensi-
tive test of theory than the corresponding integrated
cross sections.

B. Autoionization between I~ 2 andI&. N'=N-2

Using the expression (38) for (N —2!S,(j,=2)IN)
we obtain from (9)

Ia".-"-'= -,'q(1, ) . , sin'[~„, -~, (N -2)],sin z6 I

N» N-2 1
p 0 5 P IN 2% g+ IN ~ (50)

Equation (50) expresses a," "~ as a sinusoidal func-
tion of the grossly nonlinear energy scale &N 2, with
period g. When oN,

N is mapped onto the wave-
number scale, using (22), the oscillations of photo-
electric current form a Rydberg series o$-broad
asymmetric Beutler-Pano profiles, with period 1
in v„. The widths of the profiles are constant on
the v„energy parameter scale, but steadily de-
crease with increasing wave number converging to
zero at E=IN.

The photoemission averaged over the resonance
profile may be computed from the alternative ex-
pression (37) for (N —2 I S,(j,) I N). Equation (37) has
the general form

1/2
a+ 8'""

dgV

where a and b represent, respectively, the constant
photoelectron amplitudes in the open continuum for
N-N —2 and N ¹ As first shown by Qailitis, 4

and in the present context in (F845), ' it is a gen-
eral feature of autoionization in Rydberg series that

the interference vanishes between amplitudes in the
open and closed channels, when the cross section
is averaged over the resonance profile. Thus

d. .+""""— b '= l.l'+
I
bl',

d1|'V

(52)

i. e., the energy-averaged cross section is given
simply by the sum of open-continuum cross sections
corresponding to the two interacting channels. Us-
ing the result (52) together with (37) in (9) we ob-
tain then

N N-2 1(IO)
&"=27(2N. i)

x [(llN+2) d', +(5N+3) d, +(ON+1) d, d, coswb] .
(53)

C. Autoionization betweenI& and I~+2 . N'=%

The differential cross section for autoionization
into the channel N is given by

a." "=, ~"2'N'„[I (N IS.(0) I»I"3
I (NI S.(l) IN) I"5

I (NI S.(» I» I']

21(N I S,(0) I N) I
—3 I (Nl S,(l) IN) I '+ I (N I S,(2) I N) I

'
1(N I S,(0) I N) I

'+ 3 l (N I S,(l) I N) I
'+ 5 I (N I S,(2) I N) I'

(54)

where the matrix elements (Nl S,(j,) I N) are given
by (43) or (45). All three values of j, contribute
here, and P," "might thus vary over the full range
from —1 to 2, for suitable values of the
I(NIS.(j,) IN)l'.

From (45) we see that both o", " and P f "are
sinusoidal functions of the scattering phase shift
4N, with period g. The integrated cross section
o,"""[and hence the denominator in the expression
(54) for P f "] has the general form

af "=A+@sin'[a„-a,(N)], (55)

where A and B are (non-negative) constants. The
asymmetry parameter has the form

C+ D sin2[4~ —6 (N)] + E sin [6„—A, (N)]
W+ a sin'[~„- ~,(N)]

(55)
where C, D, E are independent of b„(but may be
negative). The second term in the numerator of
(56), which oscillates between positive and negative
values, is due to the interference between reaction
amplitudes for different values of the total angular
momentum J. This "interference term" has the ef-
fect of displacing the minimum of the asymmetry
parameter from the minimum of total photoioniza-
tion, which occurs at 4„=L,(N).

When o", "(L„)and PN""(Lz) are mapped onto the

vN, 2 scale, their variation takes the form of Beut-
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TABLE II. Comparative summaxJJ of procedures for fitting theory to experiment.

Experiment

Photoelectron
spectrum as a
function of
angle

Parameter

p cos7t'g

(and t pi)

Measurement

none relative

Resolution needed
In energy In intensity

-100 cm ~ relative

Comments

must resolve N N
photoelectrons

no energy analysis

High-resolution
photoabsorption
spectrum

(modulo 1)

(modulo 1)

P COS7tg

(and )pI)

Idg I

Lu-Fano plot

none

-1 cm

1 cm

~1 cm

-1cm~

-1 cm-'

absolute

none

none

none

absolute

absolute

no energy analysis;
need/ mod. 1

must resolve autoion-
ization profile, on
absolute energy scale;
need g mod. 1

need discrete level
positions

need p,„mod. 1; must
resolve autoionization
profile

need ) p); must resolve
autoioniz ation
profile

relative phase of the two terms which make up the
fundamental amplitudes c(j,).

A possible fitting procedure, utilizing the photo-
electron spectrum of reaction (1), is sketched as
follows. The values of pcosm5 and I pl are deter-
mined from the values of g, and P", ", using the
theoretical expressions (49) for these quantities.
Then, the value of 0„ together with )pi, allows us
to determine I d, I and I d, I. (Only the determina-
tion of o, requires an absolute intensity measure-
ment, and only the measurement of P", " requires
energy analysis of the photoelectron, sufficient to
resolve the rotational transition and hence of the
order of a hundred cm '.) Finally, the p~ are de-
termined, modulo 1, from the positions r, (N) of
minimum photocurrent in the autoionization region
between I„and I„„,and the relation, based on

(44c),

p, (mod 1)= — b, (N) —arccot
I p —cosy'

r sing5

this expression depends only on p cosy' and on 5
modulo 1. To determine O,,(N) the resonance pro-
file must be completely resolved.

An alternative procedure, utilizing the high-
resolution photoabsorption spectrum of reaction
(1), is given for N= 0 in FH and was employed by
Herzberg and Jungen. ' '" This procedure, for
arbitrary N, is as follows. As described in detail
in Sec. VII of FH, the quantum defects can be ob-
tained, modulo 1, from the experimental determina-
tion of the plot of the phase shift 4„versus the en-

ergy parameter v„,&, given theoretically by Eq.
(22). To construct this Lu-Fano plot, we need the
positions (but not the intensities) of the discrete
npo and npm Rydberg levels, to a precision of about
1 cm . The value a,(N) is measured to obtain

p cosmic from Eq. (44c). Then the magnitude of the
dipole matrix elements can be determined from the
relation

which follows from (44a) together with (22) and (7),
and which is the generalization of (FH43') to arbi-
trary N. Use of (60) requires absolute intensity
measurements on the resolved resonance profiles.

In Table II we summarize comparatively the two
fitting procedures. It is clear that for determining
photoionization parameters, photoelectron differen-
tial cross sections provide a very accessible al-
ternative to the high-resolution photoabsorption
spectrum. This fact, together with the high sensi-
tivity of the angular distributions to the effects of
alternative photoelectron partial waves, means that
angular distributions can be expected to play an
important role in our understanding of molecular

dynamic s.
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